p= pnorm(4.78) - pnorm(-2.34)
p
## [1] 0.9903573
P <- c(1,3,3,5,5,5,6,6,8,8,8,8,9,9)
summary(P)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 5 6 6 8 9
\[ IQR = \{3rdQ -1stQ\} \] \[ IQR = \{8-5\}=3 \]
x <- rnorm(10, mean = 4, sd = 1)
x
## [1] 5.046180 4.632517 4.151481 5.807229 4.039606 2.620735 6.305487 3.094813
## [9] 4.263064 3.102368
y <- rnorm(10, mean = 4, sd = 1)
y
## [1] 4.753196 4.109799 5.121523 3.497940 6.494289 5.893390 2.701970 3.756635
## [9] 3.734318 6.055527
w <- rnorm(10, mean = 4, sd = 1)
w
## [1] 4.749183 7.263684 4.370301 4.463950 3.587591 3.613503 4.562833 3.031377
## [9] 4.611869 3.354317
DP <- rpois(1000, 1)
DP
## [1] 2 0 1 0 1 4 1 2 0 2 0 2 0 0 2 2 2 2 0 1 1 2 2 0 0 0 1 3 0 2 1 0 0 0 1 0 2
## [38] 0 0 1 1 0 1 1 1 1 3 0 0 0 0 4 1 1 1 2 0 0 2 1 0 3 1 2 1 1 3 2 1 0 1 0 1 1
## [75] 1 0 1 0 1 2 1 0 1 1 1 2 2 0 0 1 2 0 1 1 1 1 2 0 0 2 2 1 1 1 0 1 1 2 1 1 0
## [112] 1 0 2 1 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 0 1 2 1 1 1 0 1 2 0 3 1 0 1 1
## [149] 0 0 3 0 2 1 1 2 1 0 2 1 0 1 2 1 4 1 2 1 1 1 0 1 0 0 0 1 1 2 1 1 1 0 0 0 1
## [186] 0 1 4 1 4 1 0 1 0 2 1 1 1 0 0 1 2 0 0 2 0 1 3 2 0 2 1 0 2 3 0 1 0 1 0 0 2
## [223] 2 0 0 2 0 0 2 0 0 1 1 1 0 0 2 0 1 1 1 2 1 0 3 0 3 2 3 2 2 0 2 0 0 1 1 2 0
## [260] 0 0 3 1 2 3 1 1 3 0 2 0 3 2 2 0 0 1 3 0 2 2 0 0 1 0 0 3 0 0 1 1 0 0 1 2 1
## [297] 1 1 1 2 4 1 0 1 1 1 0 1 0 1 2 0 1 2 1 0 0 0 0 2 4 1 0 2 2 1 1 2 1 2 2 1 2
## [334] 1 1 0 0 0 2 0 0 0 0 0 2 2 3 0 0 1 0 1 2 1 2 3 1 0 1 2 0 1 1 2 1 2 1 0 1 2
## [371] 1 0 1 3 0 0 0 1 0 2 1 0 1 0 2 1 0 2 0 0 2 2 1 0 0 2 1 0 0 1 0 0 0 3 2 3 4
## [408] 0 0 0 1 1 0 0 1 0 1 0 1 0 3 1 0 0 3 2 2 1 0 1 1 0 2 2 0 0 4 0 0 1 0 2 1 1
## [445] 0 1 2 2 1 1 1 3 3 1 2 0 0 3 2 0 2 0 0 1 2 0 2 1 2 0 1 0 0 0 2 5 0 0 1 1 2
## [482] 0 1 1 0 0 2 1 0 3 2 2 1 3 2 0 2 2 2 2 0 0 0 0 1 3 2 1 0 0 1 1 1 1 0 0 2 1
## [519] 1 1 0 2 1 1 1 0 0 0 1 2 1 2 2 1 0 1 1 1 0 3 0 0 1 1 3 2 2 2 0 2 1 0 1 1 0
## [556] 0 0 1 0 2 0 0 1 2 0 0 0 1 0 1 1 0 2 2 0 2 2 0 1 1 1 0 0 0 1 0 1 0 1 0 1 2
## [593] 0 0 0 2 3 2 2 0 0 0 0 2 0 1 0 1 0 1 2 0 1 0 3 0 2 1 0 2 0 0 0 1 1 1 1 0 0
## [630] 0 0 0 1 2 0 1 0 0 1 0 2 1 1 1 0 1 0 2 0 4 3 0 0 0 2 1 0 0 2 2 0 1 2 1 4 4
## [667] 2 1 3 0 0 2 1 1 2 1 1 2 1 0 1 2 2 0 1 0 1 1 3 0 0 2 1 0 2 0 0 1 2 0 1 1 1
## [704] 0 2 1 0 0 3 1 4 0 0 2 0 1 0 2 3 2 2 0 0 1 0 2 3 1 1 2 0 0 2 0 1 1 1 2 1 2
## [741] 1 1 2 1 0 0 1 0 0 2 1 2 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 2 2 1 1 1 0 1 1
## [778] 0 0 1 3 0 0 0 1 0 1 1 0 1 1 3 1 0 3 3 3 2 1 2 1 2 1 2 3 1 0 2 2 0 1 1 1 3
## [815] 0 3 1 0 1 0 1 1 0 1 0 1 1 1 1 1 2 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0 1 2 1
## [852] 0 1 0 1 1 0 0 2 3 1 2 2 4 2 0 1 0 1 0 1 1 2 1 1 1 1 0 3 3 0 1 3 0 1 2 2 0
## [889] 0 0 2 0 2 0 3 3 1 0 1 0 0 0 1 0 0 2 1 1 0 1 3 0 1 2 1 0 0 2 1 1 0 1 1 0 5
## [926] 3 3 0 1 4 0 2 2 2 0 3 0 2 0 0 1 3 0 3 0 0 1 1 0 0 1 0 1 3 1 4 2 0 2 2 1 0
## [963] 1 1 0 0 2 2 0 0 3 0 2 2 1 0 1 0 0 0 0 1 0 1 3 1 2 1 1 0 0 2 1 0 2 0 0 1 0
## [1000] 0
hist(DP, xlab = "distribucion Poisson", ylab = "frecuencia")
mean(DP)
## [1] 0.996
var(DP)
## [1] 1.004989