Init

options(digits = 3)
library(pacman)
p_load(kirkegaard, rms, ggeffects, haven, readxl, mirt, future, doFuture, tidymodels, osfr, glmnet)
theme_set(theme_bw())

#parallel
registerDoFuture()
plan(multisession)

#redefine describe
describe = function(...) {
 y = psych::describe(...)
 class(y) = "data.frame"
 y
}

Data

#Main file
d = read_rds("data/VES_dataset.rds")

#Nerve file
ncv = read_sav("data/nerve conduction_workfile_3.sav")

#child file
children = read_excel("data/Emil_DYSCHILD.xlsx")
children_labels = names(children) %>% str_match("\\((.+)\\)") %>% .[, 2] %>% str_replace("\\[ ", "")
names(children) = names(children) %>% str_replace("\\(.+\\)", "") %>% str_trim()
for (i in seq_along(children)) label(children[[i]]) = children_labels[i]
children_vars = df_var_table(children)

#assume religion is constant, then subset
children2 = children %>% filter(!duplicated(AOP_ID)) %>% select(AOP_ID, MOTHEDUC)

#variable list
vars_d = read_csv("data/VES_dataset_variables.csv")
## Parsed with column specification:
## cols(
##   number = col_double(),
##   code = col_character(),
##   name = col_character()
## )
vars_ncv = df_var_table(ncv)

#join
d$AOP_ID %<>% as.character()
ncv$AOP_ID %<>% as.character()
children2$AOP_ID %<>% as.character()
d = full_join(d, ncv %>% select(AOP_ID, !!(ncv %>% names() %>% setdiff(names(d)))), by = "AOP_ID") %>%
  left_join(children2, by = "AOP_ID")

#MMPI items
MMPI_items_questions = read_excel("MMPI-1 items.xlsx")[-3]
## New names:
## * `` -> ...3

Recode

#modify variables
d %<>% mutate(
  #rename tests for clarity
  VE_time1 = VE,
  AR_time1 = AR,
  VE_time2 = VESS,
  AR_time2 = ARSS
)

#MMPI items
mmpi_items = d %>% select(MM010001:MM010566) %>% names()
mmpi_scales = d %>% select(MM010568:MM010581) %>% names()

#recode NA
for (i in mmpi_items) d[[i]] = d[[i]] %>% mapvalues(from = 0:2, to = c(NA, 1, 0), warn_missing = F)

#rename scales
for (v in mmpi_scales) {
  i_name = vars_d %>% filter(code == v) %>% pull(name) %>% str_match("(MMPI_[A-Z]+)_") %>% .[, 2]
  d[[i_name]] = d[[v]]
}
mmpi_scales = d %>% select(MMPI_L:MMPI_ES) %>% names()

Basics

#sample sizes
d %>% nrow()
## [1] 4462
d$race %>% table2()
#age
d %>% 
  select(age) %>% 
  describe()

g factor

#g tests
g_tests_early = c("VE_time1", "AR_time1", "PA", "GIT", "AFQT")
g_tests_later = c("VE_time2", "AR_time2", "WAIS_BD", "WAIS_GI", "WRAT", "PASAT", "WLGT", "copy_direct", "copy_immediate", "copy_delayed", "CVLT", "WCST", "GPT_left", "GPT_right")
g_tests = c(g_tests_early, g_tests_later)

#test correlations
wtd.cors(d[g_tests])
##                VE_time1 AR_time1    PA   GIT  AFQT VE_time2 AR_time2 WAIS_BD
## VE_time1          1.000    0.699 0.516 0.659 0.714    0.824    0.642   0.437
## AR_time1          0.699    1.000 0.576 0.589 0.737    0.658    0.785   0.502
## PA                0.516    0.576 1.000 0.467 0.728    0.484    0.545   0.634
## GIT               0.659    0.589 0.467 1.000 0.645    0.620    0.548   0.418
## AFQT              0.714    0.737 0.728 0.645 1.000    0.670    0.688   0.629
## VE_time2          0.824    0.658 0.484 0.620 0.670    1.000    0.691   0.453
## AR_time2          0.642    0.785 0.545 0.548 0.688    0.691    1.000   0.532
## WAIS_BD           0.437    0.502 0.634 0.418 0.629    0.453    0.532   1.000
## WAIS_GI           0.725    0.635 0.482 0.582 0.626    0.719    0.622   0.453
## WRAT              0.746    0.589 0.412 0.517 0.578    0.766    0.585   0.382
## PASAT             0.408    0.521 0.371 0.365 0.432    0.440    0.562   0.388
## WLGT              0.443    0.370 0.289 0.310 0.360    0.463    0.365   0.281
## copy_direct       0.290    0.333 0.380 0.254 0.372    0.325    0.384   0.398
## copy_immediate    0.303    0.335 0.456 0.311 0.452    0.316    0.387   0.490
## copy_delayed      0.301    0.337 0.452 0.308 0.451    0.315    0.385   0.492
## CVLT              0.317    0.331 0.264 0.250 0.312    0.333    0.356   0.269
## WCST              0.327    0.360 0.331 0.282 0.368    0.361    0.396   0.356
## GPT_left          0.208    0.212 0.263 0.192 0.269    0.226    0.236   0.307
## GPT_right         0.204    0.201 0.261 0.174 0.253    0.220    0.240   0.301
##                WAIS_GI  WRAT PASAT  WLGT copy_direct copy_immediate
## VE_time1         0.725 0.746 0.408 0.443       0.290          0.303
## AR_time1         0.635 0.589 0.521 0.370       0.333          0.335
## PA               0.482 0.412 0.371 0.289       0.380          0.456
## GIT              0.582 0.517 0.365 0.310       0.254          0.311
## AFQT             0.626 0.578 0.432 0.360       0.372          0.452
## VE_time2         0.719 0.766 0.440 0.463       0.325          0.316
## AR_time2         0.622 0.585 0.562 0.365       0.384          0.387
## WAIS_BD          0.453 0.382 0.388 0.281       0.398          0.490
## WAIS_GI          1.000 0.652 0.366 0.414       0.278          0.343
## WRAT             0.652 1.000 0.417 0.504       0.269          0.269
## PASAT            0.366 0.417 1.000 0.357       0.247          0.282
## WLGT             0.414 0.504 0.357 1.000       0.176          0.213
## copy_direct      0.278 0.269 0.247 0.176       1.000          0.474
## copy_immediate   0.343 0.269 0.282 0.213       0.474          1.000
## copy_delayed     0.345 0.271 0.281 0.216       0.482          0.915
## CVLT             0.329 0.309 0.289 0.278       0.205          0.318
## WCST             0.330 0.292 0.285 0.209       0.291          0.268
## GPT_left         0.186 0.204 0.216 0.157       0.223          0.227
## GPT_right        0.173 0.196 0.226 0.168       0.223          0.194
##                copy_delayed  CVLT  WCST GPT_left GPT_right
## VE_time1              0.301 0.317 0.327    0.208     0.204
## AR_time1              0.337 0.331 0.360    0.212     0.201
## PA                    0.452 0.264 0.331    0.263     0.261
## GIT                   0.308 0.250 0.282    0.192     0.174
## AFQT                  0.451 0.312 0.368    0.269     0.253
## VE_time2              0.315 0.333 0.361    0.226     0.220
## AR_time2              0.385 0.356 0.396    0.236     0.240
## WAIS_BD               0.492 0.269 0.356    0.307     0.301
## WAIS_GI               0.345 0.329 0.330    0.186     0.173
## WRAT                  0.271 0.309 0.292    0.204     0.196
## PASAT                 0.281 0.289 0.285    0.216     0.226
## WLGT                  0.216 0.278 0.209    0.157     0.168
## copy_direct           0.482 0.205 0.291    0.223     0.223
## copy_immediate        0.915 0.318 0.268    0.227     0.194
## copy_delayed          1.000 0.327 0.268    0.227     0.199
## CVLT                  0.327 1.000 0.192    0.115     0.117
## WCST                  0.268 0.192 1.000    0.196     0.186
## GPT_left              0.227 0.115 0.196    1.000     0.634
## GPT_right             0.199 0.117 0.186    0.634     1.000
#all tests g
fa_g = fa(d[g_tests])
fa_g
## Factor Analysis using method =  minres
## Call: fa(r = d[g_tests])
## Standardized loadings (pattern matrix) based upon correlation matrix
##                 MR1   h2   u2 com
## VE_time1       0.82 0.67 0.33   1
## AR_time1       0.81 0.66 0.34   1
## PA             0.70 0.50 0.50   1
## GIT            0.69 0.47 0.53   1
## AFQT           0.85 0.73 0.27   1
## VE_time2       0.82 0.67 0.33   1
## AR_time2       0.82 0.67 0.33   1
## WAIS_BD        0.67 0.45 0.55   1
## WAIS_GI        0.76 0.58 0.42   1
## WRAT           0.73 0.53 0.47   1
## PASAT          0.57 0.32 0.68   1
## WLGT           0.49 0.24 0.76   1
## copy_direct    0.47 0.22 0.78   1
## copy_immediate 0.55 0.30 0.70   1
## copy_delayed   0.55 0.30 0.70   1
## CVLT           0.42 0.18 0.82   1
## WCST           0.46 0.21 0.79   1
## GPT_left       0.34 0.12 0.88   1
## GPT_right      0.33 0.11 0.89   1
## 
##                 MR1
## SS loadings    7.93
## Proportion Var 0.42
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## The degrees of freedom for the null model are  171  and the objective function was  12.5 with Chi Square of  55829
## The degrees of freedom for the model are 152  and the objective function was  3.86 
## 
## The root mean square of the residuals (RMSR) is  0.09 
## The df corrected root mean square of the residuals is  0.1 
## 
## The harmonic number of observations is  4426 with the empirical chi square  12980  with prob <  0 
## The total number of observations was  4462  with Likelihood Chi Square =  17178  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.656
## RMSEA index =  0.158  and the 90 % confidence intervals are  0.156 0.16
## BIC =  15901
## Fit based upon off diagonal values = 0.95
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.97
## Multiple R square of scores with factors          0.95
## Minimum correlation of possible factor scores     0.89
fa_g$loadings[, 1] %>% describe() %>% as.matrix()
##    vars  n  mean    sd median trimmed   mad   min   max range   skew kurtosis
## X1    1 19 0.624 0.172  0.673   0.628 0.212 0.331 0.853 0.522 -0.233    -1.44
##        se
## X1 0.0394
#earlier tests only
fa_g_time1 = fa(d[g_tests_early])
fa_g_time1
## Factor Analysis using method =  minres
## Call: fa(r = d[g_tests_early])
## Standardized loadings (pattern matrix) based upon correlation matrix
##           MR1   h2   u2 com
## VE_time1 0.82 0.67 0.33   1
## AR_time1 0.82 0.68 0.32   1
## PA       0.70 0.49 0.51   1
## GIT      0.73 0.53 0.47   1
## AFQT     0.92 0.84 0.16   1
## 
##                 MR1
## SS loadings    3.20
## Proportion Var 0.64
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## The degrees of freedom for the null model are  10  and the objective function was  3.1 with Chi Square of  13826
## The degrees of freedom for the model are 5  and the objective function was  0.15 
## 
## The root mean square of the residuals (RMSR) is  0.04 
## The df corrected root mean square of the residuals is  0.06 
## 
## The harmonic number of observations is  4377 with the empirical chi square  169  with prob <  9.5e-35 
## The total number of observations was  4462  with Likelihood Chi Square =  690  with prob <  8.8e-147 
## 
## Tucker Lewis Index of factoring reliability =  0.901
## RMSEA index =  0.175  and the 90 % confidence intervals are  0.164 0.186
## BIC =  648
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.96
## Multiple R square of scores with factors          0.92
## Minimum correlation of possible factor scores     0.85
fa_g_time1$loadings[, 1] %>% describe() %>% as.matrix()
##    vars n  mean     sd median trimmed   mad   min   max range  skew kurtosis
## X1    1 5 0.797 0.0867  0.816   0.797 0.135 0.701 0.918 0.217 0.181    -1.84
##        se
## X1 0.0388
#later tests only
fa_g_time2 = fa(d[g_tests_later])
fa_g_time2
## Factor Analysis using method =  minres
## Call: fa(r = d[g_tests_later])
## Standardized loadings (pattern matrix) based upon correlation matrix
##                 MR1   h2   u2 com
## VE_time2       0.78 0.61 0.39   1
## AR_time2       0.79 0.62 0.38   1
## WAIS_BD        0.67 0.45 0.55   1
## WAIS_GI        0.72 0.52 0.48   1
## WRAT           0.71 0.50 0.50   1
## PASAT          0.58 0.33 0.67   1
## WLGT           0.50 0.25 0.75   1
## copy_direct    0.51 0.26 0.74   1
## copy_immediate 0.61 0.37 0.63   1
## copy_delayed   0.61 0.37 0.63   1
## CVLT           0.45 0.20 0.80   1
## WCST           0.47 0.22 0.78   1
## GPT_left       0.37 0.14 0.86   1
## GPT_right      0.36 0.13 0.87   1
## 
##                 MR1
## SS loadings    5.00
## Proportion Var 0.36
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## The degrees of freedom for the null model are  91  and the objective function was  7.16 with Chi Square of  31892
## The degrees of freedom for the model are 77  and the objective function was  2.8 
## 
## The root mean square of the residuals (RMSR) is  0.11 
## The df corrected root mean square of the residuals is  0.12 
## 
## The harmonic number of observations is  4457 with the empirical chi square  9373  with prob <  0 
## The total number of observations was  4462  with Likelihood Chi Square =  12463  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.54
## RMSEA index =  0.19  and the 90 % confidence intervals are  0.187 0.193
## BIC =  11816
## Fit based upon off diagonal values = 0.92
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.95
## Multiple R square of scores with factors          0.90
## Minimum correlation of possible factor scores     0.80
fa_g_time2$loadings[, 1] %>% describe() %>% as.matrix()
##    vars  n  mean    sd median trimmed   mad   min   max range    skew kurtosis
## X1    1 14 0.582 0.141  0.592   0.583 0.173 0.364 0.791 0.426 -0.0247    -1.42
##        se
## X1 0.0378
#save scores, standardize to white
d$g = fa_g$scores[, 1] %>% standardize(focal_group = d$race == "White")
d$g_time1 = fa_g_time1$scores[, 1] %>% standardize(focal_group = d$race == "White")
d$g_time2 = fa_g_time2$scores[, 1] %>% standardize(focal_group = d$race == "White")

#alpha
d[g_tests] %>% psych::alpha()
## 
## Reliability analysis   
## Call: psych::alpha(x = .)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.85      0.92    0.94      0.39  12 0.0023   42 9.8     0.34
## 
##  lower alpha upper     95% confidence boundaries
## 0.85 0.85 0.86 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## VE_time1            0.83      0.92    0.94      0.38  11   0.0027 0.026  0.34
## AR_time1            0.83      0.92    0.94      0.38  11   0.0027 0.027  0.33
## PA                  0.84      0.92    0.94      0.38  11   0.0025 0.029  0.33
## GIT                 0.84      0.92    0.94      0.39  11   0.0025 0.029  0.34
## AFQT                0.85      0.92    0.94      0.38  11   0.0023 0.026  0.33
## VE_time2            0.83      0.92    0.94      0.38  11   0.0027 0.026  0.33
## AR_time2            0.83      0.92    0.94      0.38  11   0.0028 0.027  0.33
## WAIS_BD             0.85      0.92    0.94      0.39  11   0.0023 0.030  0.33
## WAIS_GI             0.85      0.92    0.94      0.38  11   0.0024 0.028  0.33
## WRAT                0.84      0.92    0.94      0.38  11   0.0025 0.028  0.34
## PASAT               0.88      0.92    0.94      0.39  12   0.0017 0.030  0.34
## WLGT                0.85      0.92    0.94      0.40  12   0.0024 0.030  0.36
## copy_direct         0.85      0.92    0.94      0.40  12   0.0023 0.030  0.36
## copy_immediate      0.85      0.92    0.94      0.39  12   0.0024 0.029  0.36
## copy_delayed        0.85      0.92    0.94      0.39  12   0.0024 0.029  0.36
## CVLT                0.85      0.92    0.95      0.40  12   0.0023 0.029  0.37
## WCST                0.86      0.92    0.95      0.40  12   0.0023 0.030  0.36
## GPT_left            0.85      0.93    0.94      0.41  12   0.0023 0.027  0.37
## GPT_right           0.85      0.93    0.94      0.41  12   0.0023 0.027  0.37
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop   mean    sd
## VE_time1       4384  0.81  0.79  0.80   0.76 107.16 22.26
## AR_time1       4385  0.82  0.79  0.79   0.78 104.43 22.01
## PA             4386  0.69  0.72  0.71   0.62 104.32 22.64
## GIT            4376  0.70  0.69  0.67   0.64 102.06 18.43
## AFQT           4441  0.79  0.83  0.84   0.80   0.14  0.81
## VE_time2       4462  0.80  0.80  0.80   0.77 116.52 23.04
## AR_time2       4462  0.82  0.81  0.81   0.79 104.56 24.40
## WAIS_BD        4462  0.62  0.71  0.69   0.62  10.52  2.64
## WAIS_GI        4462  0.71  0.75  0.74   0.72  10.07  2.80
## WRAT           4460  0.72  0.73  0.72   0.71  61.17 14.73
## PASAT          4450  0.72  0.60  0.57   0.56 108.84 50.72
## WLGT           4462  0.51  0.53  0.49   0.49  35.12 10.92
## copy_direct    4462  0.43  0.53  0.49   0.43  32.73  3.31
## copy_immediate 4462  0.49  0.61  0.62   0.47  20.11  6.75
## copy_delayed   4462  0.49  0.61  0.62   0.47  20.27  6.33
## CVLT           4462  0.41  0.48  0.43   0.41  11.06  2.33
## WCST           4462  0.43  0.51  0.46   0.43   0.79  0.17
## GPT_left       4448  0.39  0.43  0.39   0.33 -77.38 13.77
## GPT_right      4450  0.38  0.42  0.38   0.33 -73.66 11.82
#drop 1 at a time
for (i in seq_along(g_tests)) {
  #drop i and FA
  i_fa = fa(d[g_tests[-i]])
  d[[str_glue("g_drop_{i}")]] = i_fa$scores[, 1] %>% as.vector()
}

#correlations
map2_dbl(g_tests, seq_along(g_tests), function(v, i) {
  wtd.cors(d[[v]], d[[str_glue("g_drop_{i}")]])
}) %>% set_names(g_tests) %>% sort()
##      GPT_right       GPT_left           CVLT           WCST    copy_direct 
##          0.308          0.316          0.406          0.437          0.452 
##           WLGT   copy_delayed copy_immediate          PASAT        WAIS_BD 
##          0.475          0.505          0.507          0.545          0.643 
##            GIT             PA           WRAT        WAIS_GI       AR_time2 
##          0.677          0.684          0.710          0.741          0.792 
##       AR_time1       VE_time2       VE_time1           AFQT 
##          0.793          0.795          0.795          0.828

MMPI factor analysis

#scales
#missing data?
d[mmpi_scales] %>% miss_amount()
## cases with missing data  vars with missing data cells with missing data 
##                       0                       0                       0
#factpr amaæuze
MMPI_scales_1p = fa(d[mmpi_scales])
MMPI_scales_1p
## Factor Analysis using method =  minres
## Call: fa(r = d[mmpi_scales])
## Standardized loadings (pattern matrix) based upon correlation matrix
##           MR1    h2   u2 com
## MMPI_L  -0.17 0.028 0.97   1
## MMPI_F   0.80 0.634 0.37   1
## MMPI_K  -0.35 0.124 0.88   1
## MMPI_HS  0.65 0.421 0.58   1
## MMPI_D   0.74 0.555 0.45   1
## MMPI_HY  0.53 0.281 0.72   1
## MMPI_PD  0.62 0.384 0.62   1
## MMPI_MF  0.30 0.088 0.91   1
## MMPI_PA  0.69 0.478 0.52   1
## MMPI_PT  0.88 0.776 0.22   1
## MMPI_SC  0.91 0.823 0.18   1
## MMPI_MA  0.31 0.095 0.91   1
## MMPI_SI  0.46 0.207 0.79   1
## MMPI_ES -0.77 0.585 0.41   1
## 
##                 MR1
## SS loadings    5.48
## Proportion Var 0.39
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## The degrees of freedom for the null model are  91  and the objective function was  9.45 with Chi Square of  42112
## The degrees of freedom for the model are 77  and the objective function was  3.76 
## 
## The root mean square of the residuals (RMSR) is  0.14 
## The df corrected root mean square of the residuals is  0.15 
## 
## The harmonic number of observations is  4462 with the empirical chi square  15122  with prob <  0 
## The total number of observations was  4462  with Likelihood Chi Square =  16764  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.531
## RMSEA index =  0.22  and the 90 % confidence intervals are  0.218 0.223
## BIC =  16117
## Fit based upon off diagonal values = 0.89
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.97
## Multiple R square of scores with factors          0.95
## Minimum correlation of possible factor scores     0.89
MMPI_scales_1p$loadings[, 1] %>% describe()
#save the scores
d$P_scales = MMPI_scales_1p$scores[, 1] %>% standardize(focal_group = d$race == "White")

#method variance
MMPI_scales_1p_methods = fa_all_methods(d[mmpi_scales])
## 1 out of 40 - regression_minres
## Saving results from regression_minres
## 2 out of 40 - Thurstone_minres
## Saving results from Thurstone_minres
## 3 out of 40 - tenBerge_minres
## Saving results from tenBerge_minres
## 4 out of 40 - Anderson_minres
## Skipping Anderson_minres due to extraction error
## 5 out of 40 - Bartlett_minres
## Saving results from Bartlett_minres
## 6 out of 40 - regression_ols
## Saving results from regression_ols
## 7 out of 40 - Thurstone_ols
## Saving results from Thurstone_ols
## 8 out of 40 - tenBerge_ols
## Saving results from tenBerge_ols
## 9 out of 40 - Anderson_ols
## Skipping Anderson_ols due to extraction error
## 10 out of 40 - Bartlett_ols
## Saving results from Bartlett_ols
## 11 out of 40 - regression_wls
## Saving results from regression_wls
## 12 out of 40 - Thurstone_wls
## Saving results from Thurstone_wls
## 13 out of 40 - tenBerge_wls
## Saving results from tenBerge_wls
## 14 out of 40 - Anderson_wls
## Skipping Anderson_wls due to extraction error
## 15 out of 40 - Bartlett_wls
## Saving results from Bartlett_wls
## 16 out of 40 - regression_gls
## Saving results from regression_gls
## 17 out of 40 - Thurstone_gls
## Saving results from Thurstone_gls
## 18 out of 40 - tenBerge_gls
## Saving results from tenBerge_gls
## 19 out of 40 - Anderson_gls
## Skipping Anderson_gls due to extraction error
## 20 out of 40 - Bartlett_gls
## Saving results from Bartlett_gls
## 21 out of 40 - regression_pa
## Saving results from regression_pa
## 22 out of 40 - Thurstone_pa
## Saving results from Thurstone_pa
## 23 out of 40 - tenBerge_pa
## Saving results from tenBerge_pa
## 24 out of 40 - Anderson_pa
## Skipping Anderson_pa due to extraction error
## 25 out of 40 - Bartlett_pa
## Saving results from Bartlett_pa
## 26 out of 40 - regression_ml
## Saving results from regression_ml
## 27 out of 40 - Thurstone_ml
## Saving results from Thurstone_ml
## 28 out of 40 - tenBerge_ml
## Saving results from tenBerge_ml
## 29 out of 40 - Anderson_ml
## Skipping Anderson_ml due to extraction error
## 30 out of 40 - Bartlett_ml
## Saving results from Bartlett_ml
## 31 out of 40 - regression_minchi
## Saving results from regression_minchi
## 32 out of 40 - Thurstone_minchi
## Saving results from Thurstone_minchi
## 33 out of 40 - tenBerge_minchi
## Saving results from tenBerge_minchi
## 34 out of 40 - Anderson_minchi
## Skipping Anderson_minchi due to extraction error
## 35 out of 40 - Bartlett_minchi
## Saving results from Bartlett_minchi
## 36 out of 40 - regression_minrank
## Saving results from regression_minrank
## 37 out of 40 - Thurstone_minrank
## Saving results from Thurstone_minrank
## 38 out of 40 - tenBerge_minrank
## Saving results from tenBerge_minrank
## 39 out of 40 - Anderson_minrank
## Skipping Anderson_minrank due to extraction error
## 40 out of 40 - Bartlett_minrank
## Saving results from Bartlett_minrank
GG_heatmap(MMPI_scales_1p_methods$loadings)

GG_heatmap(MMPI_scales_1p_methods$scores)

#reliability
MMPI_scales_1p_methods$scores %>% psych::alpha()
## Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## 
## Reliability analysis   
## Call: psych::alpha(x = .)
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N     ase     mean   sd median_r
##          1         1       1         1 10448 2.5e-06 -1.3e-17 0.99        1
## 
##  lower alpha upper     95% confidence boundaries
## 1 1 1 
## 
##  Reliability if an item is dropped:
##                    raw_alpha std.alpha G6(smc) average_r   S/N alpha se   var.r
## regression_minres          1         1       1         1 10013  2.6e-06 1.0e-05
## Thurstone_minres           1         1       1         1 10013  2.6e-06 1.0e-05
## tenBerge_minres            1         1       1         1 10013  2.6e-06 1.0e-05
## Bartlett_minres            1         1       1         1  9937  2.6e-06 1.0e-05
## regression_ols             1         1       1         1 10013  2.6e-06 1.0e-05
## Thurstone_ols              1         1       1         1 10013  2.6e-06 1.0e-05
## tenBerge_ols               1         1       1         1 10013  2.6e-06 1.0e-05
## Bartlett_ols               1         1       1         1  9937  2.6e-06 1.0e-05
## regression_wls             1         1       1         1  9949  2.6e-06 1.0e-05
## Thurstone_wls              1         1       1         1  9949  2.6e-06 1.0e-05
## tenBerge_wls               1         1       1         1  9949  2.6e-06 1.0e-05
## Bartlett_wls               1         1       1         1  9953  2.6e-06 1.0e-05
## regression_gls             1         1       1         1  9984  2.6e-06 1.0e-05
## Thurstone_gls              1         1       1         1  9984  2.6e-06 1.0e-05
## tenBerge_gls               1         1       1         1  9984  2.6e-06 1.0e-05
## Bartlett_gls               1         1       1         1  9955  2.6e-06 1.0e-05
## regression_pa              1         1       1         1 10013  2.6e-06 1.0e-05
## Thurstone_pa               1         1       1         1 10013  2.6e-06 1.0e-05
## tenBerge_pa                1         1       1         1 10013  2.6e-06 1.0e-05
## Bartlett_pa                1         1       1         1  9937  2.6e-06 1.0e-05
## regression_ml              1         1       1         1 10061  2.6e-06 1.0e-05
## Thurstone_ml               1         1       1         1 10061  2.6e-06 1.0e-05
## tenBerge_ml                1         1       1         1 10061  2.6e-06 1.0e-05
## Bartlett_ml                1         1       1         1 10061  2.6e-06 1.0e-05
## regression_minchi          1         1       1         1 10020  2.6e-06 1.0e-05
## Thurstone_minchi           1         1       1         1 10020  2.6e-06 1.0e-05
## tenBerge_minchi            1         1       1         1 10020  2.6e-06 1.0e-05
## Bartlett_minchi            1         1       1         1 10035  2.6e-06 1.0e-05
## regression_minrank         1         1       1         1 11508  2.3e-06 8.3e-06
## Thurstone_minrank          1         1       1         1 11508  2.3e-06 8.3e-06
## tenBerge_minrank           1         1       1         1 11508  2.3e-06 8.3e-06
## Bartlett_minrank           1         1       1         1  9948  2.6e-06 1.0e-05
##                    med.r
## regression_minres      1
## Thurstone_minres       1
## tenBerge_minres        1
## Bartlett_minres        1
## regression_ols         1
## Thurstone_ols          1
## tenBerge_ols           1
## Bartlett_ols           1
## regression_wls         1
## Thurstone_wls          1
## tenBerge_wls           1
## Bartlett_wls           1
## regression_gls         1
## Thurstone_gls          1
## tenBerge_gls           1
## Bartlett_gls           1
## regression_pa          1
## Thurstone_pa           1
## tenBerge_pa            1
## Bartlett_pa            1
## regression_ml          1
## Thurstone_ml           1
## tenBerge_ml            1
## Bartlett_ml            1
## regression_minchi      1
## Thurstone_minchi       1
## tenBerge_minchi        1
## Bartlett_minchi        1
## regression_minrank     1
## Thurstone_minrank      1
## tenBerge_minrank       1
## Bartlett_minrank       1
## 
##  Item statistics 
##                       n raw.r std.r r.cor r.drop     mean   sd
## regression_minres  4462  1.00  1.00  1.00   1.00 -2.8e-17 0.97
## Thurstone_minres   4462  1.00  1.00  1.00   1.00 -2.8e-17 0.97
## tenBerge_minres    4462  1.00  1.00  1.00   1.00 -1.5e-17 0.97
## Bartlett_minres    4462  1.00  1.00  1.00   1.00  3.0e-18 1.03
## regression_ols     4462  1.00  1.00  1.00   1.00 -2.2e-17 0.97
## Thurstone_ols      4462  1.00  1.00  1.00   1.00 -2.2e-17 0.97
## tenBerge_ols       4462  1.00  1.00  1.00   1.00 -3.2e-17 0.97
## Bartlett_ols       4462  1.00  1.00  1.00   1.00  5.1e-18 1.03
## regression_wls     4462  1.00  1.00  1.00   1.00 -2.9e-17 0.97
## Thurstone_wls      4462  1.00  1.00  1.00   1.00 -2.9e-17 0.97
## tenBerge_wls       4462  1.00  1.00  1.00   1.00 -2.1e-17 0.97
## Bartlett_wls       4462  1.00  1.00  1.00   1.00  1.3e-17 1.03
## regression_gls     4462  1.00  1.00  1.00   1.00 -2.3e-17 0.97
## Thurstone_gls      4462  1.00  1.00  1.00   1.00 -2.3e-17 0.97
## tenBerge_gls       4462  1.00  1.00  1.00   1.00 -1.9e-17 0.97
## Bartlett_gls       4462  1.00  1.00  1.00   1.00 -3.4e-18 1.03
## regression_pa      4462  1.00  1.00  1.00   1.00 -7.9e-18 0.97
## Thurstone_pa       4462  1.00  1.00  1.00   1.00 -7.9e-18 0.97
## tenBerge_pa        4462  1.00  1.00  1.00   1.00 -2.4e-17 0.97
## Bartlett_pa        4462  1.00  1.00  1.00   1.00  5.3e-18 1.03
## regression_ml      4462  1.00  1.00  1.00   1.00 -1.4e-17 0.97
## Thurstone_ml       4462  1.00  1.00  1.00   1.00 -1.4e-17 0.97
## tenBerge_ml        4462  1.00  1.00  1.00   1.00 -1.1e-17 0.97
## Bartlett_ml        4462  1.00  1.00  1.00   1.00 -1.9e-17 1.03
## regression_minchi  4462  1.00  1.00  1.00   1.00 -1.2e-17 0.97
## Thurstone_minchi   4462  1.00  1.00  1.00   1.00 -1.2e-17 0.97
## tenBerge_minchi    4462  1.00  1.00  1.00   1.00 -6.6e-18 0.97
## Bartlett_minchi    4462  1.00  1.00  1.00   1.00 -1.5e-17 1.03
## regression_minrank 4462  0.99  0.99  0.99   0.99 -2.1e-17 0.99
## Thurstone_minrank  4462  0.99  0.99  0.99   0.99 -2.1e-17 0.99
## tenBerge_minrank   4462  0.99  0.99  0.99   0.99 -1.9e-17 0.99
## Bartlett_minrank   4462  1.00  1.00  1.00   1.00  6.7e-18 1.02
#items
MMPI_item_data = d %>% select(!!mmpi_items)

#missing data
MMPI_item_data %>% miss_amount()
## cases with missing data  vars with missing data cells with missing data 
##                 0.28000                 0.97000                 0.00221
#score with missing data
d$P_mean_missing = MMPI_item_data %>% rowMeans(na.rm = T) %>% standardize(focal_group = d$race == "White")

#impute 0's
MMPI_item_data[is.na(MMPI_item_data)] = 0

#sum scores
d$P_sum = MMPI_item_data %>% rowSums(na.rm = T) %>% standardize(focal_group = d$race == "White")

#not much diference?
wtd.cors(d$P_mean_missing, d$P_sum)
##       [,1]
## [1,] 0.999
#IRT
#simple P factor model
MMPI_1p = mirt(d %>% select(mmpi_items), model = 1)
## Note: Using an external vector in selections is ambiguous.
## ℹ Use `all_of(mmpi_items)` instead of `mmpi_items` to silence this message.
## ℹ See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This message is displayed once per session.
## 
Iteration: 1, Log-Lik: -1239903.432, Max-Change: 5.93667
Iteration: 2, Log-Lik: -1170324.093, Max-Change: 3.78581
Iteration: 3, Log-Lik: -1160186.248, Max-Change: 0.77909
Iteration: 4, Log-Lik: -1158315.083, Max-Change: 0.36661
Iteration: 5, Log-Lik: -1158117.394, Max-Change: 0.13068
Iteration: 6, Log-Lik: -1158069.305, Max-Change: 0.04140
Iteration: 7, Log-Lik: -1158051.849, Max-Change: 0.02083
Iteration: 8, Log-Lik: -1158038.977, Max-Change: 0.02133
Iteration: 9, Log-Lik: -1158027.089, Max-Change: 0.02240
Iteration: 10, Log-Lik: -1158015.937, Max-Change: 0.02134
Iteration: 11, Log-Lik: -1158005.374, Max-Change: 0.02120
Iteration: 12, Log-Lik: -1157995.477, Max-Change: 0.02059
Iteration: 13, Log-Lik: -1157986.241, Max-Change: 0.01986
Iteration: 14, Log-Lik: -1157977.633, Max-Change: 0.01913
Iteration: 15, Log-Lik: -1157969.603, Max-Change: 0.01767
Iteration: 16, Log-Lik: -1157962.099, Max-Change: 0.01667
Iteration: 17, Log-Lik: -1157955.090, Max-Change: 0.01667
Iteration: 18, Log-Lik: -1157948.471, Max-Change: 0.01657
Iteration: 19, Log-Lik: -1157942.194, Max-Change: 0.01633
Iteration: 20, Log-Lik: -1157936.221, Max-Change: 0.01604
Iteration: 21, Log-Lik: -1157930.519, Max-Change: 0.01573
Iteration: 22, Log-Lik: -1157925.062, Max-Change: 0.01541
Iteration: 23, Log-Lik: -1157919.833, Max-Change: 0.01508
Iteration: 24, Log-Lik: -1157914.822, Max-Change: 0.01435
Iteration: 25, Log-Lik: -1157910.060, Max-Change: 0.01429
Iteration: 26, Log-Lik: -1157905.497, Max-Change: 0.01320
Iteration: 27, Log-Lik: -1157901.046, Max-Change: 0.01372
Iteration: 28, Log-Lik: -1157878.441, Max-Change: 0.00839
Iteration: 29, Log-Lik: -1157875.635, Max-Change: 0.00818
Iteration: 30, Log-Lik: -1157873.254, Max-Change: 0.00727
Iteration: 31, Log-Lik: -1157861.556, Max-Change: 0.01075
Iteration: 32, Log-Lik: -1157859.873, Max-Change: 0.00651
Iteration: 33, Log-Lik: -1157858.545, Max-Change: 0.00634
Iteration: 34, Log-Lik: -1157851.500, Max-Change: 0.00436
Iteration: 35, Log-Lik: -1157850.606, Max-Change: 0.00468
Iteration: 36, Log-Lik: -1157849.781, Max-Change: 0.00434
Iteration: 37, Log-Lik: -1157846.217, Max-Change: 0.00890
Iteration: 38, Log-Lik: -1157845.394, Max-Change: 0.00423
Iteration: 39, Log-Lik: -1157844.741, Max-Change: 0.00353
Iteration: 40, Log-Lik: -1157843.286, Max-Change: 0.00388
Iteration: 41, Log-Lik: -1157842.711, Max-Change: 0.00331
Iteration: 42, Log-Lik: -1157842.163, Max-Change: 0.00328
Iteration: 43, Log-Lik: -1157840.009, Max-Change: 0.00622
Iteration: 44, Log-Lik: -1157839.464, Max-Change: 0.00305
Iteration: 45, Log-Lik: -1157838.943, Max-Change: 0.00355
Iteration: 46, Log-Lik: -1157837.914, Max-Change: 0.00272
Iteration: 47, Log-Lik: -1157837.373, Max-Change: 0.00283
Iteration: 48, Log-Lik: -1157836.928, Max-Change: 0.00260
Iteration: 49, Log-Lik: -1157834.456, Max-Change: 0.00239
Iteration: 50, Log-Lik: -1157834.099, Max-Change: 0.00222
Iteration: 51, Log-Lik: -1157833.757, Max-Change: 0.00216
Iteration: 52, Log-Lik: -1157831.865, Max-Change: 0.00181
Iteration: 53, Log-Lik: -1157831.600, Max-Change: 0.00178
Iteration: 54, Log-Lik: -1157831.345, Max-Change: 0.00173
Iteration: 55, Log-Lik: -1157829.943, Max-Change: 0.00145
Iteration: 56, Log-Lik: -1157829.750, Max-Change: 0.00144
Iteration: 57, Log-Lik: -1157829.564, Max-Change: 0.00143
Iteration: 58, Log-Lik: -1157828.545, Max-Change: 0.00135
Iteration: 59, Log-Lik: -1157828.405, Max-Change: 0.00134
Iteration: 60, Log-Lik: -1157828.271, Max-Change: 0.00132
Iteration: 61, Log-Lik: -1157827.534, Max-Change: 0.00124
Iteration: 62, Log-Lik: -1157827.433, Max-Change: 0.00123
Iteration: 63, Log-Lik: -1157827.336, Max-Change: 0.00122
Iteration: 64, Log-Lik: -1157826.802, Max-Change: 0.00134
Iteration: 65, Log-Lik: -1157826.745, Max-Change: 0.00104
Iteration: 66, Log-Lik: -1157826.688, Max-Change: 0.00107
Iteration: 67, Log-Lik: -1157826.369, Max-Change: 0.00092
Iteration: 68, Log-Lik: -1157826.317, Max-Change: 0.00089
Iteration: 69, Log-Lik: -1157826.269, Max-Change: 0.00088
Iteration: 70, Log-Lik: -1157826.004, Max-Change: 0.00085
Iteration: 71, Log-Lik: -1157825.966, Max-Change: 0.00078
Iteration: 72, Log-Lik: -1157825.930, Max-Change: 0.00116
Iteration: 73, Log-Lik: -1157825.876, Max-Change: 0.00124
Iteration: 74, Log-Lik: -1157825.816, Max-Change: 0.00051
Iteration: 75, Log-Lik: -1157825.780, Max-Change: 0.00073
Iteration: 76, Log-Lik: -1157825.723, Max-Change: 0.00060
Iteration: 77, Log-Lik: -1157825.692, Max-Change: 0.00064
Iteration: 78, Log-Lik: -1157825.662, Max-Change: 0.00061
Iteration: 79, Log-Lik: -1157825.587, Max-Change: 0.00062
Iteration: 80, Log-Lik: -1157825.560, Max-Change: 0.00059
Iteration: 81, Log-Lik: -1157825.535, Max-Change: 0.00060
Iteration: 82, Log-Lik: -1157825.499, Max-Change: 0.00064
Iteration: 83, Log-Lik: -1157825.475, Max-Change: 0.00058
Iteration: 84, Log-Lik: -1157825.453, Max-Change: 0.00057
Iteration: 85, Log-Lik: -1157825.418, Max-Change: 0.00061
Iteration: 86, Log-Lik: -1157825.397, Max-Change: 0.00056
Iteration: 87, Log-Lik: -1157825.377, Max-Change: 0.00055
Iteration: 88, Log-Lik: -1157825.349, Max-Change: 0.00071
Iteration: 89, Log-Lik: -1157825.330, Max-Change: 0.00053
Iteration: 90, Log-Lik: -1157825.312, Max-Change: 0.00053
Iteration: 91, Log-Lik: -1157825.287, Max-Change: 0.00064
Iteration: 92, Log-Lik: -1157825.270, Max-Change: 0.00057
Iteration: 93, Log-Lik: -1157825.254, Max-Change: 0.00051
Iteration: 94, Log-Lik: -1157825.232, Max-Change: 0.00073
Iteration: 95, Log-Lik: -1157825.217, Max-Change: 0.00051
Iteration: 96, Log-Lik: -1157825.202, Max-Change: 0.00049
Iteration: 97, Log-Lik: -1157825.182, Max-Change: 0.00068
Iteration: 98, Log-Lik: -1157825.169, Max-Change: 0.00058
Iteration: 99, Log-Lik: -1157825.156, Max-Change: 0.00048
Iteration: 100, Log-Lik: -1157825.138, Max-Change: 0.00074
Iteration: 101, Log-Lik: -1157825.125, Max-Change: 0.00053
Iteration: 102, Log-Lik: -1157825.114, Max-Change: 0.00046
Iteration: 103, Log-Lik: -1157825.097, Max-Change: 0.00069
Iteration: 104, Log-Lik: -1157825.086, Max-Change: 0.00059
Iteration: 105, Log-Lik: -1157825.076, Max-Change: 0.00044
Iteration: 106, Log-Lik: -1157825.061, Max-Change: 0.00075
Iteration: 107, Log-Lik: -1157825.051, Max-Change: 0.00053
Iteration: 108, Log-Lik: -1157825.042, Max-Change: 0.00046
Iteration: 109, Log-Lik: -1157825.029, Max-Change: 0.00069
Iteration: 110, Log-Lik: -1157825.019, Max-Change: 0.00058
Iteration: 111, Log-Lik: -1157825.011, Max-Change: 0.00041
Iteration: 112, Log-Lik: -1157824.999, Max-Change: 0.00074
Iteration: 113, Log-Lik: -1157824.991, Max-Change: 0.00053
Iteration: 114, Log-Lik: -1157824.983, Max-Change: 0.00046
Iteration: 115, Log-Lik: -1157824.972, Max-Change: 0.00068
Iteration: 116, Log-Lik: -1157824.965, Max-Change: 0.00057
Iteration: 117, Log-Lik: -1157824.957, Max-Change: 0.00040
Iteration: 118, Log-Lik: -1157824.948, Max-Change: 0.00072
Iteration: 119, Log-Lik: -1157824.941, Max-Change: 0.00052
Iteration: 120, Log-Lik: -1157824.934, Max-Change: 0.00044
Iteration: 121, Log-Lik: -1157824.925, Max-Change: 0.00066
Iteration: 122, Log-Lik: -1157824.919, Max-Change: 0.00055
Iteration: 123, Log-Lik: -1157824.913, Max-Change: 0.00039
Iteration: 124, Log-Lik: -1157824.905, Max-Change: 0.00069
Iteration: 125, Log-Lik: -1157824.900, Max-Change: 0.00050
Iteration: 126, Log-Lik: -1157824.894, Max-Change: 0.00042
Iteration: 127, Log-Lik: -1157824.887, Max-Change: 0.00063
Iteration: 128, Log-Lik: -1157824.882, Max-Change: 0.00053
Iteration: 129, Log-Lik: -1157824.877, Max-Change: 0.00037
Iteration: 130, Log-Lik: -1157824.870, Max-Change: 0.00065
Iteration: 131, Log-Lik: -1157824.865, Max-Change: 0.00047
Iteration: 132, Log-Lik: -1157824.861, Max-Change: 0.00040
Iteration: 133, Log-Lik: -1157824.855, Max-Change: 0.00060
Iteration: 134, Log-Lik: -1157824.851, Max-Change: 0.00050
Iteration: 135, Log-Lik: -1157824.846, Max-Change: 0.00035
Iteration: 136, Log-Lik: -1157824.841, Max-Change: 0.00061
Iteration: 137, Log-Lik: -1157824.837, Max-Change: 0.00045
Iteration: 138, Log-Lik: -1157824.833, Max-Change: 0.00038
Iteration: 139, Log-Lik: -1157824.828, Max-Change: 0.00056
Iteration: 140, Log-Lik: -1157824.825, Max-Change: 0.00046
Iteration: 141, Log-Lik: -1157824.821, Max-Change: 0.00033
Iteration: 142, Log-Lik: -1157824.817, Max-Change: 0.00057
Iteration: 143, Log-Lik: -1157824.813, Max-Change: 0.00042
Iteration: 144, Log-Lik: -1157824.810, Max-Change: 0.00035
Iteration: 145, Log-Lik: -1157824.806, Max-Change: 0.00052
Iteration: 146, Log-Lik: -1157824.803, Max-Change: 0.00043
Iteration: 147, Log-Lik: -1157824.800, Max-Change: 0.00031
Iteration: 148, Log-Lik: -1157824.796, Max-Change: 0.00053
Iteration: 149, Log-Lik: -1157824.793, Max-Change: 0.00039
Iteration: 150, Log-Lik: -1157824.791, Max-Change: 0.00032
Iteration: 151, Log-Lik: -1157824.787, Max-Change: 0.00048
Iteration: 152, Log-Lik: -1157824.785, Max-Change: 0.00040
Iteration: 153, Log-Lik: -1157824.782, Max-Change: 0.00028
Iteration: 154, Log-Lik: -1157824.779, Max-Change: 0.00049
Iteration: 155, Log-Lik: -1157824.777, Max-Change: 0.00035
Iteration: 156, Log-Lik: -1157824.775, Max-Change: 0.00030
Iteration: 157, Log-Lik: -1157824.772, Max-Change: 0.00044
Iteration: 158, Log-Lik: -1157824.770, Max-Change: 0.00036
Iteration: 159, Log-Lik: -1157824.768, Max-Change: 0.00026
Iteration: 160, Log-Lik: -1157824.765, Max-Change: 0.00045
Iteration: 161, Log-Lik: -1157824.763, Max-Change: 0.00032
Iteration: 162, Log-Lik: -1157824.761, Max-Change: 0.00027
Iteration: 163, Log-Lik: -1157824.758, Max-Change: 0.00040
Iteration: 164, Log-Lik: -1157824.757, Max-Change: 0.00033
Iteration: 165, Log-Lik: -1157824.755, Max-Change: 0.00024
Iteration: 166, Log-Lik: -1157824.753, Max-Change: 0.00040
Iteration: 167, Log-Lik: -1157824.751, Max-Change: 0.00029
Iteration: 168, Log-Lik: -1157824.750, Max-Change: 0.00025
Iteration: 169, Log-Lik: -1157824.747, Max-Change: 0.00036
Iteration: 170, Log-Lik: -1157824.746, Max-Change: 0.00030
Iteration: 171, Log-Lik: -1157824.744, Max-Change: 0.00021
Iteration: 172, Log-Lik: -1157824.743, Max-Change: 0.00037
Iteration: 173, Log-Lik: -1157824.741, Max-Change: 0.00027
Iteration: 174, Log-Lik: -1157824.740, Max-Change: 0.00022
Iteration: 175, Log-Lik: -1157824.738, Max-Change: 0.00033
Iteration: 176, Log-Lik: -1157824.737, Max-Change: 0.00027
Iteration: 177, Log-Lik: -1157824.736, Max-Change: 0.00020
Iteration: 178, Log-Lik: -1157824.734, Max-Change: 0.00033
Iteration: 179, Log-Lik: -1157824.733, Max-Change: 0.00025
Iteration: 180, Log-Lik: -1157824.732, Max-Change: 0.00020
Iteration: 181, Log-Lik: -1157824.730, Max-Change: 0.00031
Iteration: 182, Log-Lik: -1157824.729, Max-Change: 0.00025
Iteration: 183, Log-Lik: -1157824.728, Max-Change: 0.00019
Iteration: 184, Log-Lik: -1157824.727, Max-Change: 0.00031
Iteration: 185, Log-Lik: -1157824.726, Max-Change: 0.00024
Iteration: 186, Log-Lik: -1157824.725, Max-Change: 0.00019
Iteration: 187, Log-Lik: -1157824.724, Max-Change: 0.00030
Iteration: 188, Log-Lik: -1157824.723, Max-Change: 0.00024
Iteration: 189, Log-Lik: -1157824.722, Max-Change: 0.00018
Iteration: 190, Log-Lik: -1157824.721, Max-Change: 0.00030
Iteration: 191, Log-Lik: -1157824.720, Max-Change: 0.00023
Iteration: 192, Log-Lik: -1157824.719, Max-Change: 0.00018
Iteration: 193, Log-Lik: -1157824.718, Max-Change: 0.00029
Iteration: 194, Log-Lik: -1157824.717, Max-Change: 0.00023
Iteration: 195, Log-Lik: -1157824.716, Max-Change: 0.00018
Iteration: 196, Log-Lik: -1157824.715, Max-Change: 0.00029
Iteration: 197, Log-Lik: -1157824.715, Max-Change: 0.00022
Iteration: 198, Log-Lik: -1157824.714, Max-Change: 0.00018
Iteration: 199, Log-Lik: -1157824.713, Max-Change: 0.00028
Iteration: 200, Log-Lik: -1157824.713, Max-Change: 0.00022
Iteration: 201, Log-Lik: -1157824.712, Max-Change: 0.00017
Iteration: 202, Log-Lik: -1157824.711, Max-Change: 0.00028
Iteration: 203, Log-Lik: -1157824.711, Max-Change: 0.00021
Iteration: 204, Log-Lik: -1157824.710, Max-Change: 0.00017
Iteration: 205, Log-Lik: -1157824.709, Max-Change: 0.00027
Iteration: 206, Log-Lik: -1157824.709, Max-Change: 0.00021
Iteration: 207, Log-Lik: -1157824.708, Max-Change: 0.00016
Iteration: 208, Log-Lik: -1157824.707, Max-Change: 0.00027
Iteration: 209, Log-Lik: -1157824.707, Max-Change: 0.00021
Iteration: 210, Log-Lik: -1157824.706, Max-Change: 0.00016
Iteration: 211, Log-Lik: -1157824.706, Max-Change: 0.00026
Iteration: 212, Log-Lik: -1157824.705, Max-Change: 0.00020
Iteration: 213, Log-Lik: -1157824.705, Max-Change: 0.00016
Iteration: 214, Log-Lik: -1157824.704, Max-Change: 0.00025
Iteration: 215, Log-Lik: -1157824.704, Max-Change: 0.00020
Iteration: 216, Log-Lik: -1157824.703, Max-Change: 0.00016
Iteration: 217, Log-Lik: -1157824.703, Max-Change: 0.00025
Iteration: 218, Log-Lik: -1157824.702, Max-Change: 0.00019
Iteration: 219, Log-Lik: -1157824.702, Max-Change: 0.00015
Iteration: 220, Log-Lik: -1157824.702, Max-Change: 0.00024
Iteration: 221, Log-Lik: -1157824.701, Max-Change: 0.00019
Iteration: 222, Log-Lik: -1157824.701, Max-Change: 0.00015
Iteration: 223, Log-Lik: -1157824.700, Max-Change: 0.00024
Iteration: 224, Log-Lik: -1157824.700, Max-Change: 0.00019
Iteration: 225, Log-Lik: -1157824.700, Max-Change: 0.00014
Iteration: 226, Log-Lik: -1157824.699, Max-Change: 0.00023
Iteration: 227, Log-Lik: -1157824.699, Max-Change: 0.00018
Iteration: 228, Log-Lik: -1157824.699, Max-Change: 0.00014
Iteration: 229, Log-Lik: -1157824.698, Max-Change: 0.00022
Iteration: 230, Log-Lik: -1157824.698, Max-Change: 0.00018
Iteration: 231, Log-Lik: -1157824.698, Max-Change: 0.00014
Iteration: 232, Log-Lik: -1157824.697, Max-Change: 0.00022
Iteration: 233, Log-Lik: -1157824.697, Max-Change: 0.00017
Iteration: 234, Log-Lik: -1157824.697, Max-Change: 0.00013
Iteration: 235, Log-Lik: -1157824.697, Max-Change: 0.00021
Iteration: 236, Log-Lik: -1157824.696, Max-Change: 0.00017
Iteration: 237, Log-Lik: -1157824.696, Max-Change: 0.00013
Iteration: 238, Log-Lik: -1157824.696, Max-Change: 0.00021
Iteration: 239, Log-Lik: -1157824.696, Max-Change: 0.00016
Iteration: 240, Log-Lik: -1157824.695, Max-Change: 0.00013
Iteration: 241, Log-Lik: -1157824.695, Max-Change: 0.00020
Iteration: 242, Log-Lik: -1157824.695, Max-Change: 0.00016
Iteration: 243, Log-Lik: -1157824.695, Max-Change: 0.00012
Iteration: 244, Log-Lik: -1157824.694, Max-Change: 0.00020
Iteration: 245, Log-Lik: -1157824.694, Max-Change: 0.00015
Iteration: 246, Log-Lik: -1157824.694, Max-Change: 0.00012
Iteration: 247, Log-Lik: -1157824.694, Max-Change: 0.00019
Iteration: 248, Log-Lik: -1157824.694, Max-Change: 0.00015
Iteration: 249, Log-Lik: -1157824.694, Max-Change: 0.00012
Iteration: 250, Log-Lik: -1157824.693, Max-Change: 0.00019
Iteration: 251, Log-Lik: -1157824.693, Max-Change: 0.00014
Iteration: 252, Log-Lik: -1157824.693, Max-Change: 0.00011
Iteration: 253, Log-Lik: -1157824.693, Max-Change: 0.00018
Iteration: 254, Log-Lik: -1157824.693, Max-Change: 0.00014
Iteration: 255, Log-Lik: -1157824.692, Max-Change: 0.00011
Iteration: 256, Log-Lik: -1157824.692, Max-Change: 0.00018
Iteration: 257, Log-Lik: -1157824.692, Max-Change: 0.00014
Iteration: 258, Log-Lik: -1157824.692, Max-Change: 0.00011
Iteration: 259, Log-Lik: -1157824.692, Max-Change: 0.00017
Iteration: 260, Log-Lik: -1157824.692, Max-Change: 0.00013
Iteration: 261, Log-Lik: -1157824.692, Max-Change: 0.00010
Iteration: 262, Log-Lik: -1157824.691, Max-Change: 0.00017
Iteration: 263, Log-Lik: -1157824.691, Max-Change: 0.00013
Iteration: 264, Log-Lik: -1157824.691, Max-Change: 0.00010
Iteration: 265, Log-Lik: -1157824.691, Max-Change: 0.00016
Iteration: 266, Log-Lik: -1157824.691, Max-Change: 0.00013
Iteration: 267, Log-Lik: -1157824.691, Max-Change: 0.00010
MMPI_1p@Fit$`F`
##                F1
## MM010001  0.02970
## MM010002 -0.41032
## MM010003 -0.43878
## MM010004  0.03625
## MM010005  0.22528
## MM010006  0.15826
## MM010007 -0.34060
## MM010008 -0.56692
## MM010009 -0.51817
## MM010010  0.59810
## MM010011  0.33458
## MM010012 -0.05238
## MM010013  0.28798
## MM010014  0.36736
## MM010015  0.54558
## MM010016  0.73844
## MM010017 -0.31311
## MM010018 -0.32385
## MM010019  0.28850
## MM010020 -0.45729
## MM010021  0.58636
## MM010022  0.62342
## MM010023  0.65684
## MM010024  0.75671
## MM010025  0.11409
## MM010026  0.31957
## MM010027  0.66075
## MM010028  0.44873
## MM010029  0.41741
## MM010030  0.25959
## MM010031  0.64740
## MM010032  0.68170
## MM010033  0.52421
## MM010034  0.43017
## MM010035  0.66697
## MM010036 -0.28329
## MM010037 -0.25587
## MM010038  0.13737
## MM010039  0.52851
## MM010040  0.62893
## MM010041  0.63815
## MM010042  0.47027
## MM010043  0.66853
## MM010044  0.68536
## MM010045  0.21687
## MM010046 -0.43045
## MM010047  0.66200
## MM010048  0.54995
## MM010049  0.52998
## MM010050  0.64259
## MM010051 -0.45993
## MM010052  0.49539
## MM010053  0.15443
## MM010054 -0.51846
## MM010055 -0.46785
## MM010056  0.26267
## MM010057 -0.29248
## MM010058  0.12671
## MM010059  0.38664
## MM010060 -0.08509
## MM010061  0.60583
## MM010062  0.60409
## MM010063 -0.37338
## MM010064  0.33856
## MM010065 -0.26029
## MM010066  0.35506
## MM010067  0.63285
## MM010068 -0.41742
## MM010069  0.31180
## MM010070 -0.00699
## MM010071  0.41181
## MM010072  0.59966
## MM010073 -0.25771
## MM010074  0.53594
## MM010075  0.28912
## MM010076  0.82381
## MM010077  0.02456
## MM010078 -0.08592
## MM010079 -0.35905
## MM010080  0.24861
## MM010081  0.05036
## MM010082  0.46473
## MM010083 -0.44055
## MM010084  0.39330
## MM010085  0.60776
## MM010086  0.64893
## MM010087  0.13417
## MM010088 -0.70590
## MM010089  0.51282
## MM010090  0.16033
## MM010091 -0.17751
## MM010092  0.19912
## MM010093  0.52374
## MM010094  0.73986
## MM010095 -0.15293
## MM010096 -0.39580
## MM010097  0.64886
## MM010098  0.05263
## MM010099  0.00644
## MM010100  0.54704
## MM010101 -0.19356
## MM010102  0.40805
## MM010103 -0.54774
## MM010104  0.66596
## MM010105  0.25134
## MM010106  0.79473
## MM010107 -0.74229
## MM010108  0.54062
## MM010109  0.49718
## MM010110  0.70222
## MM010111 -0.01730
## MM010112  0.23618
## MM010113 -0.51633
## MM010114  0.74246
## MM010115 -0.04382
## MM010116  0.24957
## MM010117  0.40967
## MM010118  0.24760
## MM010119 -0.41970
## MM010120  0.21280
## MM010121  0.75309
## MM010122 -0.48144
## MM010123  0.74098
## MM010124  0.53313
## MM010125  0.55993
## MM010126  0.00738
## MM010127  0.11294
## MM010128 -0.06708
## MM010129  0.63551
## MM010130 -0.31939
## MM010131 -0.26796
## MM010132  0.05217
## MM010133 -0.20332
## MM010134  0.38652
## MM010135  0.36414
## MM010136  0.65416
## MM010137 -0.57140
## MM010138  0.55218
## MM010139  0.76949
## MM010140  0.01595
## MM010141  0.34118
## MM010142  0.69360
## MM010143  0.15002
## MM010144  0.29804
## MM010145  0.58911
## MM010146  0.61388
## MM010147  0.63661
## MM010148  0.46462
## MM010149  0.18974
## MM010150 -0.13222
## MM010151  0.54482
## MM010152 -0.52678
## MM010153 -0.64250
## MM010154 -0.44056
## MM010155 -0.22063
## MM010156  0.63365
## MM010157  0.77428
## MM010158  0.48905
## MM010159  0.60485
## MM010160 -0.36991
## MM010161  0.51986
## MM010162  0.33661
## MM010163 -0.51595
## MM010164 -0.27763
## MM010165  0.21313
## MM010166  0.24025
## MM010167  0.00679
## MM010168  0.79573
## MM010169 -0.34898
## MM010170 -0.06098
## MM010171  0.24974
## MM010172  0.48607
## MM010173 -0.31966
## MM010174 -0.24705
## MM010175 -0.56690
## MM010176 -0.23615
## MM010177 -0.34924
## MM010178 -0.60240
## MM010179  0.60696
## MM010180  0.44881
## MM010181  0.15469
## MM010182  0.73483
## MM010183  0.06091
## MM010184  0.74989
## MM010185 -0.21882
## MM010186  0.62273
## MM010187 -0.44962
## MM010188 -0.34401
## MM010189  0.72056
## MM010190 -0.41292
## MM010191  0.42524
## MM010192 -0.53379
## MM010193 -0.08912
## MM010194  0.61193
## MM010195  0.17376
## MM010196 -0.24788
## MM010197  0.63903
## MM010198 -0.33869
## MM010199 -0.06714
## MM010200  0.63523
## MM010201  0.47199
## MM010202  0.75458
## MM010203  0.08877
## MM010204 -0.01253
## MM010205  0.55446
## MM010206  0.07558
## MM010207 -0.29521
## MM010208  0.09136
## MM010209  0.58617
## MM010210  0.60201
## MM010211  0.64617
## MM010212  0.70703
## MM010213  0.42638
## MM010214 -0.28592
## MM010215  0.26600
## MM010216  0.56323
## MM010217  0.71815
## MM010218  0.15642
## MM010219 -0.02068
## MM010220 -0.23190
## MM010221 -0.19273
## MM010222 -0.10420
## MM010223  0.10605
## MM010224  0.51906
## MM010225  0.14035
## MM010226  0.41853
## MM010227  0.31290
## MM010228 -0.26434
## MM010229  0.17983
## MM010230 -0.52162
## MM010231  0.15314
## MM010232  0.09758
## MM010233  0.23730
## MM010234  0.42248
## MM010235  0.00409
## MM010236  0.73426
## MM010237 -0.01821
## MM010238  0.63946
## MM010239  0.35663
## MM010240 -0.14916
## MM010241  0.64917
## MM010242 -0.49682
## MM010243 -0.56106
## MM010244  0.62795
## MM010245  0.60946
## MM010246  0.42328
## MM010247  0.55577
## MM010248  0.18235
## MM010249  0.10417
## MM010250  0.21774
## MM010251  0.69029
## MM010252  0.60533
## MM010253 -0.07069
## MM010254  0.03601
## MM010255 -0.00451
## MM010256  0.40288
## MM010257 -0.45248
## MM010258  0.02691
## MM010259  0.56744
## MM010260  0.38056
## MM010261  0.02419
## MM010262 -0.37965
## MM010263  0.32129
## MM010264 -0.23725
## MM010265  0.57529
## MM010266  0.37812
## MM010267  0.58373
## MM010268 -0.03114
## MM010269  0.56221
## MM010270 -0.17199
## MM010271  0.31238
## MM010272 -0.18252
## MM010273  0.44527
## MM010274 -0.17356
## MM010275  0.50948
## MM010276 -0.30029
## MM010277  0.26668
## MM010278  0.72771
## MM010279  0.40670
## MM010280  0.53524
## MM010281 -0.40837
## MM010282  0.52865
## MM010283 -0.10357
## MM010284  0.66277
## MM010285  0.03527
## MM010286  0.58792
## MM010287 -0.08446
## MM010288  0.59173
## MM010289  0.16973
## MM010290  0.31012
## MM010291  0.71573
## MM010292  0.43049
## MM010293  0.64873
## MM010294 -0.21880
## MM010295 -0.17346
## MM010296  0.18911
## MM010297  0.52808
## MM010298  0.40170
## MM010299  0.44274
## MM010300  0.00942
## MM010301  0.77016
## MM010302 -0.28072
## MM010303  0.68112
## MM010304  0.35944
## MM010305  0.77755
## MM010306 -0.43970
## MM010307  0.43141
## MM010308  0.61215
## MM010309 -0.42475
## MM010310 -0.46232
## MM010311  0.15699
## MM010312  0.54298
## MM010313  0.31885
## MM010314  0.61570
## MM010315  0.80839
## MM010316  0.45573
## MM010317  0.46895
## MM010318 -0.59475
## MM010319  0.51186
## MM010320  0.33168
## MM010321  0.51108
## MM010322  0.45041
## MM010323  0.53437
## MM010324  0.50669
## MM010325  0.40229
## MM010326  0.65209
## MM010327  0.27266
## MM010328  0.73357
## MM010329 -0.12249
## MM010330 -0.35314
## MM010331  0.73606
## MM010332  0.53491
## MM010333  0.81140
## MM010334  0.55547
## MM010335  0.73922
## MM010336  0.63144
## MM010337  0.72971
## MM010338  0.65431
## MM010339  0.82267
## MM010340  0.34178
## MM010341  0.53434
## MM010342  0.60159
## MM010343  0.54877
## MM010344  0.65126
## MM010345  0.81117
## MM010346  0.42286
## MM010347 -0.43133
## MM010348  0.49290
## MM010349  0.76763
## MM010350  0.76594
## MM010351  0.66613
## MM010352  0.56002
## MM010353 -0.41543
## MM010354  0.50930
## MM010355  0.59934
## MM010356  0.70153
## MM010357  0.65524
## MM010358  0.74792
## MM010359  0.69611
## MM010360  0.80033
## MM010361  0.65015
## MM010362  0.49256
## MM010363  0.67244
## MM010364  0.65932
## MM010365  0.59591
## MM010366  0.78259
## MM010367 -0.17276
## MM010368  0.61494
## MM010369 -0.25379
## MM010370  0.32466
## MM010371 -0.35677
## MM010372  0.09851
## MM010373  0.18009
## MM010374  0.56578
## MM010375  0.67061
## MM010376 -0.44022
## MM010377  0.45258
## MM010378  0.00494
## MM010379 -0.64574
## MM010380  0.09511
## MM010381  0.59468
## MM010382  0.57164
## MM010383  0.66415
## MM010384  0.60605
## MM010385  0.30820
## MM010386  0.46626
## MM010387  0.25563
## MM010388  0.50915
## MM010389  0.76693
## MM010390  0.57621
## MM010391 -0.00317
## MM010392  0.37632
## MM010393  0.36031
## MM010394  0.14297
## MM010395  0.63463
## MM010396  0.75982
## MM010397  0.68448
## MM010398  0.58791
## MM010399 -0.49603
## MM010400  0.15500
## MM010401 -0.23159
## MM010402  0.33388
## MM010403 -0.56404
## MM010404  0.67862
## MM010405 -0.38850
## MM010406  0.42503
## MM010407 -0.58717
## MM010408  0.53300
## MM010409  0.32242
## MM010410  0.29952
## MM010411  0.63888
## MM010412 -0.31974
## MM010413  0.32914
## MM010414  0.66232
## MM010415 -0.10462
## MM010416  0.55717
## MM010417  0.25497
## MM010418  0.74497
## MM010419  0.39795
## MM010420  0.38457
## MM010421  0.41317
## MM010422  0.50005
## MM010423  0.02184
## MM010424  0.52857
## MM010425  0.25126
## MM010426  0.32511
## MM010427  0.19283
## MM010428 -0.10372
## MM010429 -0.05435
## MM010430 -0.15291
## MM010431  0.71440
## MM010432  0.03143
## MM010433  0.40171
## MM010434  0.11091
## MM010435  0.26585
## MM010436  0.51836
## MM010437  0.33397
## MM010438  0.45867
## MM010439  0.56608
## MM010440  0.01978
## MM010441 -0.00702
## MM010442  0.50149
## MM010443  0.64338
## MM010444  0.07864
## MM010445  0.03498
## MM010446  0.08903
## MM010447  0.36831
## MM010448  0.66679
## MM010449 -0.25283
## MM010450 -0.14944
## MM010451 -0.04900
## MM010452  0.11135
## MM010453 -0.01162
## MM010454  0.28610
## MM010455  0.28359
## MM010456  0.36519
## MM010457  0.22408
## MM010458  0.21765
## MM010459  0.55802
## MM010460 -0.28776
## MM010461  0.17944
## MM010462 -0.36208
## MM010463 -0.07010
## MM010464 -0.33817
## MM010465  0.47112
## MM010466 -0.22353
## MM010467  0.35683
## MM010468  0.59247
## MM010469  0.55259
## MM010470  0.35931
## MM010471  0.42771
## MM010472  0.35247
## MM010473  0.47014
## MM010474 -0.08145
## MM010475  0.36399
## MM010476  0.27538
## MM010477  0.10593
## MM010478 -0.33080
## MM010479 -0.47238
## MM010480  0.45634
## MM010481  0.29674
## MM010482 -0.07718
## MM010483  0.00140
## MM010484  0.53906
## MM010485  0.44231
## MM010486 -0.23560
## MM010487  0.71537
## MM010488  0.03644
## MM010489  0.14506
## MM010490 -0.04345
## MM010491  0.24679
## MM010492  0.27349
## MM010493 -0.10410
## MM010494  0.50925
## MM010495 -0.00670
## MM010496 -0.37551
## MM010497 -0.25693
## MM010498  0.12974
## MM010499  0.56215
## MM010500  0.18264
## MM010501  0.04151
## MM010502 -0.00753
## MM010503  0.07489
## MM010504  0.11973
## MM010505  0.47958
## MM010506  0.44613
## MM010507  0.56435
## MM010508 -0.23920
## MM010509  0.50627
## MM010510  0.47185
## MM010511  0.62443
## MM010512  0.18285
## MM010513  0.09734
## MM010514  0.29148
## MM010515 -0.40482
## MM010516  0.38685
## MM010517  0.62158
## MM010518  0.65031
## MM010519  0.55496
## MM010520  0.04460
## MM010521 -0.32935
## MM010522 -0.19662
## MM010523 -0.21155
## MM010524 -0.29157
## MM010525  0.30058
## MM010526  0.76407
## MM010527 -0.43099
## MM010528 -0.26962
## MM010529  0.13662
## MM010530  0.55741
## MM010531  0.46679
## MM010532 -0.23540
## MM010533 -0.37388
## MM010534  0.10136
## MM010535  0.59104
## MM010536  0.53623
## MM010537  0.11630
## MM010538  0.30501
## MM010539 -0.24283
## MM010540 -0.23663
## MM010541  0.39502
## MM010542 -0.32623
## MM010543  0.83405
## MM010544  0.65920
## MM010545  0.46740
## MM010546 -0.12335
## MM010547 -0.25328
## MM010548  0.08031
## MM010549  0.58633
## MM010550 -0.06607
## MM010551  0.41929
## MM010552 -0.19274
## MM010553  0.63362
## MM010554 -0.02081
## MM010555  0.79174
## MM010556  0.04477
## MM010557  0.31962
## MM010558  0.41000
## MM010559  0.73170
## MM010560  0.63866
## MM010561  0.01966
## MM010562  0.19478
## MM010563 -0.14282
## MM010564  0.41294
## MM010565  0.49914
## MM010566  0.01455
#score
MMPI_1p_scores = fscores(MMPI_1p)
d$P = MMPI_1p_scores[, 1] %>% standardize(focal_group = d$race == "White")
d$P_IRT = d$P

#do they correlate well?
(cors = d %>% select(g, P_IRT, P_sum, P_scales) %>% wtd.cors())
##               g  P_IRT  P_sum P_scales
## g         1.000 -0.353 -0.306   -0.246
## P_IRT    -0.353  1.000  0.823    0.705
## P_sum    -0.306  0.823  1.000    0.518
## P_scales -0.246  0.705  0.518    1.000
d %>% select(g, P_IRT, P_sum, P_scales) %>% GGally::ggpairs(mapping = aes(alpha = .1))
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
## Warning: Removed 142 rows containing non-finite values (stat_density).
## Warning in (function (data, mapping, alignPercent = 0.6, method = "pearson", :
## Removed 142 rows containing missing values
## Warning in (function (data, mapping, alignPercent = 0.6, method = "pearson", :
## Removed 142 rows containing missing values
## Warning in (function (data, mapping, alignPercent = 0.6, method = "pearson", :
## Removed 142 rows containing missing values
## Warning: Removed 142 rows containing missing values (geom_point).

## Warning: Removed 142 rows containing missing values (geom_point).

## Warning: Removed 142 rows containing missing values (geom_point).

GG_save("figs/correlation_pairs.png")
## Warning: Removed 142 rows containing non-finite values (stat_density).
## Warning in (function (data, mapping, alignPercent = 0.6, method = "pearson", :
## Removed 142 rows containing missing values
## Warning in (function (data, mapping, alignPercent = 0.6, method = "pearson", :
## Removed 142 rows containing missing values
## Warning in (function (data, mapping, alignPercent = 0.6, method = "pearson", :
## Removed 142 rows containing missing values
## Warning: Removed 142 rows containing missing values (geom_point).

## Warning: Removed 142 rows containing missing values (geom_point).

## Warning: Removed 142 rows containing missing values (geom_point).

Race gaps

#descriptives
(descs = d %>% select(g, P, P_sum, P_scales) %>% describeBy(d$race, mat = F))
## 
##  Descriptive statistics by group 
## group: White
##          vars    n mean sd median trimmed  mad   min  max range  skew kurtosis
## g           1 3555    0  1   0.05    0.03 1.05 -3.17 2.37  5.54 -0.28    -0.43
## P           2 3654    0  1   0.00    0.01 0.99 -3.59 3.53  7.12 -0.07     0.02
## P_sum       3 3654    0  1  -0.13   -0.07 0.95 -2.83 6.66  9.49  0.79     1.33
## P_scales    4 3654    0  1  -0.27   -0.14 0.70 -1.82 5.05  6.87  1.54     2.93
##            se
## g        0.02
## P        0.02
## P_sum    0.02
## P_scales 0.02
## ------------------------------------------------------------ 
## group: Black
##          vars   n  mean   sd median trimmed  mad   min  max range  skew
## g           1 502 -1.27 0.86  -1.32   -1.30 0.83 -3.78 1.67  5.45  0.39
## P           2 525  0.37 0.91   0.36    0.38 0.90 -2.13 2.79  4.92 -0.09
## P_sum       3 525  0.55 1.19   0.48    0.52 1.14 -4.38 4.11  8.49  0.12
## P_scales    4 525  0.24 1.14  -0.04    0.09 0.88 -1.61 4.68  6.29  1.33
##          kurtosis   se
## g            0.07 0.04
## P           -0.09 0.04
## P_sum        0.33 0.05
## P_scales     1.68 0.05
## ------------------------------------------------------------ 
## group: Hispanic
##          vars   n  mean   sd median trimmed  mad   min  max range skew kurtosis
## g           1 181 -0.78 0.89  -0.81   -0.79 0.93 -2.84 1.47  4.30 0.16    -0.50
## P           2 200  0.37 1.06   0.29    0.35 1.12 -2.30 3.55  5.84 0.18    -0.41
## P_sum       3 200  0.37 1.33   0.15    0.30 1.22 -4.20 4.73  8.92 0.42     0.58
## P_scales    4 200  0.46 1.34   0.09    0.29 1.06 -1.67 4.91  6.58 1.10     0.70
##            se
## g        0.07
## P        0.07
## P_sum    0.09
## P_scales 0.09
## ------------------------------------------------------------ 
## group: Asian
##          vars  n  mean   sd median trimmed  mad   min  max range  skew kurtosis
## g           1 34 -0.20 1.16  -0.12   -0.13 1.24 -2.74 1.79  4.53 -0.42    -0.75
## P           2 34  0.35 1.15   0.32    0.37 1.14 -2.25 2.72  4.97 -0.10    -0.52
## P_sum       3 34  0.69 1.50   0.28    0.60 1.26 -1.86 3.78  5.63  0.53    -0.64
## P_scales    4 34  0.30 1.36  -0.19    0.12 0.98 -1.27 3.97  5.24  1.09     0.22
##            se
## g        0.20
## P        0.20
## P_sum    0.26
## P_scales 0.23
## ------------------------------------------------------------ 
## group: Native
##          vars  n  mean   sd median trimmed  mad   min  max range  skew kurtosis
## g           1 48 -0.41 1.05  -0.49   -0.45 1.09 -2.45 2.01  4.46  0.35    -0.39
## P           2 49  0.58 1.06   0.54    0.59 0.95 -2.36 3.08  5.44 -0.16     0.14
## P_sum       3 49  0.71 1.35   0.38    0.62 1.26 -1.70 4.86  6.56  0.73     0.46
## P_scales    4 49  0.49 1.37   0.06    0.32 0.75 -1.45 4.60  6.05  1.29     0.99
##            se
## g        0.15
## P        0.15
## P_sum    0.19
## P_scales 0.20
#long format
descs2 = d %>% select(g, P, P_sum, P_scales) %>% describeBy(d$race, mat = T) %>% 
  arrange(group1) %>% 
  filter(group1 %in% c("White", "Black", "Hispanic")) %>% 
  rownames_to_column("trait")

#make a table of observed and expected gaps, white, hispanic, black
tibble(
  group = descs2$group1 %>% unique(),
  g = descs2 %>% filter(str_detect(trait, "^g")) %>% pull(mean),
  P_scales = descs2 %>% filter(str_detect(trait, "scales")) %>% pull(mean),
  P_scales_expected = g * cors[1, 4],
  P_sum = descs2 %>% filter(str_detect(trait, "sum")) %>% pull(mean),
  P_sum_expected = g * cors[1, 3],
  P_IRT = descs2 %>% filter(str_detect(trait, "P\\d")) %>% pull(mean),
  P_IRT_expected = g * cors[1, 2],
)
#regression approach to same question
d_bhw = d %>% filter(race %in% c("White", "Black", "Hispanic"))

list(
  scales = ols(P_scales ~ g + race, data = d_bhw),
  sum = ols(P_sum ~ g + race, data = d_bhw),
  IRT = ols(P_IRT ~ g + race, data = d_bhw),
  scales_I = ols(P_scales ~ g * race, data = d_bhw),
  sum_I = ols(P_sum ~ g * race, data = d_bhw),
  IRT_I = ols(P_IRT ~ g * race, data = d_bhw)
) %>% summarize_models()

Figures

#race distributions
ggplot(d, aes(P, fill = race, color = race)) +
  geom_density(alpha = .2) +
  ggtitle("P factor (from MMPI items)",
          subtitle = "Distribution by race")

GG_save("figs/P_density.png")

#numerics
describeBy(d %>% select(g, P_scales, P_sum, P), d$race)
## 
##  Descriptive statistics by group 
## group: White
##          vars    n mean sd median trimmed  mad   min  max range  skew kurtosis
## g           1 3555    0  1   0.05    0.03 1.05 -3.17 2.37  5.54 -0.28    -0.43
## P_scales    2 3654    0  1  -0.27   -0.14 0.70 -1.82 5.05  6.87  1.54     2.93
## P_sum       3 3654    0  1  -0.13   -0.07 0.95 -2.83 6.66  9.49  0.79     1.33
## P           4 3654    0  1   0.00    0.01 0.99 -3.59 3.53  7.12 -0.07     0.02
##            se
## g        0.02
## P_scales 0.02
## P_sum    0.02
## P        0.02
## ------------------------------------------------------------ 
## group: Black
##          vars   n  mean   sd median trimmed  mad   min  max range  skew
## g           1 502 -1.27 0.86  -1.32   -1.30 0.83 -3.78 1.67  5.45  0.39
## P_scales    2 525  0.24 1.14  -0.04    0.09 0.88 -1.61 4.68  6.29  1.33
## P_sum       3 525  0.55 1.19   0.48    0.52 1.14 -4.38 4.11  8.49  0.12
## P           4 525  0.37 0.91   0.36    0.38 0.90 -2.13 2.79  4.92 -0.09
##          kurtosis   se
## g            0.07 0.04
## P_scales     1.68 0.05
## P_sum        0.33 0.05
## P           -0.09 0.04
## ------------------------------------------------------------ 
## group: Hispanic
##          vars   n  mean   sd median trimmed  mad   min  max range skew kurtosis
## g           1 181 -0.78 0.89  -0.81   -0.79 0.93 -2.84 1.47  4.30 0.16    -0.50
## P_scales    2 200  0.46 1.34   0.09    0.29 1.06 -1.67 4.91  6.58 1.10     0.70
## P_sum       3 200  0.37 1.33   0.15    0.30 1.22 -4.20 4.73  8.92 0.42     0.58
## P           4 200  0.37 1.06   0.29    0.35 1.12 -2.30 3.55  5.84 0.18    -0.41
##            se
## g        0.07
## P_scales 0.09
## P_sum    0.09
## P        0.07
## ------------------------------------------------------------ 
## group: Asian
##          vars  n  mean   sd median trimmed  mad   min  max range  skew kurtosis
## g           1 34 -0.20 1.16  -0.12   -0.13 1.24 -2.74 1.79  4.53 -0.42    -0.75
## P_scales    2 34  0.30 1.36  -0.19    0.12 0.98 -1.27 3.97  5.24  1.09     0.22
## P_sum       3 34  0.69 1.50   0.28    0.60 1.26 -1.86 3.78  5.63  0.53    -0.64
## P           4 34  0.35 1.15   0.32    0.37 1.14 -2.25 2.72  4.97 -0.10    -0.52
##            se
## g        0.20
## P_scales 0.23
## P_sum    0.26
## P        0.20
## ------------------------------------------------------------ 
## group: Native
##          vars  n  mean   sd median trimmed  mad   min  max range  skew kurtosis
## g           1 48 -0.41 1.05  -0.49   -0.45 1.09 -2.45 2.01  4.46  0.35    -0.39
## P_scales    2 49  0.49 1.37   0.06    0.32 0.75 -1.45 4.60  6.05  1.29     0.99
## P_sum       3 49  0.71 1.35   0.38    0.62 1.26 -1.70 4.86  6.56  0.73     0.46
## P           4 49  0.58 1.06   0.54    0.59 0.95 -2.36 3.08  5.44 -0.16     0.14
##            se
## g        0.15
## P_scales 0.20
## P_sum    0.19
## P        0.15
#g link
#all
GG_scatter(d, "g", "P") +
  geom_smooth() +
  ggtitle("Relationship between g factor and P factor (from MMPI items)")
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

GG_save("figs/g_P_all.png")
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
#whites
GG_scatter(d %>% filter(race == "White"), "g", "P") +
  geom_smooth() +
  ggtitle("Relationship between g factor and P factor (from MMPI items)", 
          "White subset")
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

GG_save("figs/g_P_whites.png")
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
#Jensen pattern?
#scales
fa_Jensens_method(MMPI_scales_1p, df = d, criterion = "g", reverse_factor = F) +
  xlab("P loading") + ylab("Correlation with g")
## Using Pearson correlations for the criterion-indicators relationships.
## `geom_smooth()` using formula 'y ~ x'

GG_save("figs/MMPI_Jensen_scales.png")
## `geom_smooth()` using formula 'y ~ x'
#without reversing
fa_Jensens_method(MMPI_scales_1p, df = d, criterion = "g", reverse_factor = F, loading_reversing = F) +
  xlab("P loading") + ylab("Correlation with g")
## Using Pearson correlations for the criterion-indicators relationships.
## `geom_smooth()` using formula 'y ~ x'

#items
sink("/dev/null") #silence newlines
MMPI_Jensen = tibble(
  item = mmpi_items,
  
  prevalence = map_dbl(d[mmpi_items], ~wtd_mean(.)),
  
  P_loading = MMPI_1p@Fit$`F` %>% as.vector(),
  
  Pearson_r = map_dbl(mmpi_items, function(item) {
    wtd.cors(d[c("g", item)])[1, 2]
  }),
  
  latent_r = map_dbl(mmpi_items, function(item) {
    psych::mixedCor(d[c("g", item)])$rho[1, 2]
  }),
  
  IQ_gap = map_dbl(mmpi_items, function(item) {
    desc = psych::describeBy(d$g, group = d[[item]], mat = T, fast = T)
    
    (desc$mean[2] - desc$mean[1]) * 15
  })
)
sink()

#cors
MMPI_Jensen[-1] %>% wtd.cors()
##            prevalence P_loading Pearson_r latent_r IQ_gap
## prevalence      1.000    -0.766     0.558    0.653  0.698
## P_loading      -0.766     1.000    -0.708   -0.749 -0.756
## Pearson_r       0.558    -0.708     1.000    0.978  0.938
## latent_r        0.653    -0.749     0.978    1.000  0.990
## IQ_gap          0.698    -0.756     0.938    0.990  1.000
#reverse negative loadings
MMPI_Jensen_r = MMPI_Jensen
for (r in seq_along_rows(MMPI_Jensen_r)) {
  if (MMPI_Jensen_r$P_loading[r] < 0) {
    MMPI_Jensen_r$P_loading[r] = MMPI_Jensen_r$P_loading[r] * -1
    MMPI_Jensen_r$Pearson_r[r] = MMPI_Jensen_r$Pearson_r[r] * -1
    MMPI_Jensen_r$latent_r[r] = MMPI_Jensen_r$latent_r[r] * -1
    MMPI_Jensen_r$IQ_gap[r] = MMPI_Jensen_r$IQ_gap[r] * -1
  }
}

#cors
MMPI_Jensen_r[-1] %>% wtd.cors()
##            prevalence P_loading Pearson_r latent_r IQ_gap
## prevalence      1.000    -0.425     0.192    0.283  0.333
## P_loading      -0.425     1.000    -0.442   -0.513 -0.539
## Pearson_r       0.192    -0.442     1.000    0.963  0.898
## latent_r        0.283    -0.513     0.963    1.000  0.983
## IQ_gap          0.333    -0.539     0.898    0.983  1.000
#plot
GG_scatter(MMPI_Jensen_r, "P_loading", "IQ_gap") +
  ylab("IQ gap")
## `geom_smooth()` using formula 'y ~ x'

GG_save("figs/MMPI_Jensen.png")
## `geom_smooth()` using formula 'y ~ x'
#write item metadata
cbind(
  MMPI_items_questions,
  MMPI_Jensen %>% select(-Pearson_r, -latent_r)
) %>% write_clipboard()
##     Question
## 1       1.00
## 2       2.00
## 3       3.00
## 4       4.00
## 5       5.00
## 6       6.00
## 7       7.00
## 8       8.00
## 9       9.00
## 10     10.00
## 11     11.00
## 12     12.00
## 13     13.00
## 14     14.00
## 15     15.00
## 16     16.00
## 17     17.00
## 18     18.00
## 19     19.00
## 20     20.00
## 21     21.00
## 22     22.00
## 23     23.00
## 24     24.00
## 25     25.00
## 26     26.00
## 27     27.00
## 28     28.00
## 29     29.00
## 30     30.00
## 31     31.00
## 32     32.00
## 33     33.00
## 34     34.00
## 35     35.00
## 36     36.00
## 37     37.00
## 38     38.00
## 39     39.00
## 40     40.00
## 41     41.00
## 42     42.00
## 43     43.00
## 44     44.00
## 45     45.00
## 46     46.00
## 47     47.00
## 48     48.00
## 49     49.00
## 50     50.00
## 51     51.00
## 52     52.00
## 53     53.00
## 54     54.00
## 55     55.00
## 56     56.00
## 57     57.00
## 58     58.00
## 59     59.00
## 60     60.00
## 61     61.00
## 62     62.00
## 63     63.00
## 64     64.00
## 65     65.00
## 66     66.00
## 67     67.00
## 68     68.00
## 69     69.00
## 70     70.00
## 71     71.00
## 72     72.00
## 73     73.00
## 74     74.00
## 75     75.00
## 76     76.00
## 77     77.00
## 78     78.00
## 79     79.00
## 80     80.00
## 81     81.00
## 82     82.00
## 83     83.00
## 84     84.00
## 85     85.00
## 86     86.00
## 87     87.00
## 88     88.00
## 89     89.00
## 90     90.00
## 91     91.00
## 92     92.00
## 93     93.00
## 94     94.00
## 95     95.00
## 96     96.00
## 97     97.00
## 98     98.00
## 99     99.00
## 100   100.00
## 101   101.00
## 102   102.00
## 103   103.00
## 104   104.00
## 105   105.00
## 106   106.00
## 107   107.00
## 108   108.00
## 109   109.00
## 110   110.00
## 111   111.00
## 112   112.00
## 113   113.00
## 114   114.00
## 115   115.00
## 116   116.00
## 117   117.00
## 118   118.00
## 119   119.00
## 120   120.00
## 121   121.00
## 122   122.00
## 123   123.00
## 124   124.00
## 125   125.00
## 126   126.00
## 127   127.00
## 128   128.00
## 129   129.00
## 130   130.00
## 131   131.00
## 132   132.00
## 133   133.00
## 134   134.00
## 135   135.00
## 136   136.00
## 137   137.00
## 138   138.00
## 139   139.00
## 140   140.00
## 141   141.00
## 142   142.00
## 143   143.00
## 144   144.00
## 145   145.00
## 146   146.00
## 147   147.00
## 148   148.00
## 149   149.00
## 150   150.00
## 151   151.00
## 152   152.00
## 153   153.00
## 154   154.00
## 155   155.00
## 156   156.00
## 157   157.00
## 158   158.00
## 159   159.00
## 160   160.00
## 161   161.00
## 162   162.00
## 163   163.00
## 164   164.00
## 165   165.00
## 166   166.00
## 167   167.00
## 168   168.00
## 169   169.00
## 170   170.00
## 171   171.00
## 172   172.00
## 173   173.00
## 174   174.00
## 175   175.00
## 176   176.00
## 177   177.00
## 178   178.00
## 179   179.00
## 180   180.00
## 181   181.00
## 182   182.00
## 183   183.00
## 184   184.00
## 185   185.00
## 186   186.00
## 187   187.00
## 188   188.00
## 189   189.00
## 190   190.00
## 191   191.00
## 192   192.00
## 193   193.00
## 194   194.00
## 195   195.00
## 196   196.00
## 197   197.00
## 198   198.00
## 199   199.00
## 200   200.00
## 201   201.00
## 202   202.00
## 203   203.00
## 204   204.00
## 205   205.00
## 206   206.00
## 207   207.00
## 208   208.00
## 209   209.00
## 210   210.00
## 211   211.00
## 212   212.00
## 213   213.00
## 214   214.00
## 215   215.00
## 216   216.00
## 217   217.00
## 218   218.00
## 219   219.00
## 220   220.00
## 221   221.00
## 222   222.00
## 223   223.00
## 224   224.00
## 225   225.00
## 226   226.00
## 227   227.00
## 228   228.00
## 229   229.00
## 230   230.00
## 231   231.00
## 232   232.00
## 233   233.00
## 234   234.00
## 235   235.00
## 236   236.00
## 237   237.00
## 238   238.00
## 239   239.00
## 240   240.00
## 241   241.00
## 242   242.00
## 243   243.00
## 244   244.00
## 245   245.00
## 246   246.00
## 247   247.00
## 248   248.00
## 249   249.00
## 250   250.00
## 251   251.00
## 252   252.00
## 253   253.00
## 254   254.00
## 255   255.00
## 256   256.00
## 257   257.00
## 258   258.00
## 259   259.00
## 260   260.00
## 261   261.00
## 262   262.00
## 263   263.00
## 264   264.00
## 265   265.00
## 266   266.00
## 267   267.00
## 268   268.00
## 269   269.00
## 270   270.00
## 271   271.00
## 272   272.00
## 273   273.00
## 274   274.00
## 275   275.00
## 276   276.00
## 277   277.00
## 278   278.00
## 279   279.00
## 280   280.00
## 281   281.00
## 282   282.00
## 283   283.00
## 284   284.00
## 285   285.00
## 286   286.00
## 287   287.00
## 288   288.00
## 289   289.00
## 290   290.00
## 291   291.00
## 292   292.00
## 293   293.00
## 294   294.00
## 295   295.00
## 296   296.00
## 297   297.00
## 298   298.00
## 299   299.00
## 300   300.00
## 301   301.00
## 302   302.00
## 303   303.00
## 304   304.00
## 305   305.00
## 306   306.00
## 307   307.00
## 308   308.00
## 309   309.00
## 310   310.00
## 311   311.00
## 312   312.00
## 313   313.00
## 314   314.00
## 315   315.00
## 316   316.00
## 317   317.00
## 318   318.00
## 319   319.00
## 320   320.00
## 321   321.00
## 322   322.00
## 323   323.00
## 324   324.00
## 325   325.00
## 326   326.00
## 327   327.00
## 328   328.00
## 329   329.00
## 330   330.00
## 331   331.00
## 332   332.00
## 333   333.00
## 334   334.00
## 335   335.00
## 336   336.00
## 337   337.00
## 338   338.00
## 339   339.00
## 340   340.00
## 341   341.00
## 342   342.00
## 343   343.00
## 344   344.00
## 345   345.00
## 346   346.00
## 347   347.00
## 348   348.00
## 349   349.00
## 350   350.00
## 351   351.00
## 352   352.00
## 353   353.00
## 354   354.00
## 355   355.00
## 356   356.00
## 357   357.00
## 358   358.00
## 359   359.00
## 360   360.00
## 361   361.00
## 362   362.00
## 363   363.00
## 364   364.00
## 365   365.00
## 366   366.00
## 367   367.00
## 368   368.00
## 369   369.00
## 370   370.00
## 371   371.00
## 372   372.00
## 373   373.00
## 374   374.00
## 375   375.00
## 376   376.00
## 377   377.00
## 378   378.00
## 379   379.00
## 380   380.00
## 381   381.00
## 382   382.00
## 383   383.00
## 384   384.00
## 385   385.00
## 386   386.00
## 387   387.00
## 388   388.00
## 389   389.00
## 390   390.00
## 391   391.00
## 392   392.00
## 393   393.00
## 394   394.00
## 395   395.00
## 396   396.00
## 397   397.00
## 398   398.00
## 399   399.00
## 400   400.00
## 401   401.00
## 402   402.00
## 403   403.00
## 404   404.00
## 405   405.00
## 406   406.00
## 407   407.00
## 408   408.00
## 409   409.00
## 410   410.00
## 411   411.00
## 412   412.00
## 413   413.00
## 414   414.00
## 415   415.00
## 416   416.00
## 417   417.00
## 418   418.00
## 419   419.00
## 420   420.00
## 421   421.00
## 422   422.00
## 423   423.00
## 424   424.00
## 425   425.00
## 426   426.00
## 427   427.00
## 428   428.00
## 429   429.00
## 430   430.00
## 431   431.00
## 432   432.00
## 433   433.00
## 434   434.00
## 435   435.00
## 436   436.00
## 437   437.00
## 438   438.00
## 439   439.00
## 440   440.00
## 441   441.00
## 442   442.00
## 443   443.00
## 444   444.00
## 445   445.00
## 446   446.00
## 447   447.00
## 448   448.00
## 449   449.00
## 450   450.00
## 451   451.00
## 452   452.00
## 453   453.00
## 454   454.00
## 455   455.00
## 456   456.00
## 457   457.00
## 458   458.00
## 459   459.00
## 460   460.00
## 461   461.00
## 462   462.00
## 463   463.00
## 464   464.00
## 465   465.00
## 466   466.00
## 467   467.00
## 468   468.00
## 469   469.00
## 470   470.00
## 471   471.00
## 472   472.00
## 473   473.00
## 474   474.00
## 475   475.00
## 476   476.00
## 477   477.00
## 478   478.00
## 479   479.00
## 480   480.00
## 481   481.00
## 482   482.00
## 483   483.00
## 484   484.00
## 485   485.00
## 486   486.00
## 487   487.00
## 488   488.00
## 489   489.00
## 490   490.00
## 491   491.00
## 492   492.00
## 493   493.00
## 494   494.00
## 495   495.00
## 496   496.00
## 497   497.00
## 498   498.00
## 499   499.00
## 500   500.00
## 501   501.00
## 502   502.00
## 503   503.00
## 504   504.00
## 505   505.00
## 506   506.00
## 507   507.00
## 508   508.00
## 509   509.00
## 510   510.00
## 511   511.00
## 512   512.00
## 513   513.00
## 514   514.00
## 515   515.00
## 516   516.00
## 517   517.00
## 518   518.00
## 519   519.00
## 520   520.00
## 521   521.00
## 522   522.00
## 523   523.00
## 524   524.00
## 525   525.00
## 526   526.00
## 527   527.00
## 528   528.00
## 529   529.00
## 530   530.00
## 531   531.00
## 532   532.00
## 533   533.00
## 534   534.00
## 535   535.00
## 536   536.00
## 537   537.00
## 538   538.00
## 539   539.00
## 540   540.00
## 541   541.00
## 542   542.00
## 543   543.00
## 544   544.00
## 545   545.00
## 546   546.00
## 547   547.00
## 548   548.00
## 549   549.00
## 550   550.00
## 551   551.00
## 552   552.00
## 553   553.00
## 554   554.00
## 555   555.00
## 556   556.00
## 557   557.00
## 558   558.00
## 559   559.00
## 560   560.00
## 561   561.00
## 562   562.00
## 563   563.00
## 564   564.00
## 565   565.00
## 566   566.00
##                                                                                                                                                                        Item
## 1                                                                                                                                               I like mechanics magazines.
## 2                                                                                                                                                   I have a good appetite.
## 3                                                                                                                                 I wake up fresh and rested most mornings.
## 4                                                                                                                             I think I would like the work of a librarian.
## 5                                                                                                                                            I am easily awakened by noise.
## 6                                                                                                                               I like to read newspaper articles on crime.
## 7                                                                                                                                My hands and feet are usually warm enough.
## 8                                                                                                                  My daily life is full of things that keep me interested.
## 9                                                                                                                                 I am about as able to work as I ever was.
## 10                                                                                                                  There seems to be a lump in my throat much of the time.
## 11                                                                                 A person should try to understand his dreams and be guided by or take warning from them.
## 12                                                                                                                                    I enjoy detective or mystery stories.
## 13                                                                                                                                    I work under a great deal of tension.
## 14                                                                                                                                    I have diarrhea once a month or more.
## 15                                                                                                                 Once in a while I think of things too bad to talk about.
## 16                                                                                                                                    I am sure I get a raw deal from life.
## 17                                                                                                                                                My father was a good man.
## 18                                                                                                                               I am very seldom troubled by constipation.
## 19                                                                                          When I take a new job, I like to be tipped off on who should be gotten next to.
## 20                                                                                                                                             My sex life is satisfactory.
## 21                                                                                                                          At times I have very much wanted to leave home.
## 22                                                                                                       At times I have fits of laughing and crying that I cannot control.
## 23                                                                                                                         I am troubled by attacks of nausea and vomiting.
## 24                                                                                                                                           No one seems to understand me.
## 25                                                                                                                                             I would like to be a singer.
## 26                                                                                              I feel that it is certainly best to keep my mouth shut when I'm in trouble.
## 27                                                                                                                                        Evil spirits possess me at times.
## 28                                                                 When someone does me a wrong I feel I should pay him back if I can, just for the principle of the thing.
## 29                                                                                                                      I am bothered by acid stomach several times a week.
## 30                                                                                                                                           At times I feel like swearing.
## 31                                                                                                                                      I have nightmares every few nights.
## 32                                                                                                                         I find it hard to keep my mind on a task or job.
## 33                                                                                                                        I have had very peculiar and strange experiences.
## 34                                                                                                                                         I have a cough most of the time.
## 35                                                                                               If people had not had it in for me I would have been much more successful.
## 36                                                                                                                                          I seldom worry about my health.
## 37                                                                                                                 I have never been in trouble because of my sex behavior.
## 38                                                                                                    During one period when I was a youngster I engaged in petty thievery.
## 39                                                                                                                                    At times I feel like smashing things.
## 40                                                                                                     Most any time I would rather sit and daydream than do anything else.
## 41                                                         I have had periods of days, weeks, or months when I couldn't take care of things because I couldn't “get going.”
## 42                                                                        My family does not like the work I have chosen (or the work I intend to choose for my life work).
## 43                                                                                                                                        My sleep is fitful and disturbed.
## 44                                                                                                                         Much of the time my head seems to hurt all over.
## 45                                                                                                                                          I do not always tell the truth.
## 46                                                                                                                                  My judgment is better than it ever was.
## 47                                                                                             Once a week or oftener I feel suddenly hot all over, without apparent cause.
## 48                                                                                                        When I am with people I am bothered by hearing very queer things.
## 49                                                                                                                  It would be better if almost all laws were thrown away.
## 50                                                                                                                                        My soul sometimes leaves my body.
## 51                                                                                                              I am in just as good physical health as most of my friends.
## 52                                                   I prefer to pass by school friends, or people I know but have not seen for a long time, unless they speak to me first.
## 53                                                                                                A minister can cure disease by praying and putting his hand on your head.
## 54                                                                                                                                   I am liked by most people who know me.
## 55                                                                                                       I am almost never bothered by pains over the heart or in my chest.
## 56                                                                                             As a youngster I was suspended from school one or more times for cutting up.
## 57                                                                                                                                                       I am a good mixer.
## 58                                                                                             Everything is turning out just like the prophets of the Bible said it would.
## 59                                                                                          I have often had to take orders from someone who did not know as much as I did.
## 60                                                                                                                I do not read every editorial in the newspaper every day.
## 61                                                                                                                                 I have not lived the right kind of life.
## 62                                                                         Parts of my body often have feelings like burning, tingling, crawling, or like “going to sleep.”
## 63                                                                                                       I have had no difficulty in starting or holding my bowel movement.
## 64                                                                                                 I sometimes keep on at a thing until others lose their patience with me.
## 65                                                                                                                                                       I loved my father.
## 66                                                                                                      I see things or animals or people around me that others do not see.
## 67                                                                                                                         I wish I could be as happy as others seem to be.
## 68                                                                                                                         I hardly ever feel pain in the back of the neck.
## 69                                                                                                                   I am very strongly attracted by members of my own sex.
## 70                                                                                                                                    I used to like drop-the-handkerchief.
## 71                                                               I think a great many people exaggerate their misfortunes in order to gain the sympathy and help of others.
## 72                                                                                          I am troubled by discomfort in the pit of my stomach every few days or oftener.
## 73                                                                                                                                                I am an important person.
## 74                                                                       I have often wished I were a girl (Or if you are a girl) I have never been sorry that I am a girl.
## 75                                                                                                                                                   I get angry sometimes.
## 76                                                                                                                                            Most of the time I feel blue.
## 77                                                                                                                                            I enjoy reading love stories.
## 78                                                                                                                                                           I like poetry.
## 79                                                                                                                                         My feelings are not easily hurt.
## 80                                                                                                                                               I sometimes tease animals.
## 81                                                                                                              I think I would like the kind of work a forest ranger does.
## 82                                                                                                                                       I am easily downed in an argument.
## 83                                                                                            Any man who is able and willing to work hard has a good chance of succeeding.
## 84                                                                                                 These days I find it hard not to give up hope of amounting to something.
## 85  Sometimes I am strongly attracted by the personal articles of others such as shoes, gloves, etc., so that I want to handle or steal them though I have no use for them.
## 86                                                                                                                               I am certainly lacking in self-confidence.
## 87                                                                                                                                            I would like to be a florist.
## 88                                                                                                                                 I usually feel that life is worth while.
## 89                                                                                                         It takes a lot of argument to convince most people of the truth.
## 90                                                                                                       Once in a while I put off until tomorrow what I ought to do today.
## 91                                                                                                                                         I do not mind being made fun of.
## 92                                                                                                                                              I would like to be a nurse.
## 93                                                                                                                              I think most people would lie to get ahead.
## 94                                                                     I do many things which I regret afterwards (I regret things more or more often than others seem to).
## 95                                                                                                                                        I go to church almost every week.
## 96                                                                                                                      I have very few quarrels with members of my family.
## 97                                                                                                       At times I have a strong urge to do something harmful or shocking.
## 98                                                                                                                                I believe in the second coming of Christ.
## 99                                                                                               I like to go to parties and other affairs where there is lots of loud fun.
## 100                                                                     I have met problems so full of possibilities that I have been unable to make up my mind about them.
## 101                                                                                                            I believe women ought to have as much sexual freedom as men.
## 102                                                                                                                                     My hardest battles are with myself.
## 103                                                                                                       I have little or no trouble with my muscles twitching or jumping.
## 104                                                                                                                                I don't seem to care what happens to me.
## 105                                                                                                                        Sometimes when I am not feeling well I am cross.
## 106                                                                                                      Much of the time I feel as if I have done something wrong or evil.
## 107                                                                                                                                            I am happy most of the time.
## 108                                                                                                       There seems to be a fullness in my head or nose most of the time.
## 109                                                   Some people are so bossy that I feel like doing the opposite of what they request, even though I know they are right.
## 110                                                                                                                                               Someone has it in for me.
## 111                                                                                                              I have never done anything dangerous for the thrill of it.
## 112                                                                                                   I frequently find it necessary to stand up for what I think is right.
## 113                                                                                                                                           I believe in law enforcement.
## 114                                                                                                               Often I feel as if there were a tight band about my head.
## 115                                                                                                                                          I believe in a life hereafter.
## 116                                                                                                                         I enjoy a race or game better when I bet on it.
## 117                                                                                                            Most people are honest chiefly through fear of being caught.
## 118                                                                                                         In school I was sometimes sent to the principal for cutting up.
## 119                                                                                     My speech is the same as always (not faster or slower, or slurring; no hoarseness).
## 120                                                                                             My table manners are not quite as good at home as when I am out in company.
## 121                                                                                                                                   I believe I am being plotted against.
## 122                                                                                                       I seem to be about as capable and smart as most others around me.
## 123                                                                                                                                          I believe I am being followed.
## 124                                                                       Most people will use somewhat unfair means to gain profit or an advantage rather than to lose it.
## 125                                                                                                                                 I have a great deal of stomach trouble.
## 126                                                                                                                                                       I like dramatics.
## 127                                                                                                                      I know who is responsible for most of my troubles.
## 128                                                                                                              The sight of blood neither frightens me nor makes me sick.
## 129                                                                                                          Often I can't understand why I have been so cross and grouchy.
## 130                                                                                                                         I have never vomited blood or coughed up blood.
## 131                                                                                                                                 I do not worry about catching diseases.
## 132                                                                                                                      I like collecting flowers or growing house plants.
## 133                                                                                                                     I have never indulged in any unusual sex practices.
## 134                                                                                                   At times my thoughts have raced ahead faster than I could speak them.
## 135                                                                           If I could get into a movie without paying and be sure I was not seen I would probably do it.
## 136                                                                           I commonly wonder what hidden reason another person may have for doing something nice for me.
## 137                                                                                               I believe that my home life is as pleasant as that of most people I know.
## 138                                                                                                                                Criticism or scolding hurts me terribly.
## 139                                                                                                     Sometimes I feel as if I must injure either myself or someone else.
## 140                                                                                                                                                         I like to cook.
## 141                                                                                                      My conduct is largely controlled by the customs of those about me.
## 142                                                                                                                                      I certainly feel useless at times.
## 143                                                                  When I was a child, I belonged to a crowd or gang that tried to stick together through thick and thin.
## 144                                                                                                                                           I would like to be a soldier.
## 145                                                                                                                 At times I feel like picking a fist fight with someone.
## 146                                                                                        I have the wanderlust and am never happy unless I am roaming or traveling about.
## 147                                                                                         I have often lost out on things because I couldn't make up my mind soon enough.
## 148                                                  It makes me impatient to have people ask my advice or otherwise interrupt me when I am working on something important.
## 149                                                                                                                                                 I used to keep a diary.
## 150                                                                                                                                 I would rather win than lose in a game.
## 151                                                                                                                                   Someone has been trying to poison me.
## 152                                                                                                       Most nights I go to sleep without thoughts or ideas bothering me.
## 153                                                                                                            During the past few years I have been well most of the time.
## 154                                                                                                                                   I have never had a fit or convulsion.
## 155                                                                                                                                 I am neither gaining nor losing weight.
## 156                                                                        I have had periods in which I carried on activities without knowing later what I had been doing.
## 157                                                                                                                   I feel that I have often been punished without cause.
## 158                                                                                                                                                           I cry easily.
## 159                                                                                                                   I cannot understand what I read as well as I used to.
## 160                                                                                                                      I have never felt better in my life than I do now.
## 161                                                                                                                              The top of my head sometimes feels tender.
## 162                                                                           I resent having anyone take me in so cleverly that I have had to admit that it was one on me.
## 163                                                                                                                                                  I do not tire quickly.
## 164                                                                                                             I like to study and read about things that I am working at.
## 165                                                                                                I like to know some important people because it makes me feel important.
## 166                                                                                                                         I am afraid when I look down from a high place.
## 167                                                                                  It wouldn't make me nervous if any members of my family got into trouble with the law.
## 168                                                                                                                                  There is something wrong with my mind.
## 169                                                                                                                                         Iam not afraid to handle money.
## 170                                                                                                                             What others think of me does not bother me.
## 171                                                              It makes me uncomfortable to put on a stunt at a party even when others are doing the same sort of things.
## 172                                                                                                           I frequently have to fight against showing that I am bashful.
## 173                                                                                                                                                         I liked school.
## 174                                                                                                                                      I have never had a fainting spell.
## 175                                                                                                                                    I seldom or never have dizzy spells.
## 176                                                                                                                                   I do not have a great fear of snakes.
## 177                                                                                                                                             My mother was a good woman.
## 178                                                                                                                                        My memory seems to be all right.
## 179                                                                                                                                         I am worried about sex matters.
## 180                                                                                                                     I find it hard to make talk when I meet new people.
## 181                                                                                                                     When I get bored I like to stir up some excitement.
## 182                                                                                                                                          I am afraid of losing my mind.
## 183                                                                                                                                   I am against giving money to beggars.
## 184                                                                                                            I commonly hear voices without knowing where they come from.
## 185                                                                                                                My hearing is apparently as good as that of most people.
## 186                                                                                                          I frequently notice my hand shakes when I try to do something.
## 187                                                                                                                             My hands have not become clumsy or awkward.
## 188                                                                                                                         I can read a long while without tiring my eyes.
## 189                                                                                                                                  I feel weak all over much of the time.
## 190                                                                                                                                              I have very few headaches.
## 191                                                                                            Sometimes, when embarrassed, I break out in a sweat which annoys me greatly.
## 192                                                                                                              I have had no difficulty in keeping my balance in walking.
## 193                                                                                                                            I do not have spells of hay fever or asthma.
## 194                                                 I have had attacks in which I could not control my movements or speech but in which I knew what was going on around me.
## 195                                                                                                                                          I do not like everyone I know.
## 196                                                                                                                  I like to visit places where I have never been before.
## 197                                                                                                                                      Someone has been trying to rob me.
## 198                                                                                                                                                 I daydream very little.
## 199                                                                                                                    Children should be taught all the main facts of sex.
## 200                                                                                                        There are persons who are trying to steal my thoughts and ideas.
## 201                                                                                                                                               I wish I were not so shy.
## 202                                                                                                                                      I believe I am a condemned person.
## 203                                                                                              If I were a reporter I would very much like to report news of the theater.
## 204                                                                                                                                        I would like to be a journalist.
## 205                                                                                  At times it has been impossible for me to keep from stealing or shoplifting something.
## 206                                                                                                                            I am very religious (more than most people).
## 207                                                                                                                    I enjoy many different kinds of play and recreation.
## 208                                                                                                                                                        I like to flirt.
## 209                                                                                                                                     I believe my sins are unpardonable.
## 210                                                                                                                                             Everything tastes the same.
## 211                                                                                                                            I can sleep during the day but not at night.
## 212                                                                                                                   My people treat me more like a child than a grown-up.
## 213                                                                                                              In walking I am very careful to step over sidewalk cracks.
## 214                                                                                                       I have never had any breaking out on my skin that has worried me.
## 215                                                                                                                                        I have used alcohol excessively.
## 216                                                                                    There is very little love and companionship in my family as compared to other homes.
## 217                                                                                                                      I frequently find myself worrying about something.
## 218                                                                                                               It does not bother me particularly to see animals suffer.
## 219                                                                                                                 I think I would like the work of a building contractor.
## 220                                                                                                                                                      I loved my mother.
## 221                                                                                                                                                         I like science.
## 222                                                                                It is not hard for me to ask help from my friends even though I cannot return the favor.
## 223                                                                                                                                               I very much like hunting.
## 224                                                                                                My parents have often objected to the kind of people I went around with.
## 225                                                                                                                                             I gossip a little at times.
## 226                                                                                                       Some of my family have habits that bother and annoy me very much.
## 227                                                                                                                              I have been told that I walk during sleep.
## 228                                                                                                   At times I feel that I can make up my mind with unusually great ease.
## 229                                                                                                                     I should like to belong to several clubs or lodges.
## 230                                                                                                 I hardly ever notice my heart pounding and I am seldom short of breath.
## 231                                                                                                                                               I like to talk about sex.
## 232                                                                          I have been inspired to a program of life based on duty which I have since carefully followed.
## 233                  I have at times stood in the way of people who were trying to do something, not because it amounted to much but because of the principle of the thing.
## 234                                                                                                                             I get mad easily and then get over it soon.
## 235                                                                                                                I have been quite independent and free from family rule.
## 236                                                                                                                                                   I brood a great deal.
## 237                                                                                                                        My relatives are nearly all in sympathy with me.
## 238                                                                                            I have periods of such great restlessness that I cannot sit long in a chair.
## 239                                                                                                                                       I have been disappointed in love.
## 240                                                                                                                                           I never worry about my looks.
## 241                                                                                                           I dream frequently about things that are best kept to myself.
## 242                                                                                                                        I believe I am no more nervous than most others.
## 243                                                                                                                                                 I have few or no pains.
## 244                                                                                                            My way of doing things is apt to be misunderstood by others.
## 245                                                                                                         My parents and family find more fault with me than they should.
## 246                                                                                                                                           My neck spots with red often.
## 247                                                                                                  I have reason for feeling jealous of one or more members of my family.
## 248                                                         Sometimes without any reason or even when things are going wrong I feel excitedly happy, “on top of the world.”
## 249                                                                                                                     I believe there is a Devil and a Hell in afterlife.
## 250                                                                                            I don't blame anyone for trying to grab everything he can get in this world.
## 251                                                         I have had blank spells in which my activities were interrupted and I did not know what was going on around me.
## 252                                                                                                                                  No one cares much what happens to you.
## 253                                                                                                     I can be friendly with people who do things which I consider wrong.
## 254                                                                                                                I like to be with a crowd who play jokes on one another.
## 255                                                                                                    Sometimes at elections I vote for men about whom I know very little.
## 256                                                                                                               The only interesting part of newspapers is the “funnies.”
## 257                                                                                                                             I usually expect to succeed in things I do.
## 258                                                                                                                                               I believe there is a God.
## 259                                                                                                                             I have difficulty in starting to do things.
## 260                                                                                                                                         I was a slow learner in school.
## 261                                                                                                                       If I were an artist I would like to draw flowers.
## 262                                                                                                                     It does not bother me that I am not better looking.
## 263                                                                                                                                  I sweat very easily even on cool days.
## 264                                                                                                                                           I am entirely self-confident.
## 265                                                                                                                                            It is safer to trust nobody.
## 266                                                                                                                           Once a week or oftener I become very excited.
## 267                                                                                    When in a group of people I have trouble thinking of the right things to talk about.
## 268                                                                                          Something exciting will almost always pull me out of it when I am feeling low.
## 269                                                                                        I can easily make other people afraid of me, and sometimes do for the fun of it.
## 270                                                                               When I leave home I do not worry about whether the door is locked and the windows closed.
## 271                                                                                     Ido not blame a person for taking advantage of someone who lays himself open to it.
## 272                                                                                                                                           At times I am full of energy.
## 273                                                                                                                      I have numbness in one or more regions of my skin.
## 274                                                                                                                        My eyesight is as good as it has been for years.
## 275                                                                                                                                       Someone has control over my mind.
## 276                                                                                                                                                       I enjoy children.
## 277                                                             At times I have been so entertained by the cleverness of a crook that I have hoped he would get by with it.
## 278                                                                                                         I have often felt that strangers were looking at me critically.
## 279                                                                                                                   I drink an unusually large amount of water every day.
## 280                                                                                               Most people make friends because friends are likely to be useful to them.
## 281                                                                                                                       I do not often notice my ears ringing or buzzing.
## 282                                                                                            Once in a while I feel hate toward members of my family whom I usually love.
## 283                                                                                                    If I were a reporter I would very much like to report sporting news.
## 284                                                                                                                                      I am sure I am being talked about.
## 285                                                                                                                                Once in a while I laugh at a dirty joke.
## 286                                                                                                                                     I am never happier than when alone.
## 287                                                                                                                           I have very few fears compared to my friends.
## 288                                                                                                                        I am troubled by attacks of nausea and vomiting.
## 289                                                                    I am always disgusted with the law when a criminal is freed through the arguments of a smart lawyer.
## 290                                                                                                                                   I work under a great deal of tension.
## 291                                                                          At one or more times in my life I felt that someone was making me do things by hypnotizing me.
## 292                                                                                                              I am likely not to speak to people until they speak to me.
## 293                                                                                                                           Someone has been trying to influence my mind.
## 294                                                                                                                              I have never been in trouble with the law.
## 295                                                                                                                         I liked “Alice in Wonderland” by Lewis Carroll.
## 296                                                                                           I have periods in which I feel unusually cheerful without any special reason.
## 297                                                                                                                       I wish I were not bothered by thoughts about sex.
## 298                                                   If several people find themselves in trouble, the best thing for them to do is to agree upon a story and stick to it.
## 299                                                                                                                 I think that I feel more intensely than most people do.
## 300                                                                                                      There never was a time in my life when I liked to play with dolls.
## 301                                                                                                                               Life is a strain for me much of the time.
## 302                                                                                                                I have never been in trouble because of my sex behavior.
## 303                                                                                                           I am so touchy on some subjects that I can't talk about them.
## 304                                                                                                                In school I found it very hard to talk before the class.
## 305                                                                                                              Even when I am with people I feel lonely much of the time.
## 306                                                                                                                                        I get all the sympathy I should.
## 307                                                                                                              I refuse to play some games because I am not good at them.
## 308                                                                                                                         At times I have very much wanted to leave home.
## 309                                                                                                                   I seem to make friends about as quickly as others do.
## 310                                                                                                                                            My sex life is satisfactory.
## 311                                                                                                   During one period when I was a youngster I engaged in petty thievery.
## 312                                                                                                                                       I dislike having people about me.
## 313                              The man who provides temptation by leaving valuable property unprotected is about as much to blame for its theft as the one who steals it.
## 314                                                                                                                Once in a while I think of things too bad to talk about.
## 315                                                                                                                                   I am sure I get a raw deal from life.
## 316                                                                                                          I think nearly anyone would tell a lie to keep out of trouble.
## 317                                                                                                                              Iam more sensitive than most other people.
## 318                                                                                                                My daily life is full of things that keep me interested.
## 319                                                                                               Most people inwardly dislike putting themselves out to help other people.
## 320                                                                                                                                Many of my dreams are about sex matters.
## 321                                                                                                                                                I am easily embarrassed.
## 322                                                                                                                                        I worry over money and business.
## 323                                                                                                                       I have had very peculiar and strange experiences.
## 324                                                                                                                                  I have never been in love with anyone.
## 325                                                                                                         The things that some of my family have done have frightened me.
## 326                                                                                                      At times I have fits of laughing and crying that I cannot control.
## 327                                                                                    My mother or father often made me obey even when I thought that it was unreasonable.
## 328                                                                                                                        I find it hard to keep my mind on a task or job.
## 329                                                                                                                                                   I almost never dream.
## 330                                                                                           I have never been paralyzed or had any unusual weakness of any of my muscles.
## 331                                                                                              If people had not had it in for me I would have been much more successful.
## 332                                                                                                     Sometimes my voice leaves me or changes even though I have no cold.
## 333                                                                                                                                          No one seems to understand me.
## 334                                                                                                                                     Peculiar odors come to me at times.
## 335                                                                                                                                     I cannot keep my mind on one thing.
## 336                                                                                                                                  I easily become impatient with people.
## 337                                                                                                          I feel anxiety about something or someone almost all the time.
## 338                                                                                                       I have certainly had more than my share of things to worry about.
## 339                                                                                                                                    Most of the time I wish I were dead.
## 340                                                                                                      Sometimes I become so excited that I find it hard to get to sleep.
## 341                                                                                                                                  At times I hear so well it bothers me.
## 342                                                                                                                              I forget right away what people say to me.
## 343                                                                                                 I usually have to stop and think before I act even in trifling matters.
## 344                                                                                                            Often I cross the street in order not to meet someone I see.
## 345                                                                                                                                I often feel as if things were not real.
## 346                                                                 I have a habit of counting things that are not important such as bulbs on electric signs, and so forth.
## 347                                                                                                                           I have no enemies who really wish to harm me.
## 348                                                                                I tend to be on my guard with people who are somewhat more friendly than I had expected.
## 349                                                                                                                                   I have strange and peculiar thoughts.
## 350                                                                                                                                  I hear strange things when I am alone.
## 351                                                                                                I get anxious and upset when I have to make a short trip away from home.
## 352                                                                                                   I have been afraid of things or people that I knew could not hurt me.
## 353                                                                I have no dread of going into a room by myself where other people have already gathered and are talking.
## 354                                                                                                         I am afraid of using a knife or anything very sharp or pointed.
## 355                                                                                                                               Sometimes I enjoy hurting persons I love.
## 356                                                                                                             I have more trouble concentrating than others seem to have.
## 357                                                                                 I have several times given up doing a thing because I thought too little of my ability.
## 358                                                                                        Bad words, often terrible words, come into my mind and I cannot get rid of them.
## 359                                                                                     Sometimes some unimportant thought will run through my mind and bother me for days.
## 360                                                                                                                      Almost every day something happens to frighten me.
## 361                                                                                                                                      I am inclined to take things hard.
## 362                                                                                                                             I am more sensitive than most other people.
## 363                                                                                                                  At times I have enjoyed being hurt by someone I loved.
## 364                                                                                                                        People say insulting and vulgar things about me.
## 365                                                                                                                                                  I feel uneasy indoors.
## 366                                                                                                              Even when I am with people I feel lonely much of the time.
## 367                                                                                                                                                I am not afraid of fire.
## 368                                             I have sometimes stayed away from another person because I feared doing or saying something that I might regret afterwards.
## 369                                                                                                                                             Religion gives me no worry.
## 370                                                                                                                                    I hate to have to rush when working.
## 371                                                                                                                                      I am not unusually self-conscious.
## 372                                                               I tend to be interested in several different hobbies rather than to stick to one of them for a long time.
## 373                                                                                                                       I feel sure that there is only one true religion.
## 374                                                                                                                At periods my mind seems to work more slowly than usual.
## 375                                                                                  When I am feeling very happy and active, someone who is blue or low will spoil it all.
## 376                                                                                                                                           Policemen are usually honest.
## 377                                                              At parties I am more likely to sit by myself or with just one other person than to join in with the crowd.
## 378                                                                                                                                       I do not like to see women smoke.
## 379                                                                                                                                 I very seldom have spells of the blues.
## 380                                                                        When someone says silly or ignorant things about something I know about, I try to set him right.
## 381                                                                                                                                        I am often said to be hotheaded.
## 382                                                                I wish I could get over worrying about things I have said that may have injured other people's feelings.
## 383                                                                                                                                             People often disappoint me.
## 384                                                                                                                          I feel unable to tell anyone all about myself,
## 385                                                                                                                                           Lightning is one of my fears.
## 386                                                                                                               I like to keep people guessing what I'm going to do next,
## 387                                                                                          The only miracles I know of are simply tricks that people play on one another.
## 388                                                                                                                                    I am afraid to be alone in the dark.
## 389                                                                                My plans have frequently seemed so full of difficulties that I have had to give them up.
## 390                                                                     I have often felt badly over being misunderstood when trying to keep someone from making a mistake.
## 391                                                                                                                                                 I love to go to dances.
## 392                                                                                                                                               A windstorm terrifies me.
## 393                                                                                                                      Horses that don't pull should be beaten or kicked.
## 394                                                                                                                                     I frequently ask people for advice.
## 395                                                                                                         The future is too uncertain for a person to make serious plans.
## 396                                                                            Often, even though everything is going fine for me, I feel that | don't care about anything.
## 397                                                                          I have sometimes felt that difficulties were piling up so high that I could not overcome them.
## 398                                                                                                                           I often think, “I wish I were a child again.”
## 399                                                                                                                                                I am not easily angered.
## 400                                                                                 If given the chance I could do some things that would be of great benefit to the world.
## 401                                                                                                                                                I have no fear of water.
## 402                                                                                                            I often must sleep over a matter before I decide what to do.
## 403                                                                                                       It is great to be living in these times when so much is going on.
## 404                                                                       People have often misunderstood my intentions when I was trying to put them right and be helpful.
## 405                                                                                                                                           I have no trouble swallowing.
## 406                                                                                      I have often met people who were supposed to be experts who were no better than I.
## 407                                                                                                                                 I am usually calm and not easily upset.
## 408                                                       I am apt to hide my feelings in some things, to the point that people may hurt me without their knowing about it.
## 409                                                                                                                At times I have worn myself out by undertaking too much.
## 410                                                                                                                I would certainly enjoy beating a crook at his own game.
## 411                                                                                      It makes me feel like a failure when I hear of the success of someone I know well.
## 412                                                                                                              I do not dread seeing a doctor about a sickness or injury.
## 413                                                                                                                                I deserve severe punishment for my sins.
## 414                                                                                        I am apt to take disappointments so keenly that I can't put them out of my mind.
## 415                                                                                                               If given the chance I would make a good leader of people.
## 416                                                                                     It bothers me to have someone watch me at work even though I know I can do it well.
## 417                                                           I am often so annoyed when someone tries to get ahead of me in a line of people that I speak to him about it.
## 418                                                                                                                                    At times I think Iam no good at all.
## 419                                                                                                                  I played hooky from school quite often as a youngster.
## 420                                                                                                                     I have had some very unusual religious experiences.
## 421                                                                                                                       One or more members of my family is very nervous.
## 422                                                                          I have felt embarrassed over the type of work that one or more members of my family have done.
## 423                                                                                                                                 I like or have liked fishing very much.
## 424                                                                                                                                      I feel hungry almost all the time.
## 425                                                                                                                                                     I dream frequently.
## 426                                                                                                  I have at times had to be rough with people who were rude or annoying.
## 427                                                                                                                                      I am embarrassed by dirty stories.
## 428                                                                                                                                    I like to read newspaper editorials.
## 429                                                                                                                          I like to attend lectures on serious subjects.
## 430                                                                                                                          I am attracted by members of the opposite sex.
## 431                                                                                                                          I worry quite a bit over possible misfortunes.
## 432                                                                                                                                       I have strong political opinions.
## 433                                                                                                                                    I used to have imaginary companions.
## 434                                                                                                                                       I would like to be an auto racer.
## 435                                                                                                                              Usually I would prefer to work with women.
## 436                                                                    People generally demand more respect for their own rights than they are willing to allow for others.
## 437                                                                                                   It is all right to get around the law if you don't actually break it.
## 438                                      There are certain people whom I dislike so much that I am inwardly pleased when they are catching it for something they have done.
## 439                                                                                                                                    It makes me nervous to have to wait.
## 440                                                                                                         I try to remember good stories to pass them on to other people.
## 441                                                                                                                                                      I like tall women.
## 442                                                                                                                    I have had periods in which I lost sleep over worry.
## 443                                                           I am apt to pass up something I want to do because others feel that I am not going about it in the right way.
## 444                                                                                                          J do not try to correct people who express an ignorant belief.
## 445                                                                                                            I was fond of excitement when I was young (or in childhood).
## 446                                                                                                                                      I enjoy gambling for small stakes.
## 447                                                                                 I am often inclined to go out of my way to win a point with someone who has opposed me.
## 448                                                                                           I am bothered by people outside, on streetcars, in stores, etc., watching me.
## 449                                                                                                                       I enjoy social gatherings just to be with people.
## 450                                                                                                                                      I enjoy the excitement of a crowd.
## 451                                                                                                 My worries seem to disappear when I get into a crowd of lively friends.
## 452                                                                                                                                           I like to poke fun at people.
## 453                                                                                                     When I was a child I didn't care to be a member of a crowd or gang.
## 454                                                                                                 I could be happy living all alone in a cabin in the woods or mountains.
## 455                                                                                                I am quite often not in on the gossip and talk of the group I belong to.
## 456                                                                                       A person shouldn't be punished for breaking a law that he thinks is unreasonable.
## 457                                                                                                          I believe that a person should never taste an alcoholic drink.
## 458                                                    The man who had most to do with me when I was a child (such as my father, stepfather, etc.) was very strict with me.
## 459                                                                           I have one or more bad habits which are so strong that it is no use in fighting against them.
## 460                                                                                                                         I have used alcohol moderately (or not at all).
## 461                                                                                       I find it hard to set aside a task that I have undertaken, even for a short time.
## 462                                                                                                                  I have had no difficulty starting or holding my urine.
## 463                                                                                                                                               I used to like hopscotch.
## 464                                                                                                                                             I have never seen a vision.
## 465                                                                                                          I have several times had a change of heart about my life work.
## 466                                                                                                     Except by a doctor's orders I never take drugs or sleeping powders.
## 467                                                                                      I often memorize numbers that are not important (such as automobile licenses, etc)
## 468                                                                                                                     I am often sorry because I am so cross and grouchy.
## 469                                                                    I have often found people jealous of my good ideas, just because they had not thought of them first.
## 470                                                                                                                                               Sexual things disgust me.
## 471                                                                                                              In school my marks in deportment were quite regularly bad.
## 472                                                                                                                                                I am fascinated by fire.
## 473                                                                                                                             Whenever possible I avoid being in a crowd.
## 474                                                                                                                            I have to urinate no more often than others.
## 475                                                                                     When I am cornered I tell that portion of the truth which is not likely to hurt me.
## 476                                                                                                                                            I am a special agent of God.
## 477                                        If I were in trouble with several friends who were equally to blame, I would rather take the whole blame than to give them away.
## 478                                                                  I have never been made especially nervous over trouble that any members of my family have gotten into.
## 479                                                                                                                                        I do not mind meeting strangers.
## 480                                                                                                                                          I am often afraid of the dark.
## 481                                                                                                                  I can remember “playing sick” to get out of something.
## 482                                                                                                               While in trains, busses, etc., I often talk to strangers.
## 483                                                                                                             Christ performed miracles such as changing water into wine.
## 484                           I have one or more faults which are sobig that it seems better to accept them  and try to control them rather than to try to get rid of them.
## 485                                                                                      When a man is with a woman he is usually thinking about things related to her sex.
## 486                                                                                                                             I have never noticed any blood in my urine.
## 487                                                                                                                     I feel like giving up quickly when things go wrong.
## 488                                                                                                                                        I pray several times every week.
## 489                                                                                     I feel sympathetic towards people who tend to hang on to their griefs and troubles.
## 490                                                                                                                               I read in the Bible several times a week.
## 491                                                                                             I have no patience with people who believe there is only one true religion.
## 492                                                                                                                                   I dread the thought of an earthquake.
## 493                                                                                   I prefer work which requires close attention, to work which allows me to be careless.
## 494                                                                                                        I am afraid of finding myself in a closet or small closed place.
## 495                                                                               I usually “lay my cards on the table” with people that I am trying to correct or improve.
## 496                         I have never seen things doubled (that is, an object never looks like two objects to me without my being able to make it look like one object).
## 497                                                                                                                                           I enjoy stories of adventure.
## 498                                                                                                                                  It is always a good thing to be frank.
## 499                                                                 I must admit that I have at times been worried beyond reason over something that really did not matter.
## 500                                                                                                              I readily become one hundred per cent sold on a good idea.
## 501                                                                                            I usually work things out for myself rather than get someone to show me how.
## 502                                                                                                                      I like to let people know where I stand on things.
## 503                                                                                It is unusual for me to express strong approval or disapproval of the actions of others.
## 504                                                                          I do not try to cover up my poor opinion or pity of a person so that he won't know how I feel.
## 505                                                                     I have had periods when I felt so full of pep that sleep did not seem necessary for days at a time.
## 506                                                                                                                                              I am a high-strung person.
## 507   I have frequently worked under people who seem to have things arranged so that they get credit for good work but are able to pass off mistakes onto those under them.
## 508                                                                                                               I believe my sense of smell is as good as other people's.
## 509                                                                                            I sometimes find it hard to stick up for my rights because I am so reserved,
## 510                                                                                                                                          Dirt frightens or disgusts me.
## 511                                                                                                          I have a daydream life about which I do not tell other people.
## 512                                                                                                                                               I dislike to take a bath.
## 513                                                                                                                            I think Lincoln was greater than Washington.
## 514                                                                                                                                                   I like mannish women.
## 515                                                                           In my home we have always had the ordinary necessities (such as enough food, clothing, etc.).
## 516                                                                                                                                   Some of my family have quick tempers.
## 517                                                                                                                                              I cannot do anything well.
## 518                                                                 I have often felt guilty because I have pretended to feel more sorry about something than I really was.
## 519                                                                                                                            There is something wrong with my sex organs.
## 520                                                                                                                            I strongly defend my own opinions as a rule.
## 521                                 In a group of people I would not be embarrassed to be called upon to start a discussion or give an opinion about something I know well.
## 522                                                                                                                                              I have no fear of spiders.
## 523                                                                                                                                              I practically never blush.
## 524                                                                                                       I am not afraid of picking up a disease or germs from door knobs.
## 525                                                                                                                                   I am made nervous by certain animals.
## 526                                                                                                                                        The future seems hopeless to me.
## 527                                                                                                   The members of my family and my close relatives get along quite well.
## 528                                                                                                                                      I blush no more often than others.
## 529                                                                                                                                 I would like to wear expensive clothes.
## 530                                                                                                                             I am often afraid that I am going to blush.
## 531                                                                 People can pretty easily change me even though I thought that my mind was already made up on a subject.
## 532                                                                                                                                 I can stand as much pain as others can.
## 533                                                                                                   I am not bothered by a great deal of belching of gas from my stomach.
## 534                                                                                                     Several times I have been the last to give up trying to do a thing.
## 535                                                                                                                                 My mouth feels dry almost all the time.
## 536                                                                                                                              It makes me angry to have people hurry me.
## 537                                                                                                                                   I would like to hunt lions in Africa.
## 538                                                                                                                          I think I would like the work of a dressmaker.
## 539                                                                                                                                                I am not afraid of mice.
## 540                                                                                                                                       My face has never been paralyzed.
## 541                                                                                                                       My skin seems to be unusually sensitive to touch.
## 542                                                                                                              I have never had any black, tarry-looking bowel movements.
## 543                                                                                                Several times a week I feel as if something dreadful is about to happen.
## 544                                                                                                                                   I feel tired a good deal of the time.
## 545                                                                                                                          Sometimes I have the same dream over and over.
## 546                                                                                                                                           I like to read about history.
## 547                                                                                                                                             I like parties and socials.
## 548                                                                                                                           I never attend a sexy show if I can avoid it.
## 549                                                                                                                            I shrink from facing a crisis or difficulty.
## 550                                                                                                                                          I like repairing a door latch.
## 551                                                                                                      Sometimes I am sure that other people can tell what I am thinking.
## 552                                                                                                                                           I like to read about science.
## 553                                                                                                                        I am afraid of being alone in a wide-open place.
## 554                                                                                                                      If I were an artist I would like to draw children.
## 555                                                                                                                       I sometimes feel that I am about to go to pieces.
## 556                                                                                                                             I am very careful about my manner of dress.
## 557                                                                                                                                 I would like to be a private secretary.
## 558                                                                                                              A large number of people are guilty of bad sexual conduct.
## 559                                                                                                                I have often been frightened in the middle of the night.
## 560                                                                                                                 I am greatly bothered by forgetting where I put things.
## 561                                                                                                                                      I very much like horseback riding.
## 562                                                                                      The one to whom I was most attached and whom I most admired as a child was a woman
## 563                                                                                                                  I like adventure stories better than romantic stories.
## 564                                                                                  I am apt to pass up something I want to do when others feel that it isn't worth doing.
## 565                                                                                                                      I feel like jumping off when I am on a high place.
## 566                                                                                                                                               I like movie love scenes.
##         Item Prevalence P loading IQ gap
## 1   MM010001       0.64      0.03  -1.66
## 2   MM010002       0.95     -0.41   4.54
## 3   MM010003       0.69     -0.44   0.89
## 4   MM010004       0.09      0.04   4.68
## 5   MM010005       0.58      0.23  -8.24
## 6   MM010006       0.46      0.16   0.25
## 7   MM010007       0.83     -0.34   3.97
## 8   MM010008       0.81     -0.57   3.76
## 9   MM010009       0.88     -0.52   6.83
## 10  MM010010       0.06      0.60  -8.29
## 11  MM010011       0.30      0.33 -10.03
## 12  MM010012       0.65     -0.05   0.60
## 13  MM010013       0.48      0.29   0.23
## 14  MM010014       0.21      0.37  -1.26
## 15  MM010015       0.43      0.55  -3.52
## 16  MM010016       0.09      0.74 -12.60
## 17  MM010017       0.92     -0.31   2.94
## 18  MM010018       0.84     -0.32  10.31
## 19  MM010019       0.15      0.29  -2.85
## 20  MM010020       0.85     -0.46  -2.12
## 21  MM010021       0.33      0.59  -2.74
## 22  MM010022       0.09      0.62  -6.57
## 23  MM010023       0.03      0.66 -11.56
## 24  MM010024       0.12      0.76  -6.62
## 25  MM010025       0.29      0.11   2.66
## 26  MM010026       0.50      0.32  -4.14
## 27  MM010027       0.04      0.66 -11.20
## 28  MM010028       0.32      0.45  -2.05
## 29  MM010029       0.21      0.42  -3.37
## 30  MM010030       0.82      0.26   7.18
## 31  MM010031       0.12      0.65  -8.35
## 32  MM010032       0.18      0.68  -5.11
## 33  MM010033       0.27      0.52  -5.86
## 34  MM010034       0.12      0.43  -3.49
## 35  MM010035       0.06      0.67 -11.18
## 36  MM010036       0.58     -0.28   4.54
## 37  MM010037       0.85     -0.26   2.45
## 38  MM010038       0.53      0.14   4.58
## 39  MM010039       0.45      0.53   0.53
## 40  MM010040       0.14      0.63  -7.49
## 41  MM010041       0.33      0.64  -2.78
## 42  MM010042       0.09      0.47  -5.21
## 43  MM010043       0.18      0.67  -6.54
## 44  MM010044       0.07      0.69 -10.61
## 45  MM010045       0.55      0.22   3.23
## 46  MM010046       0.75     -0.43   5.89
## 47  MM010047       0.10      0.66 -11.91
## 48  MM010048       0.10      0.55  -8.78
## 49  MM010049       0.05      0.53  -4.74
## 50  MM010050       0.04      0.64  -9.67
## 51  MM010051       0.84     -0.46   5.97
## 52  MM010052       0.24      0.50  -0.81
## 53  MM010053       0.08      0.15  -4.81
## 54  MM010054       0.95     -0.52   4.04
## 55  MM010055       0.77     -0.47   6.05
## 56  MM010056       0.23      0.26  -4.55
## 57  MM010057       0.65     -0.29  -1.84
## 58  MM010058       0.50      0.13  -7.26
## 59  MM010059       0.67      0.39  -5.99
## 60  MM010060       0.96     -0.09   4.07
## 61  MM010061       0.28      0.61  -9.35
## 62  MM010062       0.27      0.60  -7.80
## 63  MM010063       0.86     -0.37   2.21
## 64  MM010064       0.38      0.34   0.93
## 65  MM010065       0.92     -0.26  -0.37
## 66  MM010066       0.13      0.36  -6.86
## 67  MM010067       0.39      0.63  -5.99
## 68  MM010068       0.69     -0.42   3.91
## 69  MM010069       0.04      0.31  -8.86
## 70  MM010070       0.13     -0.01   1.65
## 71  MM010071       0.71      0.41  -5.25
## 72  MM010072       0.12      0.60  -5.84
## 73  MM010073       0.71     -0.26   1.78
## 74  MM010074       0.02      0.54  -0.42
## 75  MM010075       0.97      0.29   4.18
## 76  MM010076       0.13      0.82  -7.58
## 77  MM010077       0.15      0.02  -4.94
## 78  MM010078       0.36     -0.09   1.93
## 79  MM010079       0.53     -0.36  -2.28
## 80  MM010080       0.25      0.25  -0.96
## 81  MM010081       0.69      0.05   1.68
## 82  MM010082       0.18      0.46  -4.94
## 83  MM010083       0.94     -0.44  -0.90
## 84  MM010084       0.47      0.39 -10.80
## 85  MM010085       0.01      0.61 -12.21
## 86  MM010086       0.23      0.65  -5.03
## 87  MM010087       0.06      0.13  -0.39
## 88  MM010088       0.96     -0.71   5.34
## 89  MM010089       0.40      0.51  -9.62
## 90  MM010090       0.92      0.16   6.95
## 91  MM010091       0.41     -0.18   0.71
## 92  MM010092       0.04      0.20   1.10
## 93  MM010093       0.61      0.52  -6.85
## 94  MM010094       0.25      0.74  -9.12
## 95  MM010095       0.25     -0.15   2.45
## 96  MM010096       0.76     -0.40   0.67
## 97  MM010097       0.18      0.65  -1.31
## 98  MM010098       0.69      0.05  -6.50
## 99  MM010099       0.41      0.01  -0.35
## 100 MM010100       0.49      0.55  -5.55
## 101 MM010101       0.83     -0.19   4.73
## 102 MM010102       0.70      0.41  -0.39
## 103 MM010103       0.84     -0.55   8.15
## 104 MM010104       0.09      0.67  -4.34
## 105 MM010105       0.74      0.25   4.60
## 106 MM010106       0.10      0.79  -8.81
## 107 MM010107       0.87     -0.74   3.07
## 108 MM010108       0.15      0.54  -4.21
## 109 MM010109       0.31      0.50  -2.46
## 110 MM010110       0.07      0.70  -8.36
## 111 MM010111       0.29     -0.02  -9.32
## 112 MM010112       0.74      0.24  -4.67
## 113 MM010113       0.98     -0.52   3.66
## 114 MM010114       0.08      0.74 -11.35
## 115 MM010115       0.76     -0.04  -1.47
## 116 MM010116       0.32      0.25  -3.54
## 117 MM010117       0.51      0.41  -8.19
## 118 MM010118       0.41      0.25  -2.47
## 119 MM010119       0.77     -0.42   3.10
## 120 MM010120       0.65      0.21   2.14
## 121 MM010121       0.04      0.75  -9.13
## 122 MM010122       0.92     -0.48  10.89
## 123 MM010123       0.02      0.74 -13.49
## 124 MM010124       0.66      0.53  -7.27
## 125 MM010125       0.12      0.56  -7.22
## 126 MM010126       0.40      0.01   1.96
## 127 MM010127       0.66      0.11   2.95
## 128 MM010128       0.74     -0.07   0.36
## 129 MM010129       0.37      0.64  -6.66
## 130 MM010130       0.81     -0.32   5.24
## 131 MM010131       0.48     -0.27   5.23
## 132 MM010132       0.32      0.05  -0.84
## 133 MM010133       0.72     -0.20  -3.22
## 134 MM010134       0.77      0.39   3.48
## 135 MM010135       0.31      0.36  -3.58
## 136 MM010136       0.36      0.65  -9.60
## 137 MM010137       0.86     -0.57   1.51
## 138 MM010138       0.36      0.55  -4.04
## 139 MM010139       0.08      0.77  -7.09
## 140 MM010140       0.62      0.02  -0.69
## 141 MM010141       0.45      0.34  -2.73
## 142 MM010142       0.37      0.69  -4.22
## 143 MM010143       0.30      0.15  -2.50
## 144 MM010144       0.18      0.30  -6.16
## 145 MM010145       0.18      0.59  -2.03
## 146 MM010146       0.13      0.61  -6.65
## 147 MM010147       0.38      0.64  -9.01
## 148 MM010148       0.36      0.46  -2.83
## 149 MM010149       0.06      0.19   3.75
## 150 MM010150       0.89     -0.13   9.66
## 151 MM010151       0.01      0.54 -15.37
## 152 MM010152       0.68     -0.53   4.04
## 153 MM010153       0.91     -0.64  10.59
## 154 MM010154       0.93     -0.44   7.45
## 155 MM010155       0.66     -0.22   3.08
## 156 MM010156       0.13      0.63  -3.69
## 157 MM010157       0.13      0.77 -11.67
## 158 MM010158       0.17      0.49  -3.40
## 159 MM010159       0.23      0.60 -11.74
## 160 MM010160       0.42     -0.37  -0.47
## 161 MM010161       0.14      0.52  -5.78
## 162 MM010162       0.44      0.34   1.31
## 163 MM010163       0.70     -0.52   4.25
## 164 MM010164       0.81     -0.28   3.61
## 165 MM010165       0.37      0.21   2.50
## 166 MM010166       0.42      0.24   0.01
## 167 MM010167       0.24      0.01  -0.10
## 168 MM010168       0.10      0.80  -8.47
## 169 MM010169       0.94     -0.35   6.74
## 170 MM010170       0.46     -0.06  -7.29
## 171 MM010171       0.59      0.25  -2.91
## 172 MM010172       0.42      0.49  -1.68
## 173 MM010173       0.59     -0.32   6.27
## 174 MM010174       0.77     -0.25   0.92
## 175 MM010175       0.85     -0.57  10.53
## 176 MM010176       0.61     -0.24   6.21
## 177 MM010177       0.97     -0.35   4.36
## 178 MM010178       0.81     -0.60   5.80
## 179 MM010179       0.15      0.61  -1.18
## 180 MM010180       0.45      0.45  -2.99
## 181 MM010181       0.41      0.15  -0.85
## 182 MM010182       0.13      0.73  -8.67
## 183 MM010183       0.44      0.06   0.45
## 184 MM010184       0.04      0.75 -14.62
## 185 MM010185       0.79     -0.22  -0.23
## 186 MM010186       0.16      0.62  -8.93
## 187 MM010187       0.88     -0.45   7.62
## 188 MM010188       0.49     -0.34   8.53
## 189 MM010189       0.08      0.72  -6.34
## 190 MM010190       0.78     -0.41   3.47
## 191 MM010191       0.32      0.43  -1.98
## 192 MM010192       0.91     -0.53   8.78
## 193 MM010193       0.80     -0.09  -2.30
## 194 MM010194       0.06      0.61 -12.67
## 195 MM010195       0.85      0.17   6.81
## 196 MM010196       0.95     -0.25   3.19
## 197 MM010197       0.03      0.64  -8.55
## 198 MM010198       0.56     -0.34  -4.40
## 199 MM010199       0.77     -0.07   6.89
## 200 MM010200       0.04      0.64  -7.52
## 201 MM010201       0.52      0.47  -2.39
## 202 MM010202       0.04      0.75 -12.28
## 203 MM010203       0.13      0.09  -2.53
## 204 MM010204       0.20     -0.01   5.02
## 205 MM010205       0.04      0.55  -3.90
## 206 MM010206       0.17      0.08  -0.62
## 207 MM010207       0.83     -0.30   1.51
## 208 MM010208       0.62      0.09   1.86
## 209 MM010209       0.05      0.59 -12.12
## 210 MM010210       0.01      0.60  -4.20
## 211 MM010211       0.05      0.65 -10.14
## 212 MM010212       0.04      0.71  -9.49
## 213 MM010213       0.09      0.43 -13.31
## 214 MM010214       0.49     -0.29  -1.80
## 215 MM010215       0.44      0.27   2.17
## 216 MM010216       0.11      0.56  -3.50
## 217 MM010217       0.51      0.72  -3.92
## 218 MM010218       0.07      0.16  -3.79
## 219 MM010219       0.57     -0.02   1.45
## 220 MM010220       0.96     -0.23   1.63
## 221 MM010221       0.78     -0.19   8.57
## 222 MM010222       0.41     -0.10  -1.18
## 223 MM010223       0.44      0.11  -7.01
## 224 MM010224       0.24      0.52  -7.89
## 225 MM010225       0.79      0.14   4.85
## 226 MM010226       0.46      0.42   0.27
## 227 MM010227       0.06      0.31  -3.40
## 228 MM010228       0.80     -0.26   0.85
## 229 MM010229       0.24      0.18  -4.57
## 230 MM010230       0.71     -0.52   5.37
## 231 MM010231       0.54      0.15  -2.60
## 232 MM010232       0.26      0.10  -4.22
## 233 MM010233       0.26      0.24   2.60
## 234 MM010234       0.46      0.42  -4.63
## 235 MM010235       0.72      0.00   1.17
## 236 MM010236       0.15      0.73  -3.36
## 237 MM010237       0.34     -0.02   6.20
## 238 MM010238       0.36      0.64  -5.18
## 239 MM010239       0.50      0.36   1.82
## 240 MM010240       0.21     -0.15  -5.77
## 241 MM010241       0.33      0.65  -8.18
## 242 MM010242       0.76     -0.50   4.77
## 243 MM010243       0.76     -0.56   5.12
## 244 MM010244       0.39      0.63  -6.95
## 245 MM010245       0.12      0.61  -6.11
## 246 MM010246       0.03      0.42  -5.81
## 247 MM010247       0.06      0.56  -4.72
## 248 MM010248       0.39      0.18  -3.92
## 249 MM010249       0.63      0.10  -7.33
## 250 MM010250       0.57      0.22  -5.83
## 251 MM010251       0.12      0.69  -7.24
## 252 MM010252       0.15      0.61  -4.64
## 253 MM010253       0.69     -0.07   3.51
## 254 MM010254       0.29      0.04   3.16
## 255 MM010255       0.52      0.00   7.44
## 256 MM010256       0.06      0.40  -9.03
## 257 MM010257       0.94     -0.45   5.61
## 258 MM010258       0.92      0.03  -9.31
## 259 MM010259       0.33      0.57  -1.45
## 260 MM010260       0.38      0.38 -14.85
## 261 MM010261       0.26      0.02  -0.15
## 262 MM010262       0.78     -0.38  -1.00
## 263 MM010263       0.35      0.32  -4.48
## 264 MM010264       0.44     -0.24  -4.97
## 265 MM010265       0.27      0.58  -5.14
## 266 MM010266       0.31      0.38  -4.90
## 267 MM010267       0.41      0.58  -4.88
## 268 MM010268       0.70     -0.03  -2.09
## 269 MM010269       0.08      0.56  -5.12
## 270 MM010270       0.34     -0.17   4.53
## 271 MM010271       0.16      0.31  -6.83
## 272 MM010272       0.90     -0.18   3.35
## 273 MM010273       0.15      0.45  -5.01
## 274 MM010274       0.64     -0.17   0.80
## 275 MM010275       0.02      0.51 -10.18
## 276 MM010276       0.92     -0.30  -3.57
## 277 MM010277       0.38      0.27   4.38
## 278 MM010278       0.30      0.73  -5.36
## 279 MM010279       0.12      0.41 -10.13
## 280 MM010280       0.29      0.54 -10.65
## 281 MM010281       0.73     -0.41   7.33
## 282 MM010282       0.26      0.53  -0.06
## 283 MM010283       0.58     -0.10  -1.15
## 284 MM010284       0.27      0.66  -7.43
## 285 MM010285       0.96      0.04   5.65
## 286 MM010286       0.10      0.59  -7.99
## 287 MM010287       0.55     -0.08  -1.99
## 288 MM010288       0.03      0.59  -9.94
## 289 MM010289       0.78      0.17  -1.26
## 290 MM010290       0.47      0.31   0.42
## 291 MM010291       0.02      0.72 -10.54
## 292 MM010292       0.40      0.43  -0.71
## 293 MM010293       0.05      0.65  -6.37
## 294 MM010294       0.46     -0.22   1.68
## 295 MM010295       0.53     -0.17   5.95
## 296 MM010296       0.63      0.19  -3.37
## 297 MM010297       0.18      0.53  -3.53
## 298 MM010298       0.29      0.40  -7.67
## 299 MM010299       0.40      0.44   0.33
## 300 MM010300       0.72      0.01  -1.38
## 301 MM010301       0.19      0.77  -4.95
## 302 MM010302       0.88     -0.28  -0.14
## 303 MM010303       0.25      0.68  -6.87
## 304 MM010304       0.66      0.36  -4.25
## 305 MM010305       0.22      0.78  -3.33
## 306 MM010306       0.87     -0.44   8.37
## 307 MM010307       0.44      0.43  -2.88
## 308 MM010308       0.35      0.61  -2.98
## 309 MM010309       0.78     -0.42  -0.93
## 310 MM010310       0.85     -0.46  -2.29
## 311 MM010311       0.53      0.16   3.95
## 312 MM010312       0.11      0.54  -3.81
## 313 MM010313       0.46      0.32  -9.67
## 314 MM010314       0.37      0.62  -4.43
## 315 MM010315       0.06      0.81 -13.81
## 316 MM010316       0.59      0.46  -6.12
## 317 MM010317       0.40      0.47  -0.82
## 318 MM010318       0.78     -0.59   4.17
## 319 MM010319       0.47      0.51  -9.76
## 320 MM010320       0.23      0.33   2.32
## 321 MM010321       0.40      0.51  -2.71
## 322 MM010322       0.67      0.45  -0.39
## 323 MM010323       0.27      0.53  -5.62
## 324 MM010324       0.02      0.51  -6.03
## 325 MM010325       0.22      0.40  -5.12
## 326 MM010326       0.07      0.65  -6.45
## 327 MM010327       0.64      0.27  -2.79
## 328 MM010328       0.16      0.73  -4.66
## 329 MM010329       0.33     -0.12   0.60
## 330 MM010330       0.83     -0.35   4.54
## 331 MM010331       0.05      0.74 -10.97
## 332 MM010332       0.14      0.53  -6.99
## 333 MM010333       0.10      0.81  -6.50
## 334 MM010334       0.15      0.56  -8.23
## 335 MM010335       0.16      0.74  -7.74
## 336 MM010336       0.38      0.63  -1.68
## 337 MM010337       0.15      0.73  -2.02
## 338 MM010338       0.42      0.65 -11.72
## 339 MM010339       0.04      0.82 -10.69
## 340 MM010340       0.52      0.34  -0.51
## 341 MM010341       0.09      0.53  -7.64
## 342 MM010342       0.20      0.60  -8.08
## 343 MM010343       0.36      0.55  -9.80
## 344 MM010344       0.10      0.65  -8.68
## 345 MM010345       0.11      0.81 -10.84
## 346 MM010346       0.16      0.42  -1.72
## 347 MM010347       0.85     -0.43   5.67
## 348 MM010348       0.54      0.49  -4.13
## 349 MM010349       0.17      0.77  -8.54
## 350 MM010350       0.06      0.77 -13.86
## 351 MM010351       0.10      0.67  -9.47
## 352 MM010352       0.14      0.56  -4.53
## 353 MM010353       0.65     -0.42   2.25
## 354 MM010354       0.03      0.51  -9.57
## 355 MM010355       0.06      0.60  -3.87
## 356 MM010356       0.27      0.70  -9.41
## 357 MM010357       0.27      0.66  -6.36
## 358 MM010358       0.12      0.75 -10.81
## 359 MM010359       0.25      0.70  -6.94
## 360 MM010360       0.03      0.80 -10.51
## 361 MM010361       0.34      0.65  -4.06
## 362 MM010362       0.41      0.49  -0.85
## 363 MM010363       0.03      0.67 -12.51
## 364 MM010364       0.11      0.66 -12.85
## 365 MM010365       0.10      0.60 -12.18
## 366 MM010366       0.18      0.78  -2.94
## 367 MM010367       0.64     -0.17   6.94
## 368 MM010368       0.44      0.61  -4.62
## 369 MM010369       0.76     -0.25   3.67
## 370 MM010370       0.75      0.32  -7.00
## 371 MM010371       0.63     -0.36   3.05
## 372 MM010372       0.65      0.10   0.29
## 373 MM010373       0.37      0.18  -9.18
## 374 MM010374       0.64      0.57  -1.59
## 375 MM010375       0.19      0.67  -9.23
## 376 MM010376       0.80     -0.44   8.75
## 377 MM010377       0.46      0.45  -0.88
## 378 MM010378       0.51      0.00   1.89
## 379 MM010379       0.71     -0.65   3.96
## 380 MM010380       0.62      0.10   1.10
## 381 MM010381       0.26      0.59  -7.43
## 382 MM010382       0.44      0.57  -6.87
## 383 MM010383       0.35      0.66  -4.19
## 384 MM010384       0.42      0.61  -2.87
## 385 MM010385       0.25      0.31  -8.51
## 386 MM010386       0.29      0.47  -3.40
## 387 MM010387       0.21      0.26  -4.16
## 388 MM010388       0.06      0.51  -3.16
## 389 MM010389       0.23      0.77  -8.55
## 390 MM010390       0.45      0.58  -8.45
## 391 MM010391       0.41      0.00  -5.92
## 392 MM010392       0.11      0.38 -13.34
## 393 MM010393       0.03      0.36  -3.49
## 394 MM010394       0.51      0.14  -1.69
## 395 MM010395       0.20      0.63 -12.70
## 396 MM010396       0.21      0.76  -4.23
## 397 MM010397       0.40      0.68  -3.10
## 398 MM010398       0.23      0.59  -5.10
## 399 MM010399       0.66     -0.50   2.51
## 400 MM010400       0.56      0.15  -2.77
## 401 MM010401       0.64     -0.23   4.13
## 402 MM010402       0.35      0.33  -0.58
## 403 MM010403       0.89     -0.56   5.10
## 404 MM010404       0.45      0.68 -10.17
## 405 MM010405       0.94     -0.39   4.98
## 406 MM010406       0.69      0.43  -5.24
## 407 MM010407       0.81     -0.59   3.85
## 408 MM010408       0.65      0.53  -2.06
## 409 MM010409       0.62      0.32  -1.58
## 410 MM010410       0.59      0.30   0.49
## 411 MM010411       0.19      0.64  -4.20
## 412 MM010412       0.71     -0.32   2.37
## 413 MM010413       0.14      0.33  -8.96
## 414 MM010414       0.27      0.66  -4.82
## 415 MM010415       0.64     -0.10   1.50
## 416 MM010416       0.44      0.56  -6.02
## 417 MM010417       0.36      0.25  -0.37
## 418 MM010418       0.23      0.74  -4.73
## 419 MM010419       0.23      0.40  -7.31
## 420 MM010420       0.10      0.38  -6.02
## 421 MM010421       0.29      0.41  -3.03
## 422 MM010422       0.07      0.50  -3.86
## 423 MM010423       0.73      0.02  -3.02
## 424 MM010424       0.09      0.53  -5.15
## 425 MM010425       0.43      0.25  -0.91
## 426 MM010426       0.57      0.33  -3.04
## 427 MM010427       0.11      0.19  -2.67
## 428 MM010428       0.48     -0.10   2.98
## 429 MM010429       0.41     -0.05   2.05
## 430 MM010430       0.91     -0.15  11.09
## 431 MM010431       0.32      0.71  -5.68
## 432 MM010432       0.40      0.03   3.67
## 433 MM010433       0.08      0.40  -2.89
## 434 MM010434       0.38      0.11   1.93
## 435 MM010435       0.27      0.27  -3.55
## 436 MM010436       0.76      0.52  -4.28
## 437 MM010437       0.52      0.33  -4.81
## 438 MM010438       0.50      0.46   2.06
## 439 MM010439       0.50      0.57  -4.85
## 440 MM010440       0.81      0.02  -1.31
## 441 MM010441       0.75     -0.01   2.55
## 442 MM010442       0.63      0.50  -1.02
## 443 MM010443       0.24      0.64  -8.98
## 444 MM010444       0.46      0.08  -5.09
## 445 MM010445       0.89      0.03  -1.55
## 446 MM010446       0.57      0.09   1.21
## 447 MM010447       0.40      0.37  -0.99
## 448 MM010448       0.14      0.67  -6.31
## 449 MM010449       0.60     -0.25   1.80
## 450 MM010450       0.50     -0.15   0.81
## 451 MM010451       0.65     -0.05   0.61
## 452 MM010452       0.27      0.11   4.03
## 453 MM010453       0.58     -0.01  -1.19
## 454 MM010454       0.39      0.29  -1.19
## 455 MM010455       0.53      0.28  -5.54
## 456 MM010456       0.16      0.37  -8.32
## 457 MM010457       0.10      0.22  -9.82
## 458 MM010458       0.42      0.22  -3.70
## 459 MM010459       0.17      0.56  -5.99
## 460 MM010460       0.80     -0.29   4.29
## 461 MM010461       0.40      0.18  -4.89
## 462 MM010462       0.89     -0.36   3.25
## 463 MM010463       0.42     -0.07   1.02
## 464 MM010464       0.82     -0.34   7.21
## 465 MM010465       0.60      0.47  -4.34
## 466 MM010466       0.71     -0.22  -0.39
## 467 MM010467       0.23      0.36  -3.36
## 468 MM010468       0.44      0.59  -4.07
## 469 MM010469       0.21      0.55 -10.08
## 470 MM010470       0.03      0.36 -13.86
## 471 MM010471       0.18      0.43 -10.86
## 472 MM010472       0.11      0.35   3.95
## 473 MM010473       0.41      0.47  -4.35
## 474 MM010474       0.75     -0.08  -1.05
## 475 MM010475       0.48      0.36   0.13
## 476 MM010476       0.09      0.28  -8.25
## 477 MM010477       0.49      0.11   1.31
## 478 MM010478       0.70     -0.33   6.82
## 479 MM010479       0.83     -0.47   2.27
## 480 MM010480       0.07      0.46  -6.02
## 481 MM010481       0.61      0.30  -1.15
## 482 MM010482       0.53     -0.08  -3.32
## 483 MM010483       0.77      0.00  -3.24
## 484 MM010484       0.33      0.54  -5.38
## 485 MM010485       0.41      0.44  -5.65
## 486 MM010486       0.91     -0.24   2.25
## 487 MM010487       0.19      0.72  -9.29
## 488 MM010488       0.36      0.04  -2.27
## 489 MM010489       0.51      0.15  -4.79
## 490 MM010490       0.13     -0.04  -1.39
## 491 MM010491       0.27      0.25   1.09
## 492 MM010492       0.45      0.27 -10.39
## 493 MM010493       0.59     -0.10   7.82
## 494 MM010494       0.12      0.51  -5.35
## 495 MM010495       0.81     -0.01   0.41
## 496 MM010496       0.83     -0.38   7.46
## 497 MM010497       0.96     -0.26  10.50
## 498 MM010498       0.65      0.13  -8.96
## 499 MM010499       0.59      0.56  -5.44
## 500 MM010500       0.42      0.18  -6.77
## 501 MM010501       0.73      0.04   2.35
## 502 MM010502       0.79     -0.01  -2.80
## 503 MM010503       0.55      0.07  -2.04
## 504 MM010504       0.40      0.12  -8.70
## 505 MM010505       0.17      0.48  -8.22
## 506 MM010506       0.30      0.45  -6.01
## 507 MM010507       0.49      0.56  -8.51
## 508 MM010508       0.91     -0.24  -1.02
## 509 MM010509       0.32      0.51  -2.29
## 510 MM010510       0.08      0.47 -14.34
## 511 MM010511       0.18      0.62  -7.70
## 512 MM010512       0.06      0.18   1.79
## 513 MM010513       0.44      0.10  -1.27
## 514 MM010514       0.09      0.29  -9.51
## 515 MM010515       0.91     -0.40   8.86
## 516 MM010516       0.65      0.39  -4.91
## 517 MM010517       0.03      0.62 -10.67
## 518 MM010518       0.22      0.65  -9.70
## 519 MM010519       0.04      0.55  -6.00
## 520 MM010520       0.70      0.04  -0.14
## 521 MM010521       0.66     -0.33   4.78
## 522 MM010522       0.62     -0.20   0.88
## 523 MM010523       0.46     -0.21   3.00
## 524 MM010524       0.81     -0.29   9.60
## 525 MM010525       0.47      0.30  -3.14
## 526 MM010526       0.06      0.76  -9.88
## 527 MM010527       0.82     -0.43   0.56
## 528 MM010528       0.80     -0.27   2.77
## 529 MM010529       0.54      0.14   0.04
## 530 MM010530       0.15      0.56  -7.38
## 531 MM010531       0.21      0.47  -6.96
## 532 MM010532       0.87     -0.24   7.75
## 533 MM010533       0.77     -0.37   4.79
## 534 MM010534       0.64      0.10   0.12
## 535 MM010535       0.09      0.59  -8.83
## 536 MM010536       0.60      0.54  -5.59
## 537 MM010537       0.25      0.12  -0.44
## 538 MM010538       0.03      0.31  -7.71
## 539 MM010539       0.89     -0.24   5.23
## 540 MM010540       0.96     -0.24   9.19
## 541 MM010541       0.17      0.40  -8.43
## 542 MM010542       0.80     -0.33   3.14
## 543 MM010543       0.08      0.83 -10.87
## 544 MM010544       0.24      0.66  -3.58
## 545 MM010545       0.26      0.47  -3.42
## 546 MM010546       0.70     -0.12   4.82
## 547 MM010547       0.62     -0.25   1.31
## 548 MM010548       0.21      0.08  -6.48
## 549 MM010549       0.16      0.59  -4.49
## 550 MM010550       0.59     -0.07   3.29
## 551 MM010551       0.30      0.42  -4.02
## 552 MM010552       0.70     -0.19   8.63
## 553 MM010553       0.04      0.63 -11.54
## 554 MM010554       0.49     -0.02  -0.65
## 555 MM010555       0.24      0.79  -6.18
## 556 MM010556       0.59      0.04  -5.05
## 557 MM010557       0.03      0.32  -3.79
## 558 MM010558       0.38      0.41  -9.56
## 559 MM010559       0.12      0.73 -12.27
## 560 MM010560       0.34      0.64  -6.26
## 561 MM010561       0.52      0.02  -4.17
## 562 MM010562       0.50      0.19  -5.92
## 563 MM010563       0.91     -0.14  11.06
## 564 MM010564       0.33      0.41  -4.80
## 565 MM010565       0.06      0.50  -0.87
## 566 MM010566       0.64      0.01  -2.16

ML

Elastic Net

#data subset
MMPI_subset = cbind(
  g = d$g,
  MMPI_item_data
)

#which rows are we keeping
MMPI_subset_kept = miss_by_case(MMPI_subset) == 0
MMPI_subset %<>% miss_filter()

#make a recipe
ves_recipe <- 
  recipe(g ~ ., data = MMPI_subset)

#make a model
#use glmnet
ves_model <- 
  linear_reg( #tune both, enet
    penalty = tune(),
    mixture = tune() 
  ) %>% 
  set_engine("glmnet")

#resampling method
set.seed(1)
ves_folds <- vfold_cv(MMPI_subset, v = 10)

#make workflow
ves_wf <- 
  workflow() %>% 
  add_model(ves_model) %>% 
  add_recipe(ves_recipe)

#fit
ves_fit_enet <- cache_object({
  ves_wf %>% 
  tune_grid(
    resamples = ves_folds,
    grid = 100,
    control = control_grid(
      save_pred = TRUE
    )
  )
}, filename = "cache/ves_fit_enet.rds", renew = F)
## Cache found, reading object from disk
#metrics
collect_metrics(ves_fit_enet) %>% 
  filter(.metric == "rsq") %>% 
  arrange(.metric)
collect_metrics(ves_fit_enet) %>% 
  ggplot(aes(penalty, mean)) +
  geom_line() +
  facet_wrap(".metric")

#plot data as it is
collect_metrics(ves_fit_enet) %>% filter(.metric == "rsq") %>% 
  ggplot(aes(penalty, mixture)) +
  geom_point(aes(color = mean)) +
  scale_x_log10()

#table with data
collect_metrics(ves_fit_enet) %>% filter(.metric == "rsq") %>% 
  mutate(
    log10_penality = log10(penalty)
  ) %>% 
  arrange(mean)
#smoothing plot with leoss
enet_par_model = loess(mean ~ penalty + mixture, data = collect_metrics(ves_fit_enet) %>% filter(.metric == "rsq"))

#plot it raster style
loess_data = expand_grid(
  penalty = 10^-(seq(1, 7, length.out = 10)),
  mixture = seq(0, 1, length.out = 10)
  )
loess_data$r2 = predict(enet_par_model,
        newdata = loess_data)

loess_data %>% 
  ggplot(aes(log10(penalty), mixture, fill = r2)) +
  geom_raster(interpolate = T) +
  scale_fill_gradient(high = "green", low = "red") +
  coord_cartesian(expand = F)

GG_save("figs/enet_hyperparameters_r2.png")
  
#plot out of sample predictions
ves_fit_enet %>% 
  collect_predictions(parameters = select_best(ves_fit_enet, metric = "rsq")) %>% 
  ggplot(aes(.pred, g)) +
  geom_point() +
  geom_smooth() +
  xlab("Prediction (out of sample)") +
  ylab("g")
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

ggsave("figs/ves_scatter_net.png")
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
#numerical
ves_fit_enet %>% 
  collect_predictions(parameters = select_best(ves_fit_enet, metric = "rsq")) %$% 
  cor.test(.pred, g)
## 
##  Pearson's product-moment correlation
## 
## data:  .pred and g
## t = 100, df = 4318, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.825 0.843
## sample estimates:
##   cor 
## 0.835
#final model fit
ves_fit_enet_final = ves_wf %>% 
  finalize_workflow(ves_fit_enet %>% select_best(metric = "rsq")) %>% 
  fit(data = MMPI_subset)

#predict in full data
d$predict_enet_final = predict(ves_fit_enet_final, new_data = MMPI_item_data) %>% 
  unlist()

#how do they relate to outcomes?
d %>% 
  select(g, predict_enet_final, education, income, unemployment_3yrs, height, BMI, age) %>% 
  wtd.cors()
##                          g predict_enet_final education  income
## g                   1.0000             0.8653    0.5517  0.3965
## predict_enet_final  0.8653             1.0000    0.5282  0.4002
## education           0.5517             0.5282    1.0000  0.3486
## income              0.3965             0.4002    0.3486  1.0000
## unemployment_3yrs  -0.2175            -0.2286   -0.1521 -0.4842
## height              0.1311             0.1349    0.0908  0.0917
## BMI                -0.0543            -0.0516   -0.0205  0.0197
## age                 0.0816             0.0858    0.1633  0.1790
##                    unemployment_3yrs   height      BMI     age
## g                            -0.2175  0.13112 -0.05427  0.0816
## predict_enet_final           -0.2286  0.13493 -0.05158  0.0858
## education                    -0.1521  0.09083 -0.02050  0.1633
## income                       -0.4842  0.09170  0.01973  0.1790
## unemployment_3yrs             1.0000 -0.02779 -0.02026 -0.1070
## height                       -0.0278  1.00000 -0.00544  0.0140
## BMI                          -0.0203 -0.00544  1.00000  0.0582
## age                          -0.1070  0.01403  0.05815  1.0000
d %>% 
  select(g, predict_enet_final, education, income, unemployment_3yrs, height, BMI, age) %>% 
  wtd.cors() %>% 
  .[-c(1:2), 1:2] %>% 
  {
    cor.test(.[,1], .[, 2])
  }
## 
##  Pearson's product-moment correlation
## 
## data:  .[, 1] and .[, 2]
## t = 52, df = 4, p-value = 8e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.993 1.000
## sample estimates:
##   cor 
## 0.999
#residual g not predicted
d$g_resid = ols(g ~ predict_enet_final, data = d) %>% resid()

#what does residual correlate with
d %>% select(
  g_resid, education, income, unemployment_3yrs, height, BMI, age
) %>% wtd.cors()
##                   g_resid education  income unemployment_3yrs   height      BMI
## g_resid            1.0000    0.1802  0.0982           -0.0437  0.03640 -0.01857
## education          0.1802    1.0000  0.3486           -0.1521  0.09083 -0.02050
## income             0.0982    0.3486  1.0000           -0.4842  0.09170  0.01973
## unemployment_3yrs -0.0437   -0.1521 -0.4842            1.0000 -0.02779 -0.02026
## height             0.0364    0.0908  0.0917           -0.0278  1.00000 -0.00544
## BMI               -0.0186   -0.0205  0.0197           -0.0203 -0.00544  1.00000
## age                0.0116    0.1633  0.1790           -0.1070  0.01403  0.05815
##                       age
## g_resid            0.0116
## education          0.1633
## income             0.1790
## unemployment_3yrs -0.1070
## height             0.0140
## BMI                0.0582
## age                1.0000
#correlations to g tests
tibble(
  test = fa_g$loadings[, 1] %>% names(),
  g_loading = fa_g$loadings[, 1],
  r_predicted_g = d %>% 
  select(g_tests, predict_enet_final) %>% 
  wtd.cors() %>% 
  .[g_tests, 20]
) %>% 
  GG_scatter("g_loading", "r_predicted_g", case_names = "test", repel_names = T)
## Note: Using an external vector in selections is ambiguous.
## ℹ Use `all_of(g_tests)` instead of `g_tests` to silence this message.
## ℹ See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This message is displayed once per session.
## `geom_smooth()` using formula 'y ~ x'

GG_save("figs/Jensen_predicted_g.png")
## `geom_smooth()` using formula 'y ~ x'
#race gaps
d %>% 
  select(g, predict_enet_final, P_IRT) %>% 
  map_df(~standardize(., focal_group = d$race == "White")) %>% 
  describeBy(group = d$race, mat = T) %>% 
  select(-item, -vars, -min, -max, -range, -se, -trimmed)
#accuracy by group
list(
  ols(g ~ predict_enet_final, data = d %>% filter(race %in% c("White", "Black", "Hispanic"))),
  ols(g ~ predict_enet_final + race, data = d %>% filter(race %in% c("White", "Black", "Hispanic"))),
  ols(g ~ predict_enet_final * race, data = d %>% filter(race %in% c("White", "Black", "Hispanic")))
) %>% 
  summarize_models()
#correlations by group
d %>% plyr::ddply("race", function(x) {
  tibble(
    r = wtd.cors(x$g, x$predict_enet_final)
  )
})
#visual
ols(g ~ predict_enet_final * race, data = d %>% filter(race %in% c("White", "Black", "Hispanic"))) %>%
  ggpredict(terms = c("predict_enet_final", "race")) %>% 
  plot() +
  ggtitle(NULL) +
  xlab("Predicted value of g")

GG_save("figs/predictive_bias.png")

#plot by group
d %>% 
  filter(race %in% c("White", "Black", "Hispanic")) %>% 
  ggplot(aes(predict_enet_final, g, color = race)) +
  geom_point(alpha = .2) +
  geom_smooth() +
  xlab("Predicted value of g")
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## Warning: Removed 141 rows containing non-finite values (stat_smooth).
## Warning: Removed 141 rows containing missing values (geom_point).

GG_save("figs/predictive_bias2.png")
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## Warning: Removed 141 rows containing non-finite values (stat_smooth).

## Warning: Removed 141 rows containing missing values (geom_point).

Lasso

Can we make it sparser?

#make a model
#use glmnet
ves_model <- 
  linear_reg(
    penalty = tune(),
    mixture = 1  # lasso
  ) %>% 
  set_engine("glmnet")

#make workflow
ves_wf <- 
  workflow() %>% 
  add_model(ves_model) %>% 
  add_recipe(ves_recipe)

#fit
set.seed(1)
ves_fit_lasso <- cache_object({
  ves_wf %>% 
  tune_grid(
    resamples = ves_folds,
    grid = 100,
    control = control_grid(
      save_pred = TRUE
    )
  )
}, "cache/ves_fit_lasso.rds", renew = F)
## Cache found, reading object from disk
#metrics
collect_metrics(ves_fit_lasso) %>% 
  filter(.metric == "rsq") %>% 
  arrange(.metric)
collect_metrics(ves_fit_lasso) %>% 
  ggplot(aes(penalty, mean)) +
  geom_line() +
  facet_wrap(".metric")
## Warning: Removed 3 row(s) containing missing values (geom_path).

#plot out of sample predictions
ves_fit_lasso %>% 
  collect_predictions(parameters = select_best(ves_fit_lasso, metric = "rsq")) %>% 
  ggplot(aes(.pred, g)) +
  geom_point() +
  geom_smooth() +
  xlab("Prediction (out of sample)") +
  ylab("g")
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

ggsave("figs/ves_scatter_lasso.png")
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
#numerical
ves_fit_lasso %>% 
  collect_predictions(parameters = select_best(ves_fit_lasso, metric = "rsq")) %$% 
  cor.test(.pred, g)
## 
##  Pearson's product-moment correlation
## 
## data:  .pred and g
## t = 99, df = 4318, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.825 0.843
## sample estimates:
##   cor 
## 0.834
#final model fit
ves_fit_lasso_final = ves_wf %>% 
  finalize_workflow(parameters = ves_fit_lasso %>% select_best(metric = "rsq")) %>% 
  fit(data = MMPI_subset)

#get coefs at the right penalty
ves_fit_lasso_final %>% 
  extract_model() %>% 
  tidy() %>% 
  filter(lambda == unlist(select_best(ves_fit_lasso, metric = "rsq")))
#except it isn't there, so we use the closest one?
ves_fit_lasso_final %>% 
  extract_model() %>% 
  tidy() %>% 
  pull(lambda) %>% 
  unique() %>% {
    #which value is closest?
    best = .[which.min(abs(. - unlist(select_best(ves_fit_lasso, metric = "rsq"))))]
    
    #get results for that one
    ves_fit_lasso_final$fit$fit$fit %>% 
      tidy() %>% 
      filter(lambda == best)
  }

50 random items

What’s the best 50 items to use?

#data subset, 50 first items
set.seed(1)
MMPI_subset_50 = cbind(
  g = d$g,
  MMPI_item_data
)[c(1, sample(2:ncol(MMPI_item_data), size = 50))]

#which rows are we keeping
MMPI_subset_50_kept = miss_by_case(MMPI_subset_50) == 0
MMPI_subset_50 %<>% miss_filter()

#make a recipe
ves_recipe <- 
  recipe(g ~ ., data = MMPI_subset_50)

#make a model
#use glmnet
ves_model <- 
  linear_reg( #tune penalty only
    penalty = tune(),
    mixture = 0
  ) %>% 
  set_engine("glmnet")

#resampling method
set.seed(1)
ves_folds <- vfold_cv(MMPI_subset_50, v = 10)

#make workflow
ves_wf <- 
  workflow() %>% 
  add_model(ves_model) %>% 
  add_recipe(ves_recipe)

#fit
ves_fit_enet_50 <- cache_object({
  ves_wf %>% 
  tune_grid(
    resamples = ves_folds,
    grid = 100,
    control = control_grid(
      save_pred = TRUE
    )
  )
}, filename = "cache/ves_fit_enet_50.rds", renew = F)
## Cache found, reading object from disk
#metrics
collect_metrics(ves_fit_enet_50) %>% 
  filter(.metric == "rsq") %>% 
  arrange(-mean)
collect_metrics(ves_fit_enet_50) %>% 
  ggplot(aes(penalty, mean)) +
  geom_line() +
  facet_wrap(".metric", scales = "free_y")

GG_save("figs/enet_hyperparameters_r2_50.png")

glmnet directly

These are based on the deviance metric, but that’s different from what tidymodels does.

set.seed(1)
glmnet_fit = cv.glmnet(
  x = MMPI_subset[-1] %>% as.matrix(),
  y = MMPI_subset$g,
  nfolds = 10
)

#results
glmnet_fit
## 
## Call:  cv.glmnet(x = MMPI_subset[-1] %>% as.matrix(), y = MMPI_subset$g,      nfolds = 10) 
## 
## Measure: Mean-Squared Error 
## 
##      Lambda Measure      SE Nonzero
## min 0.00666   0.348 0.00618     363
## 1se 0.01277   0.353 0.00602     258
glmnet_fit %>% plot()

#validation results data frame
glmnet_fit_df = tibble(
  r2 = (1 - glmnet_fit$cvm) / var(MMPI_subset$g),
  r = r2 %>% sqrt(),
  nonzero = glmnet_fit$nzero
)
## Warning in sqrt(.): NaNs produced
#r2 plot
glmnet_fit_df%>% 
  ggplot(aes(nonzero, r2)) + 
  geom_line() +
  scale_x_continuous(breaks = seq(0, 600, by = 25)) +
  scale_y_continuous(breaks = seq(-1, 1, by = .05))

#r
glmnet_fit_df%>% 
  ggplot(aes(nonzero, r)) + 
  geom_line() +
  scale_x_continuous(breaks = seq(0, 600, by = 25)) +
  scale_y_continuous(breaks = seq(0, 1, by = .05))
## Warning: Removed 5 row(s) containing missing values (geom_path).

glmnet manual CV

We do it manually to get the same metric and with proper CV.

#we train on the folds we made above, and predict out of sample to evaluate
#premake penalities
glmnet_lambdas = 10^(seq(-.5, -4, length.out = 100))

#fit
glmnet_preds = cache_object({
  set.seed(1)
  glmnet_preds = tibble()
  for (i_fold in seq_along_rows(ves_folds)) {
    message(str_glue("{i_fold} of {nrow(ves_folds)}"))
    
    #get the train and test
    i_train = MMPI_subset[ves_folds$splits[[i_fold]]$in_id, ]
    i_test = MMPI_subset[setdiff(1:nrow(MMPI_subset), ves_folds$splits[[i_fold]]$in_id), ]
    
    #fit
    i_fit = cv.glmnet(
      x = i_train[-1] %>% as.matrix(),
      y = i_train$g,
      nfolds = 10,
      lambda = glmnet_lambdas
    )
    
    
    #predict into test
    i_predict = tibble(
        g = i_test$g
      ) %>% 
      bind_cols(
        predict(i_fit, s = glmnet_lambdas, newx = i_test[, -1] %>% as.matrix()) %>% as.data.frame() %>% set_colnames("predict"+(seq_along(glmnet_lambdas)))
      )
    
    #save
    glmnet_preds = bind_rows(
      glmnet_preds,
      i_predict
    )
  }
  
  glmnet_preds
}, filename = "cache/glmnet_manual_cv.rds", compress = "xz", renew = F)
## Cache found, reading object from disk
#numerical
glmnet_preds %>% wtd.cors()
##                g predict1 predict2 predict3 predict4 predict5 predict6 predict7
## g          1.000    0.496    0.532    0.556    0.577    0.603    0.627    0.648
## predict1   0.496    1.000    0.992    0.976    0.957    0.937    0.914    0.892
## predict2   0.532    0.992    1.000    0.995    0.985    0.970    0.951    0.932
## predict3   0.556    0.976    0.995    1.000    0.996    0.986    0.971    0.955
## predict4   0.577    0.957    0.985    0.996    1.000    0.996    0.986    0.972
## predict5   0.603    0.937    0.970    0.986    0.996    1.000    0.997    0.988
## predict6   0.627    0.914    0.951    0.971    0.986    0.997    1.000    0.997
## predict7   0.648    0.892    0.932    0.955    0.972    0.988    0.997    1.000
## predict8   0.667    0.871    0.913    0.938    0.958    0.978    0.991    0.998
## predict9   0.685    0.851    0.894    0.920    0.942    0.965    0.982    0.992
## predict10  0.700    0.832    0.876    0.904    0.927    0.952    0.971    0.984
## predict11  0.712    0.815    0.860    0.888    0.912    0.939    0.960    0.976
## predict12  0.724    0.798    0.844    0.873    0.898    0.926    0.949    0.966
## predict13  0.735    0.784    0.829    0.859    0.884    0.914    0.938    0.957
## predict14  0.744    0.770    0.816    0.845    0.871    0.902    0.927    0.947
## predict15  0.752    0.757    0.803    0.833    0.860    0.891    0.917    0.938
## predict16  0.760    0.745    0.792    0.822    0.848    0.880    0.907    0.929
## predict17  0.766    0.735    0.781    0.811    0.838    0.870    0.898    0.920
## predict18  0.773    0.725    0.770    0.801    0.828    0.861    0.888    0.911
## predict19  0.779    0.715    0.761    0.791    0.818    0.852    0.880    0.903
## predict20  0.784    0.706    0.752    0.782    0.810    0.843    0.871    0.895
## predict21  0.789    0.698    0.744    0.774    0.801    0.835    0.864    0.887
## predict22  0.794    0.691    0.736    0.766    0.794    0.827    0.856    0.880
## predict23  0.798    0.683    0.729    0.759    0.786    0.820    0.849    0.873
## predict24  0.801    0.677    0.722    0.752    0.779    0.813    0.842    0.867
## predict25  0.805    0.670    0.715    0.745    0.773    0.807    0.836    0.861
## predict26  0.808    0.665    0.709    0.739    0.767    0.801    0.830    0.855
## predict27  0.810    0.659    0.704    0.734    0.761    0.795    0.825    0.850
## predict28  0.813    0.654    0.699    0.729    0.756    0.790    0.819    0.844
## predict29  0.815    0.649    0.693    0.723    0.751    0.785    0.814    0.839
## predict30  0.818    0.644    0.689    0.719    0.746    0.780    0.809    0.834
## predict31  0.820    0.640    0.684    0.714    0.741    0.775    0.805    0.830
## predict32  0.822    0.636    0.680    0.710    0.737    0.771    0.800    0.825
## predict33  0.824    0.632    0.676    0.706    0.733    0.767    0.796    0.821
## predict34  0.825    0.629    0.672    0.702    0.729    0.763    0.792    0.817
## predict35  0.827    0.625    0.669    0.698    0.725    0.759    0.788    0.814
## predict36  0.828    0.622    0.665    0.695    0.722    0.755    0.785    0.810
## predict37  0.829    0.619    0.662    0.692    0.719    0.752    0.781    0.807
## predict38  0.830    0.616    0.659    0.689    0.715    0.749    0.778    0.803
## predict39  0.831    0.613    0.656    0.686    0.712    0.746    0.775    0.800
## predict40  0.832    0.611    0.654    0.683    0.709    0.743    0.772    0.797
## predict41  0.833    0.608    0.651    0.680    0.707    0.740    0.769    0.794
## predict42  0.833    0.606    0.648    0.678    0.704    0.737    0.766    0.791
## predict43  0.834    0.603    0.646    0.675    0.702    0.734    0.764    0.789
## predict44  0.834    0.601    0.644    0.673    0.699    0.732    0.761    0.786
## predict45  0.834    0.599    0.642    0.671    0.697    0.730    0.759    0.784
## predict46  0.834    0.598    0.640    0.669    0.695    0.728    0.757    0.782
## predict47  0.834    0.596    0.638    0.667    0.693    0.726    0.755    0.779
## predict48  0.834    0.594    0.636    0.665    0.691    0.724    0.752    0.777
## predict49  0.834    0.592    0.635    0.663    0.689    0.722    0.750    0.775
## predict50  0.834    0.591    0.633    0.662    0.687    0.720    0.749    0.773
## predict51  0.834    0.589    0.631    0.660    0.686    0.718    0.747    0.771
## predict52  0.834    0.588    0.630    0.658    0.684    0.716    0.745    0.770
## predict53  0.834    0.587    0.628    0.657    0.683    0.715    0.743    0.768
## predict54  0.833    0.585    0.627    0.656    0.681    0.713    0.742    0.766
## predict55  0.833    0.584    0.626    0.654    0.680    0.712    0.740    0.765
## predict56  0.833    0.583    0.625    0.653    0.679    0.711    0.739    0.763
## predict57  0.833    0.582    0.623    0.652    0.677    0.709    0.738    0.762
## predict58  0.832    0.581    0.622    0.651    0.676    0.708    0.736    0.761
## predict59  0.832    0.580    0.621    0.650    0.675    0.707    0.735    0.760
## predict60  0.832    0.579    0.620    0.649    0.674    0.706    0.734    0.759
## predict61  0.831    0.578    0.620    0.648    0.673    0.705    0.733    0.757
## predict62  0.831    0.577    0.619    0.647    0.672    0.704    0.732    0.756
## predict63  0.831    0.577    0.618    0.646    0.671    0.703    0.731    0.755
## predict64  0.830    0.576    0.617    0.645    0.671    0.702    0.730    0.755
## predict65  0.830    0.575    0.616    0.645    0.670    0.701    0.730    0.754
## predict66  0.830    0.575    0.616    0.644    0.669    0.701    0.729    0.753
## predict67  0.829    0.574    0.615    0.643    0.668    0.700    0.728    0.752
## predict68  0.829    0.574    0.615    0.643    0.668    0.699    0.727    0.751
## predict69  0.829    0.573    0.614    0.642    0.667    0.699    0.727    0.751
## predict70  0.828    0.573    0.614    0.642    0.667    0.698    0.726    0.750
## predict71  0.828    0.572    0.613    0.641    0.666    0.698    0.726    0.750
## predict72  0.828    0.572    0.613    0.641    0.666    0.697    0.725    0.749
## predict73  0.828    0.571    0.612    0.640    0.665    0.697    0.725    0.749
## predict74  0.827    0.571    0.612    0.640    0.665    0.696    0.724    0.748
## predict75  0.827    0.571    0.612    0.639    0.664    0.696    0.724    0.748
## predict76  0.827    0.570    0.611    0.639    0.664    0.695    0.723    0.747
## predict77  0.827    0.570    0.611    0.639    0.664    0.695    0.723    0.747
## predict78  0.826    0.570    0.611    0.638    0.663    0.695    0.723    0.747
## predict79  0.826    0.570    0.610    0.638    0.663    0.694    0.722    0.746
## predict80  0.826    0.569    0.610    0.638    0.663    0.694    0.722    0.746
## predict81  0.826    0.569    0.610    0.638    0.663    0.694    0.722    0.746
## predict82  0.826    0.569    0.610    0.637    0.662    0.694    0.722    0.746
## predict83  0.826    0.569    0.609    0.637    0.662    0.693    0.721    0.745
## predict84  0.826    0.569    0.609    0.637    0.662    0.693    0.721    0.745
## predict85  0.825    0.568    0.609    0.637    0.662    0.693    0.721    0.745
## predict86  0.825    0.568    0.609    0.637    0.662    0.693    0.721    0.745
## predict87  0.825    0.568    0.609    0.637    0.661    0.693    0.721    0.745
## predict88  0.825    0.568    0.609    0.636    0.661    0.693    0.720    0.744
## predict89  0.825    0.568    0.609    0.636    0.661    0.692    0.720    0.744
## predict90  0.825    0.568    0.608    0.636    0.661    0.692    0.720    0.744
## predict91  0.825    0.568    0.608    0.636    0.661    0.692    0.720    0.744
## predict92  0.825    0.568    0.608    0.636    0.661    0.692    0.720    0.744
## predict93  0.825    0.567    0.608    0.636    0.661    0.692    0.720    0.744
## predict94  0.825    0.567    0.608    0.636    0.661    0.692    0.720    0.744
## predict95  0.825    0.567    0.608    0.636    0.661    0.692    0.720    0.744
## predict96  0.825    0.567    0.608    0.636    0.661    0.692    0.720    0.743
## predict97  0.825    0.567    0.608    0.636    0.660    0.692    0.719    0.743
## predict98  0.825    0.567    0.608    0.635    0.660    0.692    0.719    0.743
## predict99  0.824    0.567    0.608    0.635    0.660    0.691    0.719    0.743
## predict100 0.824    0.567    0.608    0.635    0.660    0.691    0.719    0.743
##            predict8 predict9 predict10 predict11 predict12 predict13 predict14
## g             0.667    0.685     0.700     0.712     0.724     0.735     0.744
## predict1      0.871    0.851     0.832     0.815     0.798     0.784     0.770
## predict2      0.913    0.894     0.876     0.860     0.844     0.829     0.816
## predict3      0.938    0.920     0.904     0.888     0.873     0.859     0.845
## predict4      0.958    0.942     0.927     0.912     0.898     0.884     0.871
## predict5      0.978    0.965     0.952     0.939     0.926     0.914     0.902
## predict6      0.991    0.982     0.971     0.960     0.949     0.938     0.927
## predict7      0.998    0.992     0.984     0.976     0.966     0.957     0.947
## predict8      1.000    0.998     0.993     0.987     0.980     0.972     0.963
## predict9      0.998    1.000     0.998     0.995     0.990     0.983     0.976
## predict10     0.993    0.998     1.000     0.999     0.996     0.991     0.986
## predict11     0.987    0.995     0.999     1.000     0.999     0.996     0.992
## predict12     0.980    0.990     0.996     0.999     1.000     0.999     0.997
## predict13     0.972    0.983     0.991     0.996     0.999     1.000     0.999
## predict14     0.963    0.976     0.986     0.992     0.997     0.999     1.000
## predict15     0.955    0.969     0.980     0.987     0.993     0.997     0.999
## predict16     0.947    0.962     0.974     0.982     0.989     0.994     0.998
## predict17     0.939    0.955     0.967     0.977     0.985     0.991     0.995
## predict18     0.931    0.948     0.961     0.971     0.980     0.987     0.992
## predict19     0.923    0.941     0.954     0.965     0.975     0.982     0.988
## predict20     0.916    0.934     0.948     0.959     0.969     0.978     0.984
## predict21     0.909    0.927     0.942     0.954     0.964     0.973     0.980
## predict22     0.902    0.921     0.936     0.948     0.959     0.968     0.976
## predict23     0.895    0.915     0.930     0.943     0.954     0.964     0.972
## predict24     0.889    0.909     0.924     0.937     0.949     0.959     0.967
## predict25     0.883    0.903     0.919     0.932     0.944     0.954     0.963
## predict26     0.878    0.897     0.913     0.927     0.939     0.950     0.959
## predict27     0.872    0.892     0.909     0.922     0.934     0.946     0.955
## predict28     0.867    0.887     0.904     0.918     0.930     0.941     0.951
## predict29     0.862    0.883     0.899     0.913     0.926     0.937     0.947
## predict30     0.857    0.878     0.895     0.909     0.921     0.933     0.943
## predict31     0.853    0.873     0.890     0.904     0.917     0.929     0.939
## predict32     0.849    0.869     0.886     0.900     0.913     0.926     0.936
## predict33     0.845    0.865     0.882     0.896     0.910     0.922     0.932
## predict34     0.841    0.861     0.878     0.893     0.906     0.918     0.929
## predict35     0.837    0.858     0.875     0.889     0.902     0.915     0.925
## predict36     0.833    0.854     0.871     0.886     0.899     0.912     0.922
## predict37     0.830    0.851     0.868     0.882     0.896     0.908     0.919
## predict38     0.827    0.848     0.865     0.879     0.893     0.905     0.916
## predict39     0.823    0.844     0.861     0.876     0.889     0.902     0.913
## predict40     0.820    0.841     0.858     0.873     0.886     0.899     0.910
## predict41     0.817    0.838     0.855     0.870     0.883     0.896     0.907
## predict42     0.814    0.835     0.853     0.867     0.881     0.894     0.904
## predict43     0.812    0.833     0.850     0.865     0.878     0.891     0.902
## predict44     0.809    0.830     0.847     0.862     0.876     0.889     0.899
## predict45     0.807    0.828     0.845     0.860     0.873     0.886     0.897
## predict46     0.805    0.826     0.843     0.857     0.871     0.884     0.895
## predict47     0.802    0.823     0.840     0.855     0.869     0.882     0.892
## predict48     0.800    0.821     0.838     0.853     0.866     0.879     0.890
## predict49     0.798    0.819     0.836     0.851     0.864     0.877     0.888
## predict50     0.796    0.817     0.834     0.849     0.862     0.875     0.886
## predict51     0.794    0.815     0.832     0.847     0.860     0.873     0.884
## predict52     0.792    0.813     0.830     0.845     0.858     0.872     0.882
## predict53     0.791    0.812     0.829     0.843     0.857     0.870     0.881
## predict54     0.789    0.810     0.827     0.841     0.855     0.868     0.879
## predict55     0.788    0.808     0.825     0.840     0.853     0.867     0.877
## predict56     0.786    0.807     0.824     0.838     0.852     0.865     0.876
## predict57     0.785    0.805     0.822     0.837     0.851     0.864     0.875
## predict58     0.784    0.804     0.821     0.836     0.849     0.862     0.873
## predict59     0.782    0.803     0.820     0.834     0.848     0.861     0.872
## predict60     0.781    0.802     0.819     0.833     0.847     0.860     0.871
## predict61     0.780    0.801     0.818     0.832     0.846     0.859     0.870
## predict62     0.779    0.800     0.816     0.831     0.844     0.858     0.868
## predict63     0.778    0.799     0.815     0.830     0.843     0.856     0.867
## predict64     0.777    0.798     0.815     0.829     0.842     0.856     0.866
## predict65     0.776    0.797     0.814     0.828     0.842     0.855     0.866
## predict66     0.775    0.796     0.813     0.827     0.841     0.854     0.865
## predict67     0.775    0.795     0.812     0.826     0.840     0.853     0.864
## predict68     0.774    0.794     0.811     0.826     0.839     0.852     0.863
## predict69     0.773    0.794     0.811     0.825     0.839     0.852     0.863
## predict70     0.773    0.793     0.810     0.824     0.838     0.851     0.862
## predict71     0.772    0.793     0.809     0.824     0.837     0.850     0.861
## predict72     0.772    0.792     0.809     0.823     0.837     0.850     0.861
## predict73     0.771    0.792     0.808     0.823     0.836     0.849     0.860
## predict74     0.771    0.791     0.808     0.822     0.836     0.849     0.860
## predict75     0.770    0.791     0.807     0.822     0.835     0.848     0.859
## predict76     0.770    0.790     0.807     0.821     0.835     0.848     0.859
## predict77     0.769    0.790     0.807     0.821     0.834     0.848     0.858
## predict78     0.769    0.789     0.806     0.821     0.834     0.847     0.858
## predict79     0.769    0.789     0.806     0.820     0.834     0.847     0.858
## predict80     0.768    0.789     0.806     0.820     0.833     0.847     0.857
## predict81     0.768    0.789     0.805     0.820     0.833     0.846     0.857
## predict82     0.768    0.788     0.805     0.819     0.833     0.846     0.857
## predict83     0.768    0.788     0.805     0.819     0.833     0.846     0.857
## predict84     0.767    0.788     0.805     0.819     0.832     0.845     0.856
## predict85     0.767    0.788     0.804     0.819     0.832     0.845     0.856
## predict86     0.767    0.787     0.804     0.819     0.832     0.845     0.856
## predict87     0.767    0.787     0.804     0.818     0.832     0.845     0.856
## predict88     0.767    0.787     0.804     0.818     0.832     0.845     0.856
## predict89     0.767    0.787     0.804     0.818     0.831     0.845     0.855
## predict90     0.766    0.787     0.803     0.818     0.831     0.844     0.855
## predict91     0.766    0.787     0.803     0.818     0.831     0.844     0.855
## predict92     0.766    0.786     0.803     0.818     0.831     0.844     0.855
## predict93     0.766    0.786     0.803     0.817     0.831     0.844     0.855
## predict94     0.766    0.786     0.803     0.817     0.831     0.844     0.855
## predict95     0.766    0.786     0.803     0.817     0.831     0.844     0.855
## predict96     0.766    0.786     0.803     0.817     0.831     0.844     0.855
## predict97     0.766    0.786     0.803     0.817     0.831     0.844     0.854
## predict98     0.766    0.786     0.803     0.817     0.830     0.844     0.854
## predict99     0.765    0.786     0.803     0.817     0.830     0.843     0.854
## predict100    0.765    0.786     0.803     0.817     0.830     0.843     0.854
##            predict15 predict16 predict17 predict18 predict19 predict20
## g              0.752     0.760     0.766     0.773     0.779     0.784
## predict1       0.757     0.745     0.735     0.725     0.715     0.706
## predict2       0.803     0.792     0.781     0.770     0.761     0.752
## predict3       0.833     0.822     0.811     0.801     0.791     0.782
## predict4       0.860     0.848     0.838     0.828     0.818     0.810
## predict5       0.891     0.880     0.870     0.861     0.852     0.843
## predict6       0.917     0.907     0.898     0.888     0.880     0.871
## predict7       0.938     0.929     0.920     0.911     0.903     0.895
## predict8       0.955     0.947     0.939     0.931     0.923     0.916
## predict9       0.969     0.962     0.955     0.948     0.941     0.934
## predict10      0.980     0.974     0.967     0.961     0.954     0.948
## predict11      0.987     0.982     0.977     0.971     0.965     0.959
## predict12      0.993     0.989     0.985     0.980     0.975     0.969
## predict13      0.997     0.994     0.991     0.987     0.982     0.978
## predict14      0.999     0.998     0.995     0.992     0.988     0.984
## predict15      1.000     0.999     0.998     0.996     0.993     0.989
## predict16      0.999     1.000     0.999     0.998     0.996     0.993
## predict17      0.998     0.999     1.000     1.000     0.998     0.996
## predict18      0.996     0.998     1.000     1.000     1.000     0.998
## predict19      0.993     0.996     0.998     1.000     1.000     1.000
## predict20      0.989     0.993     0.996     0.998     1.000     1.000
## predict21      0.986     0.990     0.994     0.997     0.999     1.000
## predict22      0.982     0.987     0.991     0.995     0.997     0.999
## predict23      0.978     0.983     0.988     0.992     0.995     0.997
## predict24      0.974     0.980     0.985     0.989     0.993     0.995
## predict25      0.970     0.976     0.982     0.986     0.990     0.993
## predict26      0.966     0.973     0.978     0.984     0.988     0.991
## predict27      0.962     0.969     0.975     0.981     0.985     0.989
## predict28      0.959     0.966     0.972     0.978     0.982     0.986
## predict29      0.955     0.962     0.969     0.974     0.980     0.984
## predict30      0.951     0.959     0.965     0.971     0.977     0.981
## predict31      0.948     0.955     0.962     0.968     0.974     0.978
## predict32      0.944     0.952     0.959     0.965     0.971     0.976
## predict33      0.941     0.948     0.955     0.962     0.968     0.973
## predict34      0.937     0.945     0.952     0.959     0.965     0.970
## predict35      0.934     0.942     0.949     0.956     0.962     0.968
## predict36      0.931     0.939     0.946     0.953     0.960     0.965
## predict37      0.928     0.936     0.943     0.951     0.957     0.963
## predict38      0.925     0.933     0.941     0.948     0.954     0.960
## predict39      0.922     0.930     0.938     0.945     0.952     0.957
## predict40      0.919     0.927     0.935     0.942     0.949     0.955
## predict41      0.916     0.925     0.932     0.940     0.946     0.952
## predict42      0.914     0.922     0.930     0.937     0.944     0.950
## predict43      0.911     0.919     0.927     0.935     0.942     0.948
## predict44      0.909     0.917     0.925     0.932     0.939     0.945
## predict45      0.906     0.915     0.923     0.930     0.937     0.943
## predict46      0.904     0.912     0.920     0.928     0.935     0.941
## predict47      0.902     0.910     0.918     0.926     0.933     0.939
## predict48      0.900     0.908     0.916     0.924     0.931     0.937
## predict49      0.897     0.906     0.914     0.922     0.929     0.935
## predict50      0.895     0.904     0.912     0.920     0.927     0.933
## predict51      0.894     0.902     0.910     0.918     0.925     0.931
## predict52      0.892     0.900     0.908     0.916     0.923     0.930
## predict53      0.890     0.899     0.907     0.915     0.922     0.928
## predict54      0.888     0.897     0.905     0.913     0.920     0.926
## predict55      0.887     0.895     0.904     0.911     0.919     0.925
## predict56      0.885     0.894     0.902     0.910     0.917     0.923
## predict57      0.884     0.893     0.901     0.909     0.916     0.922
## predict58      0.883     0.891     0.899     0.907     0.914     0.921
## predict59      0.881     0.890     0.898     0.906     0.913     0.920
## predict60      0.880     0.889     0.897     0.905     0.912     0.918
## predict61      0.879     0.888     0.896     0.904     0.911     0.917
## predict62      0.878     0.886     0.895     0.903     0.910     0.916
## predict63      0.877     0.885     0.894     0.901     0.909     0.915
## predict64      0.876     0.885     0.893     0.901     0.908     0.914
## predict65      0.875     0.884     0.892     0.900     0.907     0.913
## predict66      0.874     0.883     0.891     0.899     0.906     0.913
## predict67      0.873     0.882     0.890     0.898     0.905     0.912
## predict68      0.873     0.881     0.889     0.897     0.905     0.911
## predict69      0.872     0.881     0.889     0.897     0.904     0.910
## predict70      0.871     0.880     0.888     0.896     0.903     0.910
## predict71      0.871     0.879     0.888     0.895     0.903     0.909
## predict72      0.870     0.879     0.887     0.895     0.902     0.909
## predict73      0.870     0.878     0.886     0.894     0.902     0.908
## predict74      0.869     0.878     0.886     0.894     0.901     0.908
## predict75      0.869     0.877     0.886     0.893     0.901     0.907
## predict76      0.868     0.877     0.885     0.893     0.900     0.907
## predict77      0.868     0.876     0.885     0.893     0.900     0.906
## predict78      0.867     0.876     0.884     0.892     0.899     0.906
## predict79      0.867     0.876     0.884     0.892     0.899     0.906
## predict80      0.867     0.875     0.884     0.892     0.899     0.905
## predict81      0.866     0.875     0.883     0.891     0.899     0.905
## predict82      0.866     0.875     0.883     0.891     0.898     0.905
## predict83      0.866     0.875     0.883     0.891     0.898     0.904
## predict84      0.866     0.874     0.883     0.890     0.898     0.904
## predict85      0.865     0.874     0.882     0.890     0.898     0.904
## predict86      0.865     0.874     0.882     0.890     0.897     0.904
## predict87      0.865     0.874     0.882     0.890     0.897     0.904
## predict88      0.865     0.874     0.882     0.890     0.897     0.903
## predict89      0.865     0.873     0.882     0.890     0.897     0.903
## predict90      0.865     0.873     0.882     0.889     0.897     0.903
## predict91      0.864     0.873     0.881     0.889     0.897     0.903
## predict92      0.864     0.873     0.881     0.889     0.896     0.903
## predict93      0.864     0.873     0.881     0.889     0.896     0.903
## predict94      0.864     0.873     0.881     0.889     0.896     0.903
## predict95      0.864     0.873     0.881     0.889     0.896     0.903
## predict96      0.864     0.873     0.881     0.889     0.896     0.902
## predict97      0.864     0.873     0.881     0.889     0.896     0.902
## predict98      0.864     0.872     0.881     0.889     0.896     0.902
## predict99      0.864     0.872     0.881     0.888     0.896     0.902
## predict100     0.864     0.872     0.881     0.888     0.896     0.902
##            predict21 predict22 predict23 predict24 predict25 predict26
## g              0.789     0.794     0.798     0.801     0.805     0.808
## predict1       0.698     0.691     0.683     0.677     0.670     0.665
## predict2       0.744     0.736     0.729     0.722     0.715     0.709
## predict3       0.774     0.766     0.759     0.752     0.745     0.739
## predict4       0.801     0.794     0.786     0.779     0.773     0.767
## predict5       0.835     0.827     0.820     0.813     0.807     0.801
## predict6       0.864     0.856     0.849     0.842     0.836     0.830
## predict7       0.887     0.880     0.873     0.867     0.861     0.855
## predict8       0.909     0.902     0.895     0.889     0.883     0.878
## predict9       0.927     0.921     0.915     0.909     0.903     0.897
## predict10      0.942     0.936     0.930     0.924     0.919     0.913
## predict11      0.954     0.948     0.943     0.937     0.932     0.927
## predict12      0.964     0.959     0.954     0.949     0.944     0.939
## predict13      0.973     0.968     0.964     0.959     0.954     0.950
## predict14      0.980     0.976     0.972     0.967     0.963     0.959
## predict15      0.986     0.982     0.978     0.974     0.970     0.966
## predict16      0.990     0.987     0.983     0.980     0.976     0.973
## predict17      0.994     0.991     0.988     0.985     0.982     0.978
## predict18      0.997     0.995     0.992     0.989     0.986     0.984
## predict19      0.999     0.997     0.995     0.993     0.990     0.988
## predict20      1.000     0.999     0.997     0.995     0.993     0.991
## predict21      1.000     1.000     0.999     0.998     0.996     0.994
## predict22      1.000     1.000     1.000     0.999     0.998     0.996
## predict23      0.999     1.000     1.000     1.000     0.999     0.998
## predict24      0.998     0.999     1.000     1.000     1.000     0.999
## predict25      0.996     0.998     0.999     1.000     1.000     1.000
## predict26      0.994     0.996     0.998     0.999     1.000     1.000
## predict27      0.992     0.995     0.997     0.998     0.999     1.000
## predict28      0.990     0.993     0.995     0.997     0.998     0.999
## predict29      0.988     0.991     0.993     0.996     0.997     0.998
## predict30      0.985     0.989     0.991     0.994     0.996     0.997
## predict31      0.983     0.986     0.989     0.992     0.994     0.996
## predict32      0.980     0.984     0.987     0.990     0.992     0.994
## predict33      0.978     0.982     0.985     0.988     0.991     0.993
## predict34      0.975     0.979     0.983     0.986     0.989     0.991
## predict35      0.973     0.977     0.981     0.984     0.987     0.989
## predict36      0.970     0.975     0.978     0.982     0.985     0.987
## predict37      0.968     0.972     0.976     0.980     0.983     0.986
## predict38      0.965     0.970     0.974     0.978     0.981     0.984
## predict39      0.963     0.967     0.972     0.975     0.979     0.982
## predict40      0.960     0.965     0.969     0.973     0.977     0.980
## predict41      0.958     0.963     0.967     0.971     0.975     0.978
## predict42      0.955     0.960     0.965     0.969     0.973     0.976
## predict43      0.953     0.958     0.963     0.967     0.971     0.974
## predict44      0.951     0.956     0.961     0.965     0.969     0.972
## predict45      0.949     0.954     0.959     0.963     0.967     0.970
## predict46      0.947     0.952     0.957     0.961     0.965     0.968
## predict47      0.945     0.950     0.955     0.959     0.963     0.966
## predict48      0.943     0.948     0.953     0.957     0.961     0.965
## predict49      0.941     0.946     0.951     0.955     0.959     0.963
## predict50      0.939     0.944     0.949     0.954     0.958     0.961
## predict51      0.937     0.943     0.948     0.952     0.956     0.960
## predict52      0.936     0.941     0.946     0.950     0.954     0.958
## predict53      0.934     0.939     0.944     0.949     0.953     0.957
## predict54      0.932     0.938     0.943     0.947     0.951     0.955
## predict55      0.931     0.936     0.941     0.946     0.950     0.954
## predict56      0.929     0.935     0.940     0.944     0.949     0.952
## predict57      0.928     0.934     0.939     0.943     0.947     0.951
## predict58      0.927     0.932     0.937     0.942     0.946     0.950
## predict59      0.926     0.931     0.936     0.941     0.945     0.949
## predict60      0.924     0.930     0.935     0.940     0.944     0.948
## predict61      0.923     0.929     0.934     0.939     0.943     0.947
## predict62      0.922     0.928     0.933     0.938     0.942     0.946
## predict63      0.921     0.927     0.932     0.937     0.941     0.945
## predict64      0.920     0.926     0.931     0.936     0.940     0.944
## predict65      0.919     0.925     0.930     0.935     0.939     0.943
## predict66      0.919     0.924     0.929     0.934     0.938     0.942
## predict67      0.918     0.923     0.929     0.933     0.937     0.941
## predict68      0.917     0.923     0.928     0.933     0.937     0.941
## predict69      0.916     0.922     0.927     0.932     0.936     0.940
## predict70      0.916     0.921     0.927     0.931     0.936     0.940
## predict71      0.915     0.921     0.926     0.931     0.935     0.939
## predict72      0.915     0.920     0.925     0.930     0.934     0.938
## predict73      0.914     0.920     0.925     0.930     0.934     0.938
## predict74      0.914     0.919     0.925     0.929     0.933     0.938
## predict75      0.913     0.919     0.924     0.929     0.933     0.937
## predict76      0.913     0.918     0.924     0.928     0.933     0.937
## predict77      0.912     0.918     0.923     0.928     0.932     0.936
## predict78      0.912     0.918     0.923     0.928     0.932     0.936
## predict79      0.912     0.917     0.923     0.927     0.932     0.936
## predict80      0.911     0.917     0.922     0.927     0.931     0.935
## predict81      0.911     0.917     0.922     0.927     0.931     0.935
## predict82      0.911     0.917     0.922     0.926     0.931     0.935
## predict83      0.911     0.916     0.921     0.926     0.931     0.935
## predict84      0.910     0.916     0.921     0.926     0.930     0.934
## predict85      0.910     0.916     0.921     0.926     0.930     0.934
## predict86      0.910     0.916     0.921     0.926     0.930     0.934
## predict87      0.910     0.915     0.921     0.925     0.930     0.934
## predict88      0.910     0.915     0.920     0.925     0.930     0.934
## predict89      0.909     0.915     0.920     0.925     0.929     0.933
## predict90      0.909     0.915     0.920     0.925     0.929     0.933
## predict91      0.909     0.915     0.920     0.925     0.929     0.933
## predict92      0.909     0.915     0.920     0.925     0.929     0.933
## predict93      0.909     0.915     0.920     0.925     0.929     0.933
## predict94      0.909     0.914     0.920     0.924     0.929     0.933
## predict95      0.909     0.914     0.920     0.924     0.929     0.933
## predict96      0.909     0.914     0.920     0.924     0.929     0.933
## predict97      0.909     0.914     0.919     0.924     0.928     0.933
## predict98      0.908     0.914     0.919     0.924     0.928     0.932
## predict99      0.908     0.914     0.919     0.924     0.928     0.932
## predict100     0.908     0.914     0.919     0.924     0.928     0.932
##            predict27 predict28 predict29 predict30 predict31 predict32
## g              0.810     0.813     0.815     0.818     0.820     0.822
## predict1       0.659     0.654     0.649     0.644     0.640     0.636
## predict2       0.704     0.699     0.693     0.689     0.684     0.680
## predict3       0.734     0.729     0.723     0.719     0.714     0.710
## predict4       0.761     0.756     0.751     0.746     0.741     0.737
## predict5       0.795     0.790     0.785     0.780     0.775     0.771
## predict6       0.825     0.819     0.814     0.809     0.805     0.800
## predict7       0.850     0.844     0.839     0.834     0.830     0.825
## predict8       0.872     0.867     0.862     0.857     0.853     0.849
## predict9       0.892     0.887     0.883     0.878     0.873     0.869
## predict10      0.909     0.904     0.899     0.895     0.890     0.886
## predict11      0.922     0.918     0.913     0.909     0.904     0.900
## predict12      0.934     0.930     0.926     0.921     0.917     0.913
## predict13      0.946     0.941     0.937     0.933     0.929     0.926
## predict14      0.955     0.951     0.947     0.943     0.939     0.936
## predict15      0.962     0.959     0.955     0.951     0.948     0.944
## predict16      0.969     0.966     0.962     0.959     0.955     0.952
## predict17      0.975     0.972     0.969     0.965     0.962     0.959
## predict18      0.981     0.978     0.974     0.971     0.968     0.965
## predict19      0.985     0.982     0.980     0.977     0.974     0.971
## predict20      0.989     0.986     0.984     0.981     0.978     0.976
## predict21      0.992     0.990     0.988     0.985     0.983     0.980
## predict22      0.995     0.993     0.991     0.989     0.986     0.984
## predict23      0.997     0.995     0.993     0.991     0.989     0.987
## predict24      0.998     0.997     0.996     0.994     0.992     0.990
## predict25      0.999     0.998     0.997     0.996     0.994     0.992
## predict26      1.000     0.999     0.998     0.997     0.996     0.994
## predict27      1.000     1.000     0.999     0.998     0.997     0.996
## predict28      1.000     1.000     1.000     0.999     0.999     0.997
## predict29      0.999     1.000     1.000     1.000     0.999     0.999
## predict30      0.998     0.999     1.000     1.000     1.000     0.999
## predict31      0.997     0.999     0.999     1.000     1.000     1.000
## predict32      0.996     0.997     0.999     0.999     1.000     1.000
## predict33      0.995     0.996     0.998     0.999     0.999     1.000
## predict34      0.993     0.995     0.997     0.998     0.999     0.999
## predict35      0.992     0.994     0.995     0.997     0.998     0.999
## predict36      0.990     0.992     0.994     0.996     0.997     0.998
## predict37      0.988     0.991     0.993     0.994     0.996     0.997
## predict38      0.986     0.989     0.991     0.993     0.995     0.996
## predict39      0.984     0.987     0.990     0.992     0.994     0.995
## predict40      0.983     0.985     0.988     0.990     0.992     0.994
## predict41      0.981     0.984     0.986     0.989     0.991     0.993
## predict42      0.979     0.982     0.985     0.987     0.989     0.991
## predict43      0.977     0.980     0.983     0.986     0.988     0.990
## predict44      0.975     0.978     0.981     0.984     0.986     0.988
## predict45      0.973     0.977     0.980     0.982     0.985     0.987
## predict46      0.972     0.975     0.978     0.981     0.983     0.986
## predict47      0.970     0.973     0.976     0.979     0.982     0.984
## predict48      0.968     0.971     0.975     0.978     0.980     0.983
## predict49      0.966     0.970     0.973     0.976     0.979     0.981
## predict50      0.965     0.968     0.972     0.975     0.977     0.980
## predict51      0.963     0.967     0.970     0.973     0.976     0.979
## predict52      0.962     0.965     0.969     0.972     0.975     0.977
## predict53      0.960     0.964     0.967     0.970     0.973     0.976
## predict54      0.959     0.962     0.966     0.969     0.972     0.975
## predict55      0.957     0.961     0.965     0.968     0.971     0.974
## predict56      0.956     0.960     0.963     0.967     0.970     0.972
## predict57      0.955     0.959     0.962     0.966     0.969     0.971
## predict58      0.954     0.957     0.961     0.964     0.967     0.970
## predict59      0.953     0.956     0.960     0.963     0.966     0.969
## predict60      0.951     0.955     0.959     0.962     0.965     0.968
## predict61      0.950     0.954     0.958     0.961     0.964     0.967
## predict62      0.949     0.953     0.957     0.960     0.964     0.966
## predict63      0.949     0.952     0.956     0.960     0.963     0.966
## predict64      0.948     0.952     0.955     0.959     0.962     0.965
## predict65      0.947     0.951     0.954     0.958     0.961     0.964
## predict66      0.946     0.950     0.954     0.957     0.960     0.963
## predict67      0.945     0.949     0.953     0.957     0.960     0.963
## predict68      0.945     0.949     0.952     0.956     0.959     0.962
## predict69      0.944     0.948     0.952     0.955     0.959     0.962
## predict70      0.943     0.947     0.951     0.955     0.958     0.961
## predict71      0.943     0.947     0.951     0.954     0.957     0.960
## predict72      0.942     0.946     0.950     0.954     0.957     0.960
## predict73      0.942     0.946     0.950     0.953     0.957     0.960
## predict74      0.941     0.945     0.949     0.953     0.956     0.959
## predict75      0.941     0.945     0.949     0.952     0.956     0.959
## predict76      0.941     0.945     0.948     0.952     0.955     0.958
## predict77      0.940     0.944     0.948     0.952     0.955     0.958
## predict78      0.940     0.944     0.948     0.951     0.955     0.958
## predict79      0.940     0.944     0.947     0.951     0.954     0.957
## predict80      0.939     0.943     0.947     0.951     0.954     0.957
## predict81      0.939     0.943     0.947     0.950     0.954     0.957
## predict82      0.939     0.943     0.947     0.950     0.954     0.957
## predict83      0.939     0.942     0.946     0.950     0.953     0.956
## predict84      0.938     0.942     0.946     0.950     0.953     0.956
## predict85      0.938     0.942     0.946     0.950     0.953     0.956
## predict86      0.938     0.942     0.946     0.949     0.953     0.956
## predict87      0.938     0.942     0.946     0.949     0.953     0.956
## predict88      0.938     0.942     0.945     0.949     0.952     0.956
## predict89      0.937     0.941     0.945     0.949     0.952     0.955
## predict90      0.937     0.941     0.945     0.949     0.952     0.955
## predict91      0.937     0.941     0.945     0.949     0.952     0.955
## predict92      0.937     0.941     0.945     0.949     0.952     0.955
## predict93      0.937     0.941     0.945     0.948     0.952     0.955
## predict94      0.937     0.941     0.945     0.948     0.952     0.955
## predict95      0.937     0.941     0.945     0.948     0.952     0.955
## predict96      0.937     0.941     0.944     0.948     0.952     0.955
## predict97      0.937     0.941     0.944     0.948     0.951     0.955
## predict98      0.936     0.940     0.944     0.948     0.951     0.954
## predict99      0.936     0.940     0.944     0.948     0.951     0.954
## predict100     0.936     0.940     0.944     0.948     0.951     0.954
##            predict33 predict34 predict35 predict36 predict37 predict38
## g              0.824     0.825     0.827     0.828     0.829     0.830
## predict1       0.632     0.629     0.625     0.622     0.619     0.616
## predict2       0.676     0.672     0.669     0.665     0.662     0.659
## predict3       0.706     0.702     0.698     0.695     0.692     0.689
## predict4       0.733     0.729     0.725     0.722     0.719     0.715
## predict5       0.767     0.763     0.759     0.755     0.752     0.749
## predict6       0.796     0.792     0.788     0.785     0.781     0.778
## predict7       0.821     0.817     0.814     0.810     0.807     0.803
## predict8       0.845     0.841     0.837     0.833     0.830     0.827
## predict9       0.865     0.861     0.858     0.854     0.851     0.848
## predict10      0.882     0.878     0.875     0.871     0.868     0.865
## predict11      0.896     0.893     0.889     0.886     0.882     0.879
## predict12      0.910     0.906     0.902     0.899     0.896     0.893
## predict13      0.922     0.918     0.915     0.912     0.908     0.905
## predict14      0.932     0.929     0.925     0.922     0.919     0.916
## predict15      0.941     0.937     0.934     0.931     0.928     0.925
## predict16      0.948     0.945     0.942     0.939     0.936     0.933
## predict17      0.955     0.952     0.949     0.946     0.943     0.941
## predict18      0.962     0.959     0.956     0.953     0.951     0.948
## predict19      0.968     0.965     0.962     0.960     0.957     0.954
## predict20      0.973     0.970     0.968     0.965     0.963     0.960
## predict21      0.978     0.975     0.973     0.970     0.968     0.965
## predict22      0.982     0.979     0.977     0.975     0.972     0.970
## predict23      0.985     0.983     0.981     0.978     0.976     0.974
## predict24      0.988     0.986     0.984     0.982     0.980     0.978
## predict25      0.991     0.989     0.987     0.985     0.983     0.981
## predict26      0.993     0.991     0.989     0.987     0.986     0.984
## predict27      0.995     0.993     0.992     0.990     0.988     0.986
## predict28      0.996     0.995     0.994     0.992     0.991     0.989
## predict29      0.998     0.997     0.995     0.994     0.993     0.991
## predict30      0.999     0.998     0.997     0.996     0.994     0.993
## predict31      0.999     0.999     0.998     0.997     0.996     0.995
## predict32      1.000     0.999     0.999     0.998     0.997     0.996
## predict33      1.000     1.000     1.000     0.999     0.998     0.997
## predict34      1.000     1.000     1.000     1.000     0.999     0.998
## predict35      1.000     1.000     1.000     1.000     1.000     0.999
## predict36      0.999     1.000     1.000     1.000     1.000     1.000
## predict37      0.998     0.999     1.000     1.000     1.000     1.000
## predict38      0.997     0.998     0.999     1.000     1.000     1.000
## predict39      0.996     0.997     0.998     0.999     1.000     1.000
## predict40      0.995     0.997     0.998     0.998     0.999     1.000
## predict41      0.994     0.995     0.997     0.998     0.999     0.999
## predict42      0.993     0.994     0.996     0.997     0.998     0.999
## predict43      0.992     0.993     0.995     0.996     0.997     0.998
## predict44      0.990     0.992     0.994     0.995     0.996     0.997
## predict45      0.989     0.991     0.992     0.994     0.995     0.996
## predict46      0.988     0.990     0.991     0.993     0.994     0.996
## predict47      0.986     0.988     0.990     0.992     0.993     0.995
## predict48      0.985     0.987     0.989     0.991     0.992     0.994
## predict49      0.984     0.986     0.988     0.989     0.991     0.993
## predict50      0.982     0.984     0.986     0.988     0.990     0.992
## predict51      0.981     0.983     0.985     0.987     0.989     0.991
## predict52      0.980     0.982     0.984     0.986     0.988     0.990
## predict53      0.978     0.981     0.983     0.985     0.987     0.989
## predict54      0.977     0.980     0.982     0.984     0.986     0.988
## predict55      0.976     0.979     0.981     0.983     0.985     0.987
## predict56      0.975     0.977     0.980     0.982     0.984     0.986
## predict57      0.974     0.976     0.979     0.981     0.983     0.985
## predict58      0.973     0.975     0.978     0.980     0.982     0.984
## predict59      0.972     0.974     0.977     0.979     0.981     0.983
## predict60      0.971     0.974     0.976     0.978     0.980     0.983
## predict61      0.970     0.973     0.975     0.977     0.980     0.982
## predict62      0.969     0.972     0.974     0.977     0.979     0.981
## predict63      0.968     0.971     0.973     0.976     0.978     0.980
## predict64      0.968     0.970     0.973     0.975     0.977     0.980
## predict65      0.967     0.970     0.972     0.974     0.977     0.979
## predict66      0.966     0.969     0.971     0.974     0.976     0.978
## predict67      0.966     0.968     0.971     0.973     0.976     0.978
## predict68      0.965     0.968     0.970     0.973     0.975     0.977
## predict69      0.964     0.967     0.970     0.972     0.974     0.977
## predict70      0.964     0.967     0.969     0.972     0.974     0.976
## predict71      0.963     0.966     0.969     0.971     0.974     0.976
## predict72      0.963     0.966     0.968     0.971     0.973     0.975
## predict73      0.962     0.965     0.968     0.970     0.973     0.975
## predict74      0.962     0.965     0.967     0.970     0.972     0.975
## predict75      0.962     0.964     0.967     0.969     0.972     0.974
## predict76      0.961     0.964     0.967     0.969     0.972     0.974
## predict77      0.961     0.964     0.966     0.969     0.971     0.974
## predict78      0.961     0.963     0.966     0.969     0.971     0.973
## predict79      0.960     0.963     0.966     0.968     0.971     0.973
## predict80      0.960     0.963     0.965     0.968     0.970     0.973
## predict81      0.960     0.963     0.965     0.968     0.970     0.973
## predict82      0.960     0.962     0.965     0.968     0.970     0.972
## predict83      0.959     0.962     0.965     0.967     0.970     0.972
## predict84      0.959     0.962     0.965     0.967     0.970     0.972
## predict85      0.959     0.962     0.964     0.967     0.969     0.972
## predict86      0.959     0.962     0.964     0.967     0.969     0.972
## predict87      0.959     0.961     0.964     0.967     0.969     0.972
## predict88      0.958     0.961     0.964     0.966     0.969     0.971
## predict89      0.958     0.961     0.964     0.966     0.969     0.971
## predict90      0.958     0.961     0.964     0.966     0.969     0.971
## predict91      0.958     0.961     0.963     0.966     0.969     0.971
## predict92      0.958     0.961     0.963     0.966     0.969     0.971
## predict93      0.958     0.961     0.963     0.966     0.968     0.971
## predict94      0.958     0.961     0.963     0.966     0.968     0.971
## predict95      0.958     0.960     0.963     0.966     0.968     0.971
## predict96      0.958     0.960     0.963     0.966     0.968     0.971
## predict97      0.957     0.960     0.963     0.966     0.968     0.971
## predict98      0.957     0.960     0.963     0.965     0.968     0.970
## predict99      0.957     0.960     0.963     0.965     0.968     0.970
## predict100     0.957     0.960     0.963     0.965     0.968     0.970
##            predict39 predict40 predict41 predict42 predict43 predict44
## g              0.831     0.832     0.833     0.833     0.834     0.834
## predict1       0.613     0.611     0.608     0.606     0.603     0.601
## predict2       0.656     0.654     0.651     0.648     0.646     0.644
## predict3       0.686     0.683     0.680     0.678     0.675     0.673
## predict4       0.712     0.709     0.707     0.704     0.702     0.699
## predict5       0.746     0.743     0.740     0.737     0.734     0.732
## predict6       0.775     0.772     0.769     0.766     0.764     0.761
## predict7       0.800     0.797     0.794     0.791     0.789     0.786
## predict8       0.823     0.820     0.817     0.814     0.812     0.809
## predict9       0.844     0.841     0.838     0.835     0.833     0.830
## predict10      0.861     0.858     0.855     0.853     0.850     0.847
## predict11      0.876     0.873     0.870     0.867     0.865     0.862
## predict12      0.889     0.886     0.883     0.881     0.878     0.876
## predict13      0.902     0.899     0.896     0.894     0.891     0.889
## predict14      0.913     0.910     0.907     0.904     0.902     0.899
## predict15      0.922     0.919     0.916     0.914     0.911     0.909
## predict16      0.930     0.927     0.925     0.922     0.919     0.917
## predict17      0.938     0.935     0.932     0.930     0.927     0.925
## predict18      0.945     0.942     0.940     0.937     0.935     0.932
## predict19      0.952     0.949     0.946     0.944     0.942     0.939
## predict20      0.957     0.955     0.952     0.950     0.948     0.945
## predict21      0.963     0.960     0.958     0.955     0.953     0.951
## predict22      0.967     0.965     0.963     0.960     0.958     0.956
## predict23      0.972     0.969     0.967     0.965     0.963     0.961
## predict24      0.975     0.973     0.971     0.969     0.967     0.965
## predict25      0.979     0.977     0.975     0.973     0.971     0.969
## predict26      0.982     0.980     0.978     0.976     0.974     0.972
## predict27      0.984     0.983     0.981     0.979     0.977     0.975
## predict28      0.987     0.985     0.984     0.982     0.980     0.978
## predict29      0.990     0.988     0.986     0.985     0.983     0.981
## predict30      0.992     0.990     0.989     0.987     0.986     0.984
## predict31      0.994     0.992     0.991     0.989     0.988     0.986
## predict32      0.995     0.994     0.993     0.991     0.990     0.988
## predict33      0.996     0.995     0.994     0.993     0.992     0.990
## predict34      0.997     0.997     0.995     0.994     0.993     0.992
## predict35      0.998     0.998     0.997     0.996     0.995     0.994
## predict36      0.999     0.998     0.998     0.997     0.996     0.995
## predict37      1.000     0.999     0.999     0.998     0.997     0.996
## predict38      1.000     1.000     0.999     0.999     0.998     0.997
## predict39      1.000     1.000     1.000     0.999     0.999     0.998
## predict40      1.000     1.000     1.000     1.000     0.999     0.999
## predict41      1.000     1.000     1.000     1.000     1.000     0.999
## predict42      0.999     1.000     1.000     1.000     1.000     1.000
## predict43      0.999     0.999     1.000     1.000     1.000     1.000
## predict44      0.998     0.999     0.999     1.000     1.000     1.000
## predict45      0.997     0.998     0.999     0.999     1.000     1.000
## predict46      0.997     0.998     0.998     0.999     0.999     1.000
## predict47      0.996     0.997     0.998     0.998     0.999     0.999
## predict48      0.995     0.996     0.997     0.998     0.999     0.999
## predict49      0.994     0.995     0.996     0.997     0.998     0.999
## predict50      0.993     0.994     0.996     0.997     0.997     0.998
## predict51      0.992     0.994     0.995     0.996     0.997     0.998
## predict52      0.991     0.993     0.994     0.995     0.996     0.997
## predict53      0.990     0.992     0.993     0.994     0.995     0.996
## predict54      0.990     0.991     0.992     0.994     0.995     0.996
## predict55      0.989     0.990     0.992     0.993     0.994     0.995
## predict56      0.988     0.989     0.991     0.992     0.993     0.995
## predict57      0.987     0.989     0.990     0.992     0.993     0.994
## predict58      0.986     0.988     0.989     0.991     0.992     0.993
## predict59      0.985     0.987     0.989     0.990     0.991     0.993
## predict60      0.984     0.986     0.988     0.989     0.991     0.992
## predict61      0.984     0.986     0.987     0.989     0.990     0.991
## predict62      0.983     0.985     0.987     0.988     0.990     0.991
## predict63      0.982     0.984     0.986     0.988     0.989     0.990
## predict64      0.982     0.984     0.985     0.987     0.988     0.990
## predict65      0.981     0.983     0.985     0.986     0.988     0.989
## predict66      0.980     0.982     0.984     0.986     0.987     0.989
## predict67      0.980     0.982     0.984     0.985     0.987     0.988
## predict68      0.979     0.981     0.983     0.985     0.987     0.988
## predict69      0.979     0.981     0.983     0.985     0.986     0.988
## predict70      0.978     0.980     0.982     0.984     0.986     0.987
## predict71      0.978     0.980     0.982     0.984     0.985     0.987
## predict72      0.978     0.980     0.982     0.983     0.985     0.987
## predict73      0.977     0.979     0.981     0.983     0.985     0.986
## predict74      0.977     0.979     0.981     0.983     0.984     0.986
## predict75      0.977     0.979     0.981     0.982     0.984     0.986
## predict76      0.976     0.978     0.980     0.982     0.984     0.985
## predict77      0.976     0.978     0.980     0.982     0.984     0.985
## predict78      0.976     0.978     0.980     0.982     0.983     0.985
## predict79      0.975     0.977     0.979     0.981     0.983     0.985
## predict80      0.975     0.977     0.979     0.981     0.983     0.984
## predict81      0.975     0.977     0.979     0.981     0.983     0.984
## predict82      0.975     0.977     0.979     0.981     0.982     0.984
## predict83      0.975     0.977     0.979     0.981     0.982     0.984
## predict84      0.974     0.976     0.978     0.980     0.982     0.984
## predict85      0.974     0.976     0.978     0.980     0.982     0.984
## predict86      0.974     0.976     0.978     0.980     0.982     0.983
## predict87      0.974     0.976     0.978     0.980     0.982     0.983
## predict88      0.974     0.976     0.978     0.980     0.982     0.983
## predict89      0.974     0.976     0.978     0.980     0.981     0.983
## predict90      0.973     0.976     0.978     0.980     0.981     0.983
## predict91      0.973     0.976     0.978     0.979     0.981     0.983
## predict92      0.973     0.975     0.977     0.979     0.981     0.983
## predict93      0.973     0.975     0.977     0.979     0.981     0.983
## predict94      0.973     0.975     0.977     0.979     0.981     0.983
## predict95      0.973     0.975     0.977     0.979     0.981     0.983
## predict96      0.973     0.975     0.977     0.979     0.981     0.983
## predict97      0.973     0.975     0.977     0.979     0.981     0.982
## predict98      0.973     0.975     0.977     0.979     0.981     0.982
## predict99      0.973     0.975     0.977     0.979     0.981     0.982
## predict100     0.973     0.975     0.977     0.979     0.981     0.982
##            predict45 predict46 predict47 predict48 predict49 predict50
## g              0.834     0.834     0.834     0.834     0.834     0.834
## predict1       0.599     0.598     0.596     0.594     0.592     0.591
## predict2       0.642     0.640     0.638     0.636     0.635     0.633
## predict3       0.671     0.669     0.667     0.665     0.663     0.662
## predict4       0.697     0.695     0.693     0.691     0.689     0.687
## predict5       0.730     0.728     0.726     0.724     0.722     0.720
## predict6       0.759     0.757     0.755     0.752     0.750     0.749
## predict7       0.784     0.782     0.779     0.777     0.775     0.773
## predict8       0.807     0.805     0.802     0.800     0.798     0.796
## predict9       0.828     0.826     0.823     0.821     0.819     0.817
## predict10      0.845     0.843     0.840     0.838     0.836     0.834
## predict11      0.860     0.857     0.855     0.853     0.851     0.849
## predict12      0.873     0.871     0.869     0.866     0.864     0.862
## predict13      0.886     0.884     0.882     0.879     0.877     0.875
## predict14      0.897     0.895     0.892     0.890     0.888     0.886
## predict15      0.906     0.904     0.902     0.900     0.897     0.895
## predict16      0.915     0.912     0.910     0.908     0.906     0.904
## predict17      0.923     0.920     0.918     0.916     0.914     0.912
## predict18      0.930     0.928     0.926     0.924     0.922     0.920
## predict19      0.937     0.935     0.933     0.931     0.929     0.927
## predict20      0.943     0.941     0.939     0.937     0.935     0.933
## predict21      0.949     0.947     0.945     0.943     0.941     0.939
## predict22      0.954     0.952     0.950     0.948     0.946     0.944
## predict23      0.959     0.957     0.955     0.953     0.951     0.949
## predict24      0.963     0.961     0.959     0.957     0.955     0.954
## predict25      0.967     0.965     0.963     0.961     0.959     0.958
## predict26      0.970     0.968     0.966     0.965     0.963     0.961
## predict27      0.973     0.972     0.970     0.968     0.966     0.965
## predict28      0.977     0.975     0.973     0.971     0.970     0.968
## predict29      0.980     0.978     0.976     0.975     0.973     0.972
## predict30      0.982     0.981     0.979     0.978     0.976     0.975
## predict31      0.985     0.983     0.982     0.980     0.979     0.977
## predict32      0.987     0.986     0.984     0.983     0.981     0.980
## predict33      0.989     0.988     0.986     0.985     0.984     0.982
## predict34      0.991     0.990     0.988     0.987     0.986     0.984
## predict35      0.992     0.991     0.990     0.989     0.988     0.986
## predict36      0.994     0.993     0.992     0.991     0.989     0.988
## predict37      0.995     0.994     0.993     0.992     0.991     0.990
## predict38      0.996     0.996     0.995     0.994     0.993     0.992
## predict39      0.997     0.997     0.996     0.995     0.994     0.993
## predict40      0.998     0.998     0.997     0.996     0.995     0.994
## predict41      0.999     0.998     0.998     0.997     0.996     0.996
## predict42      0.999     0.999     0.998     0.998     0.997     0.997
## predict43      1.000     0.999     0.999     0.999     0.998     0.997
## predict44      1.000     1.000     0.999     0.999     0.999     0.998
## predict45      1.000     1.000     1.000     0.999     0.999     0.999
## predict46      1.000     1.000     1.000     1.000     1.000     0.999
## predict47      1.000     1.000     1.000     1.000     1.000     1.000
## predict48      0.999     1.000     1.000     1.000     1.000     1.000
## predict49      0.999     1.000     1.000     1.000     1.000     1.000
## predict50      0.999     0.999     1.000     1.000     1.000     1.000
## predict51      0.998     0.999     0.999     1.000     1.000     1.000
## predict52      0.998     0.998     0.999     0.999     1.000     1.000
## predict53      0.997     0.998     0.999     0.999     0.999     1.000
## predict54      0.997     0.997     0.998     0.999     0.999     0.999
## predict55      0.996     0.997     0.998     0.998     0.999     0.999
## predict56      0.996     0.996     0.997     0.998     0.998     0.999
## predict57      0.995     0.996     0.997     0.997     0.998     0.999
## predict58      0.994     0.995     0.996     0.997     0.998     0.998
## predict59      0.994     0.995     0.996     0.997     0.997     0.998
## predict60      0.993     0.994     0.995     0.996     0.997     0.998
## predict61      0.993     0.994     0.995     0.996     0.996     0.997
## predict62      0.992     0.993     0.994     0.995     0.996     0.997
## predict63      0.992     0.993     0.994     0.995     0.996     0.996
## predict64      0.991     0.992     0.993     0.994     0.995     0.996
## predict65      0.991     0.992     0.993     0.994     0.995     0.996
## predict66      0.990     0.991     0.993     0.994     0.995     0.995
## predict67      0.990     0.991     0.992     0.993     0.994     0.995
## predict68      0.989     0.991     0.992     0.993     0.994     0.995
## predict69      0.989     0.990     0.991     0.993     0.994     0.995
## predict70      0.989     0.990     0.991     0.992     0.993     0.994
## predict71      0.988     0.990     0.991     0.992     0.993     0.994
## predict72      0.988     0.989     0.991     0.992     0.993     0.994
## predict73      0.988     0.989     0.990     0.991     0.992     0.993
## predict74      0.987     0.989     0.990     0.991     0.992     0.993
## predict75      0.987     0.988     0.990     0.991     0.992     0.993
## predict76      0.987     0.988     0.990     0.991     0.992     0.993
## predict77      0.987     0.988     0.989     0.991     0.992     0.993
## predict78      0.986     0.988     0.989     0.990     0.991     0.992
## predict79      0.986     0.988     0.989     0.990     0.991     0.992
## predict80      0.986     0.987     0.989     0.990     0.991     0.992
## predict81      0.986     0.987     0.989     0.990     0.991     0.992
## predict82      0.986     0.987     0.988     0.990     0.991     0.992
## predict83      0.985     0.987     0.988     0.989     0.991     0.992
## predict84      0.985     0.987     0.988     0.989     0.991     0.992
## predict85      0.985     0.987     0.988     0.989     0.990     0.991
## predict86      0.985     0.986     0.988     0.989     0.990     0.991
## predict87      0.985     0.986     0.988     0.989     0.990     0.991
## predict88      0.985     0.986     0.988     0.989     0.990     0.991
## predict89      0.985     0.986     0.988     0.989     0.990     0.991
## predict90      0.985     0.986     0.987     0.989     0.990     0.991
## predict91      0.984     0.986     0.987     0.989     0.990     0.991
## predict92      0.984     0.986     0.987     0.989     0.990     0.991
## predict93      0.984     0.986     0.987     0.988     0.990     0.991
## predict94      0.984     0.986     0.987     0.988     0.990     0.991
## predict95      0.984     0.986     0.987     0.988     0.990     0.991
## predict96      0.984     0.986     0.987     0.988     0.990     0.991
## predict97      0.984     0.986     0.987     0.988     0.989     0.991
## predict98      0.984     0.985     0.987     0.988     0.989     0.991
## predict99      0.984     0.985     0.987     0.988     0.989     0.991
## predict100     0.984     0.985     0.987     0.988     0.989     0.990
##            predict51 predict52 predict53 predict54 predict55 predict56
## g              0.834     0.834     0.834     0.833     0.833     0.833
## predict1       0.589     0.588     0.587     0.585     0.584     0.583
## predict2       0.631     0.630     0.628     0.627     0.626     0.625
## predict3       0.660     0.658     0.657     0.656     0.654     0.653
## predict4       0.686     0.684     0.683     0.681     0.680     0.679
## predict5       0.718     0.716     0.715     0.713     0.712     0.711
## predict6       0.747     0.745     0.743     0.742     0.740     0.739
## predict7       0.771     0.770     0.768     0.766     0.765     0.763
## predict8       0.794     0.792     0.791     0.789     0.788     0.786
## predict9       0.815     0.813     0.812     0.810     0.808     0.807
## predict10      0.832     0.830     0.829     0.827     0.825     0.824
## predict11      0.847     0.845     0.843     0.841     0.840     0.838
## predict12      0.860     0.858     0.857     0.855     0.853     0.852
## predict13      0.873     0.872     0.870     0.868     0.867     0.865
## predict14      0.884     0.882     0.881     0.879     0.877     0.876
## predict15      0.894     0.892     0.890     0.888     0.887     0.885
## predict16      0.902     0.900     0.899     0.897     0.895     0.894
## predict17      0.910     0.908     0.907     0.905     0.904     0.902
## predict18      0.918     0.916     0.915     0.913     0.911     0.910
## predict19      0.925     0.923     0.922     0.920     0.919     0.917
## predict20      0.931     0.930     0.928     0.926     0.925     0.923
## predict21      0.937     0.936     0.934     0.932     0.931     0.929
## predict22      0.943     0.941     0.939     0.938     0.936     0.935
## predict23      0.948     0.946     0.944     0.943     0.941     0.940
## predict24      0.952     0.950     0.949     0.947     0.946     0.944
## predict25      0.956     0.954     0.953     0.951     0.950     0.949
## predict26      0.960     0.958     0.957     0.955     0.954     0.952
## predict27      0.963     0.962     0.960     0.959     0.957     0.956
## predict28      0.967     0.965     0.964     0.962     0.961     0.960
## predict29      0.970     0.969     0.967     0.966     0.965     0.963
## predict30      0.973     0.972     0.970     0.969     0.968     0.967
## predict31      0.976     0.975     0.973     0.972     0.971     0.970
## predict32      0.979     0.977     0.976     0.975     0.974     0.972
## predict33      0.981     0.980     0.978     0.977     0.976     0.975
## predict34      0.983     0.982     0.981     0.980     0.979     0.977
## predict35      0.985     0.984     0.983     0.982     0.981     0.980
## predict36      0.987     0.986     0.985     0.984     0.983     0.982
## predict37      0.989     0.988     0.987     0.986     0.985     0.984
## predict38      0.991     0.990     0.989     0.988     0.987     0.986
## predict39      0.992     0.991     0.990     0.990     0.989     0.988
## predict40      0.994     0.993     0.992     0.991     0.990     0.989
## predict41      0.995     0.994     0.993     0.992     0.992     0.991
## predict42      0.996     0.995     0.994     0.994     0.993     0.992
## predict43      0.997     0.996     0.995     0.995     0.994     0.993
## predict44      0.998     0.997     0.996     0.996     0.995     0.995
## predict45      0.998     0.998     0.997     0.997     0.996     0.996
## predict46      0.999     0.998     0.998     0.997     0.997     0.996
## predict47      0.999     0.999     0.999     0.998     0.998     0.997
## predict48      1.000     0.999     0.999     0.999     0.998     0.998
## predict49      1.000     1.000     0.999     0.999     0.999     0.998
## predict50      1.000     1.000     1.000     0.999     0.999     0.999
## predict51      1.000     1.000     1.000     1.000     0.999     0.999
## predict52      1.000     1.000     1.000     1.000     1.000     1.000
## predict53      1.000     1.000     1.000     1.000     1.000     1.000
## predict54      1.000     1.000     1.000     1.000     1.000     1.000
## predict55      0.999     1.000     1.000     1.000     1.000     1.000
## predict56      0.999     1.000     1.000     1.000     1.000     1.000
## predict57      0.999     0.999     1.000     1.000     1.000     1.000
## predict58      0.999     0.999     0.999     1.000     1.000     1.000
## predict59      0.998     0.999     0.999     0.999     1.000     1.000
## predict60      0.998     0.999     0.999     0.999     1.000     1.000
## predict61      0.998     0.998     0.999     0.999     0.999     1.000
## predict62      0.997     0.998     0.998     0.999     0.999     0.999
## predict63      0.997     0.998     0.998     0.999     0.999     0.999
## predict64      0.997     0.997     0.998     0.998     0.999     0.999
## predict65      0.996     0.997     0.998     0.998     0.999     0.999
## predict66      0.996     0.997     0.997     0.998     0.998     0.999
## predict67      0.996     0.997     0.997     0.998     0.998     0.998
## predict68      0.996     0.996     0.997     0.997     0.998     0.998
## predict69      0.995     0.996     0.997     0.997     0.998     0.998
## predict70      0.995     0.996     0.996     0.997     0.998     0.998
## predict71      0.995     0.996     0.996     0.997     0.997     0.998
## predict72      0.995     0.995     0.996     0.997     0.997     0.998
## predict73      0.994     0.995     0.996     0.996     0.997     0.997
## predict74      0.994     0.995     0.996     0.996     0.997     0.997
## predict75      0.994     0.995     0.995     0.996     0.997     0.997
## predict76      0.994     0.995     0.995     0.996     0.997     0.997
## predict77      0.994     0.994     0.995     0.996     0.996     0.997
## predict78      0.993     0.994     0.995     0.996     0.996     0.997
## predict79      0.993     0.994     0.995     0.996     0.996     0.997
## predict80      0.993     0.994     0.995     0.995     0.996     0.997
## predict81      0.993     0.994     0.995     0.995     0.996     0.996
## predict82      0.993     0.994     0.994     0.995     0.996     0.996
## predict83      0.993     0.994     0.994     0.995     0.996     0.996
## predict84      0.993     0.993     0.994     0.995     0.996     0.996
## predict85      0.992     0.993     0.994     0.995     0.995     0.996
## predict86      0.992     0.993     0.994     0.995     0.995     0.996
## predict87      0.992     0.993     0.994     0.995     0.995     0.996
## predict88      0.992     0.993     0.994     0.995     0.995     0.996
## predict89      0.992     0.993     0.994     0.995     0.995     0.996
## predict90      0.992     0.993     0.994     0.994     0.995     0.996
## predict91      0.992     0.993     0.994     0.994     0.995     0.996
## predict92      0.992     0.993     0.994     0.994     0.995     0.996
## predict93      0.992     0.993     0.994     0.994     0.995     0.996
## predict94      0.992     0.993     0.994     0.994     0.995     0.996
## predict95      0.992     0.993     0.993     0.994     0.995     0.995
## predict96      0.992     0.993     0.993     0.994     0.995     0.995
## predict97      0.992     0.993     0.993     0.994     0.995     0.995
## predict98      0.992     0.993     0.993     0.994     0.995     0.995
## predict99      0.992     0.992     0.993     0.994     0.995     0.995
## predict100     0.992     0.992     0.993     0.994     0.995     0.995
##            predict57 predict58 predict59 predict60 predict61 predict62
## g              0.833     0.832     0.832     0.832     0.831     0.831
## predict1       0.582     0.581     0.580     0.579     0.578     0.577
## predict2       0.623     0.622     0.621     0.620     0.620     0.619
## predict3       0.652     0.651     0.650     0.649     0.648     0.647
## predict4       0.677     0.676     0.675     0.674     0.673     0.672
## predict5       0.709     0.708     0.707     0.706     0.705     0.704
## predict6       0.738     0.736     0.735     0.734     0.733     0.732
## predict7       0.762     0.761     0.760     0.759     0.757     0.756
## predict8       0.785     0.784     0.782     0.781     0.780     0.779
## predict9       0.805     0.804     0.803     0.802     0.801     0.800
## predict10      0.822     0.821     0.820     0.819     0.818     0.816
## predict11      0.837     0.836     0.834     0.833     0.832     0.831
## predict12      0.851     0.849     0.848     0.847     0.846     0.844
## predict13      0.864     0.862     0.861     0.860     0.859     0.858
## predict14      0.875     0.873     0.872     0.871     0.870     0.868
## predict15      0.884     0.883     0.881     0.880     0.879     0.878
## predict16      0.893     0.891     0.890     0.889     0.888     0.886
## predict17      0.901     0.899     0.898     0.897     0.896     0.895
## predict18      0.909     0.907     0.906     0.905     0.904     0.903
## predict19      0.916     0.914     0.913     0.912     0.911     0.910
## predict20      0.922     0.921     0.920     0.918     0.917     0.916
## predict21      0.928     0.927     0.926     0.924     0.923     0.922
## predict22      0.934     0.932     0.931     0.930     0.929     0.928
## predict23      0.939     0.937     0.936     0.935     0.934     0.933
## predict24      0.943     0.942     0.941     0.940     0.939     0.938
## predict25      0.947     0.946     0.945     0.944     0.943     0.942
## predict26      0.951     0.950     0.949     0.948     0.947     0.946
## predict27      0.955     0.954     0.953     0.951     0.950     0.949
## predict28      0.959     0.957     0.956     0.955     0.954     0.953
## predict29      0.962     0.961     0.960     0.959     0.958     0.957
## predict30      0.966     0.964     0.963     0.962     0.961     0.960
## predict31      0.969     0.967     0.966     0.965     0.964     0.964
## predict32      0.971     0.970     0.969     0.968     0.967     0.966
## predict33      0.974     0.973     0.972     0.971     0.970     0.969
## predict34      0.976     0.975     0.974     0.974     0.973     0.972
## predict35      0.979     0.978     0.977     0.976     0.975     0.974
## predict36      0.981     0.980     0.979     0.978     0.977     0.977
## predict37      0.983     0.982     0.981     0.980     0.980     0.979
## predict38      0.985     0.984     0.983     0.983     0.982     0.981
## predict39      0.987     0.986     0.985     0.984     0.984     0.983
## predict40      0.989     0.988     0.987     0.986     0.986     0.985
## predict41      0.990     0.989     0.989     0.988     0.987     0.987
## predict42      0.992     0.991     0.990     0.989     0.989     0.988
## predict43      0.993     0.992     0.991     0.991     0.990     0.990
## predict44      0.994     0.993     0.993     0.992     0.991     0.991
## predict45      0.995     0.994     0.994     0.993     0.993     0.992
## predict46      0.996     0.995     0.995     0.994     0.994     0.993
## predict47      0.997     0.996     0.996     0.995     0.995     0.994
## predict48      0.997     0.997     0.997     0.996     0.996     0.995
## predict49      0.998     0.998     0.997     0.997     0.996     0.996
## predict50      0.999     0.998     0.998     0.998     0.997     0.997
## predict51      0.999     0.999     0.998     0.998     0.998     0.997
## predict52      0.999     0.999     0.999     0.999     0.998     0.998
## predict53      1.000     0.999     0.999     0.999     0.999     0.998
## predict54      1.000     1.000     0.999     0.999     0.999     0.999
## predict55      1.000     1.000     1.000     1.000     0.999     0.999
## predict56      1.000     1.000     1.000     1.000     1.000     0.999
## predict57      1.000     1.000     1.000     1.000     1.000     1.000
## predict58      1.000     1.000     1.000     1.000     1.000     1.000
## predict59      1.000     1.000     1.000     1.000     1.000     1.000
## predict60      1.000     1.000     1.000     1.000     1.000     1.000
## predict61      1.000     1.000     1.000     1.000     1.000     1.000
## predict62      1.000     1.000     1.000     1.000     1.000     1.000
## predict63      0.999     1.000     1.000     1.000     1.000     1.000
## predict64      0.999     1.000     1.000     1.000     1.000     1.000
## predict65      0.999     0.999     1.000     1.000     1.000     1.000
## predict66      0.999     0.999     0.999     1.000     1.000     1.000
## predict67      0.999     0.999     0.999     1.000     1.000     1.000
## predict68      0.999     0.999     0.999     0.999     1.000     1.000
## predict69      0.998     0.999     0.999     0.999     0.999     1.000
## predict70      0.998     0.999     0.999     0.999     0.999     1.000
## predict71      0.998     0.999     0.999     0.999     0.999     0.999
## predict72      0.998     0.998     0.999     0.999     0.999     0.999
## predict73      0.998     0.998     0.999     0.999     0.999     0.999
## predict74      0.998     0.998     0.998     0.999     0.999     0.999
## predict75      0.998     0.998     0.998     0.999     0.999     0.999
## predict76      0.997     0.998     0.998     0.999     0.999     0.999
## predict77      0.997     0.998     0.998     0.998     0.999     0.999
## predict78      0.997     0.998     0.998     0.998     0.999     0.999
## predict79      0.997     0.998     0.998     0.998     0.999     0.999
## predict80      0.997     0.997     0.998     0.998     0.998     0.999
## predict81      0.997     0.997     0.998     0.998     0.998     0.999
## predict82      0.997     0.997     0.998     0.998     0.998     0.999
## predict83      0.997     0.997     0.998     0.998     0.998     0.999
## predict84      0.997     0.997     0.998     0.998     0.998     0.998
## predict85      0.997     0.997     0.997     0.998     0.998     0.998
## predict86      0.997     0.997     0.997     0.998     0.998     0.998
## predict87      0.996     0.997     0.997     0.998     0.998     0.998
## predict88      0.996     0.997     0.997     0.998     0.998     0.998
## predict89      0.996     0.997     0.997     0.998     0.998     0.998
## predict90      0.996     0.997     0.997     0.998     0.998     0.998
## predict91      0.996     0.997     0.997     0.998     0.998     0.998
## predict92      0.996     0.997     0.997     0.997     0.998     0.998
## predict93      0.996     0.997     0.997     0.997     0.998     0.998
## predict94      0.996     0.997     0.997     0.997     0.998     0.998
## predict95      0.996     0.997     0.997     0.997     0.998     0.998
## predict96      0.996     0.997     0.997     0.997     0.998     0.998
## predict97      0.996     0.996     0.997     0.997     0.998     0.998
## predict98      0.996     0.996     0.997     0.997     0.998     0.998
## predict99      0.996     0.996     0.997     0.997     0.998     0.998
## predict100     0.996     0.996     0.997     0.997     0.998     0.998
##            predict63 predict64 predict65 predict66 predict67 predict68
## g              0.831     0.830     0.830     0.830     0.829     0.829
## predict1       0.577     0.576     0.575     0.575     0.574     0.574
## predict2       0.618     0.617     0.616     0.616     0.615     0.615
## predict3       0.646     0.645     0.645     0.644     0.643     0.643
## predict4       0.671     0.671     0.670     0.669     0.668     0.668
## predict5       0.703     0.702     0.701     0.701     0.700     0.699
## predict6       0.731     0.730     0.730     0.729     0.728     0.727
## predict7       0.755     0.755     0.754     0.753     0.752     0.751
## predict8       0.778     0.777     0.776     0.775     0.775     0.774
## predict9       0.799     0.798     0.797     0.796     0.795     0.794
## predict10      0.815     0.815     0.814     0.813     0.812     0.811
## predict11      0.830     0.829     0.828     0.827     0.826     0.826
## predict12      0.843     0.842     0.842     0.841     0.840     0.839
## predict13      0.856     0.856     0.855     0.854     0.853     0.852
## predict14      0.867     0.866     0.866     0.865     0.864     0.863
## predict15      0.877     0.876     0.875     0.874     0.873     0.873
## predict16      0.885     0.885     0.884     0.883     0.882     0.881
## predict17      0.894     0.893     0.892     0.891     0.890     0.889
## predict18      0.901     0.901     0.900     0.899     0.898     0.897
## predict19      0.909     0.908     0.907     0.906     0.905     0.905
## predict20      0.915     0.914     0.913     0.913     0.912     0.911
## predict21      0.921     0.920     0.919     0.919     0.918     0.917
## predict22      0.927     0.926     0.925     0.924     0.923     0.923
## predict23      0.932     0.931     0.930     0.929     0.929     0.928
## predict24      0.937     0.936     0.935     0.934     0.933     0.933
## predict25      0.941     0.940     0.939     0.938     0.937     0.937
## predict26      0.945     0.944     0.943     0.942     0.941     0.941
## predict27      0.949     0.948     0.947     0.946     0.945     0.945
## predict28      0.952     0.952     0.951     0.950     0.949     0.949
## predict29      0.956     0.955     0.954     0.954     0.953     0.952
## predict30      0.960     0.959     0.958     0.957     0.957     0.956
## predict31      0.963     0.962     0.961     0.960     0.960     0.959
## predict32      0.966     0.965     0.964     0.963     0.963     0.962
## predict33      0.968     0.968     0.967     0.966     0.966     0.965
## predict34      0.971     0.970     0.970     0.969     0.968     0.968
## predict35      0.973     0.973     0.972     0.971     0.971     0.970
## predict36      0.976     0.975     0.974     0.974     0.973     0.973
## predict37      0.978     0.977     0.977     0.976     0.976     0.975
## predict38      0.980     0.980     0.979     0.978     0.978     0.977
## predict39      0.982     0.982     0.981     0.980     0.980     0.979
## predict40      0.984     0.984     0.983     0.982     0.982     0.981
## predict41      0.986     0.985     0.985     0.984     0.984     0.983
## predict42      0.988     0.987     0.986     0.986     0.985     0.985
## predict43      0.989     0.988     0.988     0.987     0.987     0.987
## predict44      0.990     0.990     0.989     0.989     0.988     0.988
## predict45      0.992     0.991     0.991     0.990     0.990     0.989
## predict46      0.993     0.992     0.992     0.991     0.991     0.991
## predict47      0.994     0.993     0.993     0.993     0.992     0.992
## predict48      0.995     0.994     0.994     0.994     0.993     0.993
## predict49      0.996     0.995     0.995     0.995     0.994     0.994
## predict50      0.996     0.996     0.996     0.995     0.995     0.995
## predict51      0.997     0.997     0.996     0.996     0.996     0.996
## predict52      0.998     0.997     0.997     0.997     0.997     0.996
## predict53      0.998     0.998     0.998     0.997     0.997     0.997
## predict54      0.999     0.998     0.998     0.998     0.998     0.997
## predict55      0.999     0.999     0.999     0.998     0.998     0.998
## predict56      0.999     0.999     0.999     0.999     0.998     0.998
## predict57      0.999     0.999     0.999     0.999     0.999     0.999
## predict58      1.000     1.000     0.999     0.999     0.999     0.999
## predict59      1.000     1.000     1.000     0.999     0.999     0.999
## predict60      1.000     1.000     1.000     1.000     1.000     0.999
## predict61      1.000     1.000     1.000     1.000     1.000     1.000
## predict62      1.000     1.000     1.000     1.000     1.000     1.000
## predict63      1.000     1.000     1.000     1.000     1.000     1.000
## predict64      1.000     1.000     1.000     1.000     1.000     1.000
## predict65      1.000     1.000     1.000     1.000     1.000     1.000
## predict66      1.000     1.000     1.000     1.000     1.000     1.000
## predict67      1.000     1.000     1.000     1.000     1.000     1.000
## predict68      1.000     1.000     1.000     1.000     1.000     1.000
## predict69      1.000     1.000     1.000     1.000     1.000     1.000
## predict70      1.000     1.000     1.000     1.000     1.000     1.000
## predict71      1.000     1.000     1.000     1.000     1.000     1.000
## predict72      1.000     1.000     1.000     1.000     1.000     1.000
## predict73      0.999     1.000     1.000     1.000     1.000     1.000
## predict74      0.999     1.000     1.000     1.000     1.000     1.000
## predict75      0.999     0.999     1.000     1.000     1.000     1.000
## predict76      0.999     0.999     1.000     1.000     1.000     1.000
## predict77      0.999     0.999     0.999     1.000     1.000     1.000
## predict78      0.999     0.999     0.999     1.000     1.000     1.000
## predict79      0.999     0.999     0.999     0.999     1.000     1.000
## predict80      0.999     0.999     0.999     0.999     1.000     1.000
## predict81      0.999     0.999     0.999     0.999     0.999     1.000
## predict82      0.999     0.999     0.999     0.999     0.999     1.000
## predict83      0.999     0.999     0.999     0.999     0.999     1.000
## predict84      0.999     0.999     0.999     0.999     0.999     0.999
## predict85      0.999     0.999     0.999     0.999     0.999     0.999
## predict86      0.999     0.999     0.999     0.999     0.999     0.999
## predict87      0.999     0.999     0.999     0.999     0.999     0.999
## predict88      0.999     0.999     0.999     0.999     0.999     0.999
## predict89      0.998     0.999     0.999     0.999     0.999     0.999
## predict90      0.998     0.999     0.999     0.999     0.999     0.999
## predict91      0.998     0.999     0.999     0.999     0.999     0.999
## predict92      0.998     0.999     0.999     0.999     0.999     0.999
## predict93      0.998     0.999     0.999     0.999     0.999     0.999
## predict94      0.998     0.999     0.999     0.999     0.999     0.999
## predict95      0.998     0.999     0.999     0.999     0.999     0.999
## predict96      0.998     0.999     0.999     0.999     0.999     0.999
## predict97      0.998     0.998     0.999     0.999     0.999     0.999
## predict98      0.998     0.998     0.999     0.999     0.999     0.999
## predict99      0.998     0.998     0.999     0.999     0.999     0.999
## predict100     0.998     0.998     0.999     0.999     0.999     0.999
##            predict69 predict70 predict71 predict72 predict73 predict74
## g              0.829     0.828     0.828     0.828     0.828     0.827
## predict1       0.573     0.573     0.572     0.572     0.571     0.571
## predict2       0.614     0.614     0.613     0.613     0.612     0.612
## predict3       0.642     0.642     0.641     0.641     0.640     0.640
## predict4       0.667     0.667     0.666     0.666     0.665     0.665
## predict5       0.699     0.698     0.698     0.697     0.697     0.696
## predict6       0.727     0.726     0.726     0.725     0.725     0.724
## predict7       0.751     0.750     0.750     0.749     0.749     0.748
## predict8       0.773     0.773     0.772     0.772     0.771     0.771
## predict9       0.794     0.793     0.793     0.792     0.792     0.791
## predict10      0.811     0.810     0.809     0.809     0.808     0.808
## predict11      0.825     0.824     0.824     0.823     0.823     0.822
## predict12      0.839     0.838     0.837     0.837     0.836     0.836
## predict13      0.852     0.851     0.850     0.850     0.849     0.849
## predict14      0.863     0.862     0.861     0.861     0.860     0.860
## predict15      0.872     0.871     0.871     0.870     0.870     0.869
## predict16      0.881     0.880     0.879     0.879     0.878     0.878
## predict17      0.889     0.888     0.888     0.887     0.886     0.886
## predict18      0.897     0.896     0.895     0.895     0.894     0.894
## predict19      0.904     0.903     0.903     0.902     0.902     0.901
## predict20      0.910     0.910     0.909     0.909     0.908     0.908
## predict21      0.916     0.916     0.915     0.915     0.914     0.914
## predict22      0.922     0.921     0.921     0.920     0.920     0.919
## predict23      0.927     0.927     0.926     0.925     0.925     0.925
## predict24      0.932     0.931     0.931     0.930     0.930     0.929
## predict25      0.936     0.936     0.935     0.934     0.934     0.933
## predict26      0.940     0.940     0.939     0.938     0.938     0.938
## predict27      0.944     0.943     0.943     0.942     0.942     0.941
## predict28      0.948     0.947     0.947     0.946     0.946     0.945
## predict29      0.952     0.951     0.951     0.950     0.950     0.949
## predict30      0.955     0.955     0.954     0.954     0.953     0.953
## predict31      0.959     0.958     0.957     0.957     0.957     0.956
## predict32      0.962     0.961     0.960     0.960     0.960     0.959
## predict33      0.964     0.964     0.963     0.963     0.962     0.962
## predict34      0.967     0.967     0.966     0.966     0.965     0.965
## predict35      0.970     0.969     0.969     0.968     0.968     0.967
## predict36      0.972     0.972     0.971     0.971     0.970     0.970
## predict37      0.974     0.974     0.974     0.973     0.973     0.972
## predict38      0.977     0.976     0.976     0.975     0.975     0.975
## predict39      0.979     0.978     0.978     0.978     0.977     0.977
## predict40      0.981     0.980     0.980     0.980     0.979     0.979
## predict41      0.983     0.982     0.982     0.982     0.981     0.981
## predict42      0.985     0.984     0.984     0.983     0.983     0.983
## predict43      0.986     0.986     0.985     0.985     0.985     0.984
## predict44      0.988     0.987     0.987     0.987     0.986     0.986
## predict45      0.989     0.989     0.988     0.988     0.988     0.987
## predict46      0.990     0.990     0.990     0.989     0.989     0.989
## predict47      0.991     0.991     0.991     0.991     0.990     0.990
## predict48      0.993     0.992     0.992     0.992     0.991     0.991
## predict49      0.994     0.993     0.993     0.993     0.992     0.992
## predict50      0.995     0.994     0.994     0.994     0.993     0.993
## predict51      0.995     0.995     0.995     0.995     0.994     0.994
## predict52      0.996     0.996     0.996     0.995     0.995     0.995
## predict53      0.997     0.996     0.996     0.996     0.996     0.996
## predict54      0.997     0.997     0.997     0.997     0.996     0.996
## predict55      0.998     0.998     0.997     0.997     0.997     0.997
## predict56      0.998     0.998     0.998     0.998     0.997     0.997
## predict57      0.998     0.998     0.998     0.998     0.998     0.998
## predict58      0.999     0.999     0.999     0.998     0.998     0.998
## predict59      0.999     0.999     0.999     0.999     0.999     0.998
## predict60      0.999     0.999     0.999     0.999     0.999     0.999
## predict61      0.999     0.999     0.999     0.999     0.999     0.999
## predict62      1.000     1.000     0.999     0.999     0.999     0.999
## predict63      1.000     1.000     1.000     1.000     0.999     0.999
## predict64      1.000     1.000     1.000     1.000     1.000     1.000
## predict65      1.000     1.000     1.000     1.000     1.000     1.000
## predict66      1.000     1.000     1.000     1.000     1.000     1.000
## predict67      1.000     1.000     1.000     1.000     1.000     1.000
## predict68      1.000     1.000     1.000     1.000     1.000     1.000
## predict69      1.000     1.000     1.000     1.000     1.000     1.000
## predict70      1.000     1.000     1.000     1.000     1.000     1.000
## predict71      1.000     1.000     1.000     1.000     1.000     1.000
## predict72      1.000     1.000     1.000     1.000     1.000     1.000
## predict73      1.000     1.000     1.000     1.000     1.000     1.000
## predict74      1.000     1.000     1.000     1.000     1.000     1.000
## predict75      1.000     1.000     1.000     1.000     1.000     1.000
## predict76      1.000     1.000     1.000     1.000     1.000     1.000
## predict77      1.000     1.000     1.000     1.000     1.000     1.000
## predict78      1.000     1.000     1.000     1.000     1.000     1.000
## predict79      1.000     1.000     1.000     1.000     1.000     1.000
## predict80      1.000     1.000     1.000     1.000     1.000     1.000
## predict81      1.000     1.000     1.000     1.000     1.000     1.000
## predict82      1.000     1.000     1.000     1.000     1.000     1.000
## predict83      1.000     1.000     1.000     1.000     1.000     1.000
## predict84      1.000     1.000     1.000     1.000     1.000     1.000
## predict85      1.000     1.000     1.000     1.000     1.000     1.000
## predict86      1.000     1.000     1.000     1.000     1.000     1.000
## predict87      0.999     1.000     1.000     1.000     1.000     1.000
## predict88      0.999     1.000     1.000     1.000     1.000     1.000
## predict89      0.999     1.000     1.000     1.000     1.000     1.000
## predict90      0.999     1.000     1.000     1.000     1.000     1.000
## predict91      0.999     1.000     1.000     1.000     1.000     1.000
## predict92      0.999     0.999     1.000     1.000     1.000     1.000
## predict93      0.999     0.999     1.000     1.000     1.000     1.000
## predict94      0.999     0.999     1.000     1.000     1.000     1.000
## predict95      0.999     0.999     1.000     1.000     1.000     1.000
## predict96      0.999     0.999     1.000     1.000     1.000     1.000
## predict97      0.999     0.999     0.999     1.000     1.000     1.000
## predict98      0.999     0.999     0.999     1.000     1.000     1.000
## predict99      0.999     0.999     0.999     1.000     1.000     1.000
## predict100     0.999     0.999     0.999     1.000     1.000     1.000
##            predict75 predict76 predict77 predict78 predict79 predict80
## g              0.827     0.827     0.827     0.826     0.826     0.826
## predict1       0.571     0.570     0.570     0.570     0.570     0.569
## predict2       0.612     0.611     0.611     0.611     0.610     0.610
## predict3       0.639     0.639     0.639     0.638     0.638     0.638
## predict4       0.664     0.664     0.664     0.663     0.663     0.663
## predict5       0.696     0.695     0.695     0.695     0.694     0.694
## predict6       0.724     0.723     0.723     0.723     0.722     0.722
## predict7       0.748     0.747     0.747     0.747     0.746     0.746
## predict8       0.770     0.770     0.769     0.769     0.769     0.768
## predict9       0.791     0.790     0.790     0.789     0.789     0.789
## predict10      0.807     0.807     0.807     0.806     0.806     0.806
## predict11      0.822     0.821     0.821     0.821     0.820     0.820
## predict12      0.835     0.835     0.834     0.834     0.834     0.833
## predict13      0.848     0.848     0.848     0.847     0.847     0.847
## predict14      0.859     0.859     0.858     0.858     0.858     0.857
## predict15      0.869     0.868     0.868     0.867     0.867     0.867
## predict16      0.877     0.877     0.876     0.876     0.876     0.875
## predict17      0.886     0.885     0.885     0.884     0.884     0.884
## predict18      0.893     0.893     0.893     0.892     0.892     0.892
## predict19      0.901     0.900     0.900     0.899     0.899     0.899
## predict20      0.907     0.907     0.906     0.906     0.906     0.905
## predict21      0.913     0.913     0.912     0.912     0.912     0.911
## predict22      0.919     0.918     0.918     0.918     0.917     0.917
## predict23      0.924     0.924     0.923     0.923     0.923     0.922
## predict24      0.929     0.928     0.928     0.928     0.927     0.927
## predict25      0.933     0.933     0.932     0.932     0.932     0.931
## predict26      0.937     0.937     0.936     0.936     0.936     0.935
## predict27      0.941     0.941     0.940     0.940     0.940     0.939
## predict28      0.945     0.945     0.944     0.944     0.944     0.943
## predict29      0.949     0.948     0.948     0.948     0.947     0.947
## predict30      0.952     0.952     0.952     0.951     0.951     0.951
## predict31      0.956     0.955     0.955     0.955     0.954     0.954
## predict32      0.959     0.958     0.958     0.958     0.957     0.957
## predict33      0.962     0.961     0.961     0.961     0.960     0.960
## predict34      0.964     0.964     0.964     0.963     0.963     0.963
## predict35      0.967     0.967     0.966     0.966     0.966     0.965
## predict36      0.969     0.969     0.969     0.969     0.968     0.968
## predict37      0.972     0.972     0.971     0.971     0.971     0.970
## predict38      0.974     0.974     0.974     0.973     0.973     0.973
## predict39      0.977     0.976     0.976     0.976     0.975     0.975
## predict40      0.979     0.978     0.978     0.978     0.977     0.977
## predict41      0.981     0.980     0.980     0.980     0.979     0.979
## predict42      0.982     0.982     0.982     0.982     0.981     0.981
## predict43      0.984     0.984     0.984     0.983     0.983     0.983
## predict44      0.986     0.985     0.985     0.985     0.985     0.984
## predict45      0.987     0.987     0.987     0.986     0.986     0.986
## predict46      0.988     0.988     0.988     0.988     0.988     0.987
## predict47      0.990     0.990     0.989     0.989     0.989     0.989
## predict48      0.991     0.991     0.991     0.990     0.990     0.990
## predict49      0.992     0.992     0.992     0.991     0.991     0.991
## predict50      0.993     0.993     0.993     0.992     0.992     0.992
## predict51      0.994     0.994     0.994     0.993     0.993     0.993
## predict52      0.995     0.995     0.994     0.994     0.994     0.994
## predict53      0.995     0.995     0.995     0.995     0.995     0.995
## predict54      0.996     0.996     0.996     0.996     0.996     0.995
## predict55      0.997     0.997     0.996     0.996     0.996     0.996
## predict56      0.997     0.997     0.997     0.997     0.997     0.997
## predict57      0.998     0.997     0.997     0.997     0.997     0.997
## predict58      0.998     0.998     0.998     0.998     0.998     0.997
## predict59      0.998     0.998     0.998     0.998     0.998     0.998
## predict60      0.999     0.999     0.998     0.998     0.998     0.998
## predict61      0.999     0.999     0.999     0.999     0.999     0.998
## predict62      0.999     0.999     0.999     0.999     0.999     0.999
## predict63      0.999     0.999     0.999     0.999     0.999     0.999
## predict64      0.999     0.999     0.999     0.999     0.999     0.999
## predict65      1.000     1.000     0.999     0.999     0.999     0.999
## predict66      1.000     1.000     1.000     1.000     0.999     0.999
## predict67      1.000     1.000     1.000     1.000     1.000     1.000
## predict68      1.000     1.000     1.000     1.000     1.000     1.000
## predict69      1.000     1.000     1.000     1.000     1.000     1.000
## predict70      1.000     1.000     1.000     1.000     1.000     1.000
## predict71      1.000     1.000     1.000     1.000     1.000     1.000
## predict72      1.000     1.000     1.000     1.000     1.000     1.000
## predict73      1.000     1.000     1.000     1.000     1.000     1.000
## predict74      1.000     1.000     1.000     1.000     1.000     1.000
## predict75      1.000     1.000     1.000     1.000     1.000     1.000
## predict76      1.000     1.000     1.000     1.000     1.000     1.000
## predict77      1.000     1.000     1.000     1.000     1.000     1.000
## predict78      1.000     1.000     1.000     1.000     1.000     1.000
## predict79      1.000     1.000     1.000     1.000     1.000     1.000
## predict80      1.000     1.000     1.000     1.000     1.000     1.000
## predict81      1.000     1.000     1.000     1.000     1.000     1.000
## predict82      1.000     1.000     1.000     1.000     1.000     1.000
## predict83      1.000     1.000     1.000     1.000     1.000     1.000
## predict84      1.000     1.000     1.000     1.000     1.000     1.000
## predict85      1.000     1.000     1.000     1.000     1.000     1.000
## predict86      1.000     1.000     1.000     1.000     1.000     1.000
## predict87      1.000     1.000     1.000     1.000     1.000     1.000
## predict88      1.000     1.000     1.000     1.000     1.000     1.000
## predict89      1.000     1.000     1.000     1.000     1.000     1.000
## predict90      1.000     1.000     1.000     1.000     1.000     1.000
## predict91      1.000     1.000     1.000     1.000     1.000     1.000
## predict92      1.000     1.000     1.000     1.000     1.000     1.000
## predict93      1.000     1.000     1.000     1.000     1.000     1.000
## predict94      1.000     1.000     1.000     1.000     1.000     1.000
## predict95      1.000     1.000     1.000     1.000     1.000     1.000
## predict96      1.000     1.000     1.000     1.000     1.000     1.000
## predict97      1.000     1.000     1.000     1.000     1.000     1.000
## predict98      1.000     1.000     1.000     1.000     1.000     1.000
## predict99      1.000     1.000     1.000     1.000     1.000     1.000
## predict100     1.000     1.000     1.000     1.000     1.000     1.000
##            predict81 predict82 predict83 predict84 predict85 predict86
## g              0.826     0.826     0.826     0.826     0.825     0.825
## predict1       0.569     0.569     0.569     0.569     0.568     0.568
## predict2       0.610     0.610     0.609     0.609     0.609     0.609
## predict3       0.638     0.637     0.637     0.637     0.637     0.637
## predict4       0.663     0.662     0.662     0.662     0.662     0.662
## predict5       0.694     0.694     0.693     0.693     0.693     0.693
## predict6       0.722     0.722     0.721     0.721     0.721     0.721
## predict7       0.746     0.746     0.745     0.745     0.745     0.745
## predict8       0.768     0.768     0.768     0.767     0.767     0.767
## predict9       0.789     0.788     0.788     0.788     0.788     0.787
## predict10      0.805     0.805     0.805     0.805     0.804     0.804
## predict11      0.820     0.819     0.819     0.819     0.819     0.819
## predict12      0.833     0.833     0.833     0.832     0.832     0.832
## predict13      0.846     0.846     0.846     0.845     0.845     0.845
## predict14      0.857     0.857     0.857     0.856     0.856     0.856
## predict15      0.866     0.866     0.866     0.866     0.865     0.865
## predict16      0.875     0.875     0.875     0.874     0.874     0.874
## predict17      0.883     0.883     0.883     0.883     0.882     0.882
## predict18      0.891     0.891     0.891     0.890     0.890     0.890
## predict19      0.899     0.898     0.898     0.898     0.898     0.897
## predict20      0.905     0.905     0.904     0.904     0.904     0.904
## predict21      0.911     0.911     0.911     0.910     0.910     0.910
## predict22      0.917     0.917     0.916     0.916     0.916     0.916
## predict23      0.922     0.922     0.921     0.921     0.921     0.921
## predict24      0.927     0.926     0.926     0.926     0.926     0.926
## predict25      0.931     0.931     0.931     0.930     0.930     0.930
## predict26      0.935     0.935     0.935     0.934     0.934     0.934
## predict27      0.939     0.939     0.939     0.938     0.938     0.938
## predict28      0.943     0.943     0.942     0.942     0.942     0.942
## predict29      0.947     0.947     0.946     0.946     0.946     0.946
## predict30      0.950     0.950     0.950     0.950     0.950     0.949
## predict31      0.954     0.954     0.953     0.953     0.953     0.953
## predict32      0.957     0.957     0.956     0.956     0.956     0.956
## predict33      0.960     0.960     0.959     0.959     0.959     0.959
## predict34      0.963     0.962     0.962     0.962     0.962     0.962
## predict35      0.965     0.965     0.965     0.965     0.964     0.964
## predict36      0.968     0.968     0.967     0.967     0.967     0.967
## predict37      0.970     0.970     0.970     0.970     0.969     0.969
## predict38      0.973     0.972     0.972     0.972     0.972     0.972
## predict39      0.975     0.975     0.975     0.974     0.974     0.974
## predict40      0.977     0.977     0.977     0.976     0.976     0.976
## predict41      0.979     0.979     0.979     0.978     0.978     0.978
## predict42      0.981     0.981     0.981     0.980     0.980     0.980
## predict43      0.983     0.982     0.982     0.982     0.982     0.982
## predict44      0.984     0.984     0.984     0.984     0.984     0.983
## predict45      0.986     0.986     0.985     0.985     0.985     0.985
## predict46      0.987     0.987     0.987     0.987     0.987     0.986
## predict47      0.989     0.988     0.988     0.988     0.988     0.988
## predict48      0.990     0.990     0.989     0.989     0.989     0.989
## predict49      0.991     0.991     0.991     0.991     0.990     0.990
## predict50      0.992     0.992     0.992     0.992     0.991     0.991
## predict51      0.993     0.993     0.993     0.993     0.992     0.992
## predict52      0.994     0.994     0.994     0.993     0.993     0.993
## predict53      0.995     0.994     0.994     0.994     0.994     0.994
## predict54      0.995     0.995     0.995     0.995     0.995     0.995
## predict55      0.996     0.996     0.996     0.996     0.995     0.995
## predict56      0.996     0.996     0.996     0.996     0.996     0.996
## predict57      0.997     0.997     0.997     0.997     0.997     0.997
## predict58      0.997     0.997     0.997     0.997     0.997     0.997
## predict59      0.998     0.998     0.998     0.998     0.997     0.997
## predict60      0.998     0.998     0.998     0.998     0.998     0.998
## predict61      0.998     0.998     0.998     0.998     0.998     0.998
## predict62      0.999     0.999     0.999     0.998     0.998     0.998
## predict63      0.999     0.999     0.999     0.999     0.999     0.999
## predict64      0.999     0.999     0.999     0.999     0.999     0.999
## predict65      0.999     0.999     0.999     0.999     0.999     0.999
## predict66      0.999     0.999     0.999     0.999     0.999     0.999
## predict67      0.999     0.999     0.999     0.999     0.999     0.999
## predict68      1.000     1.000     1.000     0.999     0.999     0.999
## predict69      1.000     1.000     1.000     1.000     1.000     1.000
## predict70      1.000     1.000     1.000     1.000     1.000     1.000
## predict71      1.000     1.000     1.000     1.000     1.000     1.000
## predict72      1.000     1.000     1.000     1.000     1.000     1.000
## predict73      1.000     1.000     1.000     1.000     1.000     1.000
## predict74      1.000     1.000     1.000     1.000     1.000     1.000
## predict75      1.000     1.000     1.000     1.000     1.000     1.000
## predict76      1.000     1.000     1.000     1.000     1.000     1.000
## predict77      1.000     1.000     1.000     1.000     1.000     1.000
## predict78      1.000     1.000     1.000     1.000     1.000     1.000
## predict79      1.000     1.000     1.000     1.000     1.000     1.000
## predict80      1.000     1.000     1.000     1.000     1.000     1.000
## predict81      1.000     1.000     1.000     1.000     1.000     1.000
## predict82      1.000     1.000     1.000     1.000     1.000     1.000
## predict83      1.000     1.000     1.000     1.000     1.000     1.000
## predict84      1.000     1.000     1.000     1.000     1.000     1.000
## predict85      1.000     1.000     1.000     1.000     1.000     1.000
## predict86      1.000     1.000     1.000     1.000     1.000     1.000
## predict87      1.000     1.000     1.000     1.000     1.000     1.000
## predict88      1.000     1.000     1.000     1.000     1.000     1.000
## predict89      1.000     1.000     1.000     1.000     1.000     1.000
## predict90      1.000     1.000     1.000     1.000     1.000     1.000
## predict91      1.000     1.000     1.000     1.000     1.000     1.000
## predict92      1.000     1.000     1.000     1.000     1.000     1.000
## predict93      1.000     1.000     1.000     1.000     1.000     1.000
## predict94      1.000     1.000     1.000     1.000     1.000     1.000
## predict95      1.000     1.000     1.000     1.000     1.000     1.000
## predict96      1.000     1.000     1.000     1.000     1.000     1.000
## predict97      1.000     1.000     1.000     1.000     1.000     1.000
## predict98      1.000     1.000     1.000     1.000     1.000     1.000
## predict99      1.000     1.000     1.000     1.000     1.000     1.000
## predict100     1.000     1.000     1.000     1.000     1.000     1.000
##            predict87 predict88 predict89 predict90 predict91 predict92
## g              0.825     0.825     0.825     0.825     0.825     0.825
## predict1       0.568     0.568     0.568     0.568     0.568     0.568
## predict2       0.609     0.609     0.609     0.608     0.608     0.608
## predict3       0.637     0.636     0.636     0.636     0.636     0.636
## predict4       0.661     0.661     0.661     0.661     0.661     0.661
## predict5       0.693     0.693     0.692     0.692     0.692     0.692
## predict6       0.721     0.720     0.720     0.720     0.720     0.720
## predict7       0.745     0.744     0.744     0.744     0.744     0.744
## predict8       0.767     0.767     0.767     0.766     0.766     0.766
## predict9       0.787     0.787     0.787     0.787     0.787     0.786
## predict10      0.804     0.804     0.804     0.803     0.803     0.803
## predict11      0.818     0.818     0.818     0.818     0.818     0.818
## predict12      0.832     0.832     0.831     0.831     0.831     0.831
## predict13      0.845     0.845     0.845     0.844     0.844     0.844
## predict14      0.856     0.856     0.855     0.855     0.855     0.855
## predict15      0.865     0.865     0.865     0.865     0.864     0.864
## predict16      0.874     0.874     0.873     0.873     0.873     0.873
## predict17      0.882     0.882     0.882     0.882     0.881     0.881
## predict18      0.890     0.890     0.890     0.889     0.889     0.889
## predict19      0.897     0.897     0.897     0.897     0.897     0.896
## predict20      0.904     0.903     0.903     0.903     0.903     0.903
## predict21      0.910     0.910     0.909     0.909     0.909     0.909
## predict22      0.915     0.915     0.915     0.915     0.915     0.915
## predict23      0.921     0.920     0.920     0.920     0.920     0.920
## predict24      0.925     0.925     0.925     0.925     0.925     0.925
## predict25      0.930     0.930     0.929     0.929     0.929     0.929
## predict26      0.934     0.934     0.933     0.933     0.933     0.933
## predict27      0.938     0.938     0.937     0.937     0.937     0.937
## predict28      0.942     0.942     0.941     0.941     0.941     0.941
## predict29      0.946     0.945     0.945     0.945     0.945     0.945
## predict30      0.949     0.949     0.949     0.949     0.949     0.949
## predict31      0.953     0.952     0.952     0.952     0.952     0.952
## predict32      0.956     0.956     0.955     0.955     0.955     0.955
## predict33      0.959     0.958     0.958     0.958     0.958     0.958
## predict34      0.961     0.961     0.961     0.961     0.961     0.961
## predict35      0.964     0.964     0.964     0.964     0.963     0.963
## predict36      0.967     0.966     0.966     0.966     0.966     0.966
## predict37      0.969     0.969     0.969     0.969     0.969     0.969
## predict38      0.972     0.971     0.971     0.971     0.971     0.971
## predict39      0.974     0.974     0.974     0.973     0.973     0.973
## predict40      0.976     0.976     0.976     0.976     0.976     0.975
## predict41      0.978     0.978     0.978     0.978     0.978     0.977
## predict42      0.980     0.980     0.980     0.980     0.979     0.979
## predict43      0.982     0.982     0.981     0.981     0.981     0.981
## predict44      0.983     0.983     0.983     0.983     0.983     0.983
## predict45      0.985     0.985     0.985     0.985     0.984     0.984
## predict46      0.986     0.986     0.986     0.986     0.986     0.986
## predict47      0.988     0.988     0.988     0.987     0.987     0.987
## predict48      0.989     0.989     0.989     0.989     0.989     0.989
## predict49      0.990     0.990     0.990     0.990     0.990     0.990
## predict50      0.991     0.991     0.991     0.991     0.991     0.991
## predict51      0.992     0.992     0.992     0.992     0.992     0.992
## predict52      0.993     0.993     0.993     0.993     0.993     0.993
## predict53      0.994     0.994     0.994     0.994     0.994     0.994
## predict54      0.995     0.995     0.995     0.994     0.994     0.994
## predict55      0.995     0.995     0.995     0.995     0.995     0.995
## predict56      0.996     0.996     0.996     0.996     0.996     0.996
## predict57      0.996     0.996     0.996     0.996     0.996     0.996
## predict58      0.997     0.997     0.997     0.997     0.997     0.997
## predict59      0.997     0.997     0.997     0.997     0.997     0.997
## predict60      0.998     0.998     0.998     0.998     0.998     0.997
## predict61      0.998     0.998     0.998     0.998     0.998     0.998
## predict62      0.998     0.998     0.998     0.998     0.998     0.998
## predict63      0.999     0.999     0.998     0.998     0.998     0.998
## predict64      0.999     0.999     0.999     0.999     0.999     0.999
## predict65      0.999     0.999     0.999     0.999     0.999     0.999
## predict66      0.999     0.999     0.999     0.999     0.999     0.999
## predict67      0.999     0.999     0.999     0.999     0.999     0.999
## predict68      0.999     0.999     0.999     0.999     0.999     0.999
## predict69      0.999     0.999     0.999     0.999     0.999     0.999
## predict70      1.000     1.000     1.000     1.000     1.000     0.999
## predict71      1.000     1.000     1.000     1.000     1.000     1.000
## predict72      1.000     1.000     1.000     1.000     1.000     1.000
## predict73      1.000     1.000     1.000     1.000     1.000     1.000
## predict74      1.000     1.000     1.000     1.000     1.000     1.000
## predict75      1.000     1.000     1.000     1.000     1.000     1.000
## predict76      1.000     1.000     1.000     1.000     1.000     1.000
## predict77      1.000     1.000     1.000     1.000     1.000     1.000
## predict78      1.000     1.000     1.000     1.000     1.000     1.000
## predict79      1.000     1.000     1.000     1.000     1.000     1.000
## predict80      1.000     1.000     1.000     1.000     1.000     1.000
## predict81      1.000     1.000     1.000     1.000     1.000     1.000
## predict82      1.000     1.000     1.000     1.000     1.000     1.000
## predict83      1.000     1.000     1.000     1.000     1.000     1.000
## predict84      1.000     1.000     1.000     1.000     1.000     1.000
## predict85      1.000     1.000     1.000     1.000     1.000     1.000
## predict86      1.000     1.000     1.000     1.000     1.000     1.000
## predict87      1.000     1.000     1.000     1.000     1.000     1.000
## predict88      1.000     1.000     1.000     1.000     1.000     1.000
## predict89      1.000     1.000     1.000     1.000     1.000     1.000
## predict90      1.000     1.000     1.000     1.000     1.000     1.000
## predict91      1.000     1.000     1.000     1.000     1.000     1.000
## predict92      1.000     1.000     1.000     1.000     1.000     1.000
## predict93      1.000     1.000     1.000     1.000     1.000     1.000
## predict94      1.000     1.000     1.000     1.000     1.000     1.000
## predict95      1.000     1.000     1.000     1.000     1.000     1.000
## predict96      1.000     1.000     1.000     1.000     1.000     1.000
## predict97      1.000     1.000     1.000     1.000     1.000     1.000
## predict98      1.000     1.000     1.000     1.000     1.000     1.000
## predict99      1.000     1.000     1.000     1.000     1.000     1.000
## predict100     1.000     1.000     1.000     1.000     1.000     1.000
##            predict93 predict94 predict95 predict96 predict97 predict98
## g              0.825     0.825     0.825     0.825     0.825     0.825
## predict1       0.567     0.567     0.567     0.567     0.567     0.567
## predict2       0.608     0.608     0.608     0.608     0.608     0.608
## predict3       0.636     0.636     0.636     0.636     0.636     0.635
## predict4       0.661     0.661     0.661     0.661     0.660     0.660
## predict5       0.692     0.692     0.692     0.692     0.692     0.692
## predict6       0.720     0.720     0.720     0.720     0.719     0.719
## predict7       0.744     0.744     0.744     0.743     0.743     0.743
## predict8       0.766     0.766     0.766     0.766     0.766     0.766
## predict9       0.786     0.786     0.786     0.786     0.786     0.786
## predict10      0.803     0.803     0.803     0.803     0.803     0.803
## predict11      0.817     0.817     0.817     0.817     0.817     0.817
## predict12      0.831     0.831     0.831     0.831     0.831     0.830
## predict13      0.844     0.844     0.844     0.844     0.844     0.844
## predict14      0.855     0.855     0.855     0.855     0.854     0.854
## predict15      0.864     0.864     0.864     0.864     0.864     0.864
## predict16      0.873     0.873     0.873     0.873     0.873     0.872
## predict17      0.881     0.881     0.881     0.881     0.881     0.881
## predict18      0.889     0.889     0.889     0.889     0.889     0.889
## predict19      0.896     0.896     0.896     0.896     0.896     0.896
## predict20      0.903     0.903     0.903     0.902     0.902     0.902
## predict21      0.909     0.909     0.909     0.909     0.909     0.908
## predict22      0.915     0.914     0.914     0.914     0.914     0.914
## predict23      0.920     0.920     0.920     0.920     0.919     0.919
## predict24      0.925     0.924     0.924     0.924     0.924     0.924
## predict25      0.929     0.929     0.929     0.929     0.928     0.928
## predict26      0.933     0.933     0.933     0.933     0.933     0.932
## predict27      0.937     0.937     0.937     0.937     0.937     0.936
## predict28      0.941     0.941     0.941     0.941     0.941     0.940
## predict29      0.945     0.945     0.945     0.944     0.944     0.944
## predict30      0.948     0.948     0.948     0.948     0.948     0.948
## predict31      0.952     0.952     0.952     0.952     0.951     0.951
## predict32      0.955     0.955     0.955     0.955     0.955     0.954
## predict33      0.958     0.958     0.958     0.958     0.957     0.957
## predict34      0.961     0.961     0.960     0.960     0.960     0.960
## predict35      0.963     0.963     0.963     0.963     0.963     0.963
## predict36      0.966     0.966     0.966     0.966     0.966     0.965
## predict37      0.968     0.968     0.968     0.968     0.968     0.968
## predict38      0.971     0.971     0.971     0.971     0.971     0.970
## predict39      0.973     0.973     0.973     0.973     0.973     0.973
## predict40      0.975     0.975     0.975     0.975     0.975     0.975
## predict41      0.977     0.977     0.977     0.977     0.977     0.977
## predict42      0.979     0.979     0.979     0.979     0.979     0.979
## predict43      0.981     0.981     0.981     0.981     0.981     0.981
## predict44      0.983     0.983     0.983     0.983     0.982     0.982
## predict45      0.984     0.984     0.984     0.984     0.984     0.984
## predict46      0.986     0.986     0.986     0.986     0.986     0.985
## predict47      0.987     0.987     0.987     0.987     0.987     0.987
## predict48      0.988     0.988     0.988     0.988     0.988     0.988
## predict49      0.990     0.990     0.990     0.990     0.989     0.989
## predict50      0.991     0.991     0.991     0.991     0.991     0.991
## predict51      0.992     0.992     0.992     0.992     0.992     0.992
## predict52      0.993     0.993     0.993     0.993     0.993     0.993
## predict53      0.994     0.994     0.993     0.993     0.993     0.993
## predict54      0.994     0.994     0.994     0.994     0.994     0.994
## predict55      0.995     0.995     0.995     0.995     0.995     0.995
## predict56      0.996     0.996     0.995     0.995     0.995     0.995
## predict57      0.996     0.996     0.996     0.996     0.996     0.996
## predict58      0.997     0.997     0.997     0.997     0.996     0.996
## predict59      0.997     0.997     0.997     0.997     0.997     0.997
## predict60      0.997     0.997     0.997     0.997     0.997     0.997
## predict61      0.998     0.998     0.998     0.998     0.998     0.998
## predict62      0.998     0.998     0.998     0.998     0.998     0.998
## predict63      0.998     0.998     0.998     0.998     0.998     0.998
## predict64      0.999     0.999     0.999     0.999     0.998     0.998
## predict65      0.999     0.999     0.999     0.999     0.999     0.999
## predict66      0.999     0.999     0.999     0.999     0.999     0.999
## predict67      0.999     0.999     0.999     0.999     0.999     0.999
## predict68      0.999     0.999     0.999     0.999     0.999     0.999
## predict69      0.999     0.999     0.999     0.999     0.999     0.999
## predict70      0.999     0.999     0.999     0.999     0.999     0.999
## predict71      1.000     1.000     1.000     1.000     0.999     0.999
## predict72      1.000     1.000     1.000     1.000     1.000     1.000
## predict73      1.000     1.000     1.000     1.000     1.000     1.000
## predict74      1.000     1.000     1.000     1.000     1.000     1.000
## predict75      1.000     1.000     1.000     1.000     1.000     1.000
## predict76      1.000     1.000     1.000     1.000     1.000     1.000
## predict77      1.000     1.000     1.000     1.000     1.000     1.000
## predict78      1.000     1.000     1.000     1.000     1.000     1.000
## predict79      1.000     1.000     1.000     1.000     1.000     1.000
## predict80      1.000     1.000     1.000     1.000     1.000     1.000
## predict81      1.000     1.000     1.000     1.000     1.000     1.000
## predict82      1.000     1.000     1.000     1.000     1.000     1.000
## predict83      1.000     1.000     1.000     1.000     1.000     1.000
## predict84      1.000     1.000     1.000     1.000     1.000     1.000
## predict85      1.000     1.000     1.000     1.000     1.000     1.000
## predict86      1.000     1.000     1.000     1.000     1.000     1.000
## predict87      1.000     1.000     1.000     1.000     1.000     1.000
## predict88      1.000     1.000     1.000     1.000     1.000     1.000
## predict89      1.000     1.000     1.000     1.000     1.000     1.000
## predict90      1.000     1.000     1.000     1.000     1.000     1.000
## predict91      1.000     1.000     1.000     1.000     1.000     1.000
## predict92      1.000     1.000     1.000     1.000     1.000     1.000
## predict93      1.000     1.000     1.000     1.000     1.000     1.000
## predict94      1.000     1.000     1.000     1.000     1.000     1.000
## predict95      1.000     1.000     1.000     1.000     1.000     1.000
## predict96      1.000     1.000     1.000     1.000     1.000     1.000
## predict97      1.000     1.000     1.000     1.000     1.000     1.000
## predict98      1.000     1.000     1.000     1.000     1.000     1.000
## predict99      1.000     1.000     1.000     1.000     1.000     1.000
## predict100     1.000     1.000     1.000     1.000     1.000     1.000
##            predict99 predict100
## g              0.824      0.824
## predict1       0.567      0.567
## predict2       0.608      0.608
## predict3       0.635      0.635
## predict4       0.660      0.660
## predict5       0.691      0.691
## predict6       0.719      0.719
## predict7       0.743      0.743
## predict8       0.765      0.765
## predict9       0.786      0.786
## predict10      0.803      0.803
## predict11      0.817      0.817
## predict12      0.830      0.830
## predict13      0.843      0.843
## predict14      0.854      0.854
## predict15      0.864      0.864
## predict16      0.872      0.872
## predict17      0.881      0.881
## predict18      0.888      0.888
## predict19      0.896      0.896
## predict20      0.902      0.902
## predict21      0.908      0.908
## predict22      0.914      0.914
## predict23      0.919      0.919
## predict24      0.924      0.924
## predict25      0.928      0.928
## predict26      0.932      0.932
## predict27      0.936      0.936
## predict28      0.940      0.940
## predict29      0.944      0.944
## predict30      0.948      0.948
## predict31      0.951      0.951
## predict32      0.954      0.954
## predict33      0.957      0.957
## predict34      0.960      0.960
## predict35      0.963      0.963
## predict36      0.965      0.965
## predict37      0.968      0.968
## predict38      0.970      0.970
## predict39      0.973      0.973
## predict40      0.975      0.975
## predict41      0.977      0.977
## predict42      0.979      0.979
## predict43      0.981      0.981
## predict44      0.982      0.982
## predict45      0.984      0.984
## predict46      0.985      0.985
## predict47      0.987      0.987
## predict48      0.988      0.988
## predict49      0.989      0.989
## predict50      0.991      0.990
## predict51      0.992      0.992
## predict52      0.992      0.992
## predict53      0.993      0.993
## predict54      0.994      0.994
## predict55      0.995      0.995
## predict56      0.995      0.995
## predict57      0.996      0.996
## predict58      0.996      0.996
## predict59      0.997      0.997
## predict60      0.997      0.997
## predict61      0.998      0.998
## predict62      0.998      0.998
## predict63      0.998      0.998
## predict64      0.998      0.998
## predict65      0.999      0.999
## predict66      0.999      0.999
## predict67      0.999      0.999
## predict68      0.999      0.999
## predict69      0.999      0.999
## predict70      0.999      0.999
## predict71      0.999      0.999
## predict72      1.000      1.000
## predict73      1.000      1.000
## predict74      1.000      1.000
## predict75      1.000      1.000
## predict76      1.000      1.000
## predict77      1.000      1.000
## predict78      1.000      1.000
## predict79      1.000      1.000
## predict80      1.000      1.000
## predict81      1.000      1.000
## predict82      1.000      1.000
## predict83      1.000      1.000
## predict84      1.000      1.000
## predict85      1.000      1.000
## predict86      1.000      1.000
## predict87      1.000      1.000
## predict88      1.000      1.000
## predict89      1.000      1.000
## predict90      1.000      1.000
## predict91      1.000      1.000
## predict92      1.000      1.000
## predict93      1.000      1.000
## predict94      1.000      1.000
## predict95      1.000      1.000
## predict96      1.000      1.000
## predict97      1.000      1.000
## predict98      1.000      1.000
## predict99      1.000      1.000
## predict100     1.000      1.000
#plots
glmnet_preds %>% 
  ggplot(aes(predict45, g)) +
  geom_point() +
  geom_smooth()
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

glmnet_preds %>% 
  ggplot(aes(predict14, g)) +
  geom_point() +
  geom_smooth()
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

#fit on entire sample
#with the same penalty values
set.seed(1)
glmnet_fit_same_penalty = cv.glmnet(
  x = MMPI_subset[-1] %>% as.matrix(),
  y = MMPI_subset$g,
  nfolds = 10,
  lambda = glmnet_lambdas
)

#derive data for plotting
glmnet_summary = tibble(
  #penalty values
  penalty = glmnet_lambdas,
  
  #get the item counts in full fit
  items = coef.glmnet(glmnet_fit_same_penalty, s = glmnet_lambdas) %>% as.matrix() %>% as.data.frame() %>% map_int(~sum(.!=0)),
  #compute correlations on the OOS rows
  r_cv = glmnet_preds[-1] %>% map_dbl(~cor(., glmnet_preds$g)),
  r2_cv = r_cv^2
)

#plot
glmnet_summary %>% 
  ggplot(aes(items, r_cv)) +
  geom_line() +
  scale_x_continuous("Items in prediction model", breaks = seq(0, 600, by = 25)) +
  scale_y_continuous("Correlation to test set (cross-validation)", breaks = seq(-1, 1, by = .05))

GG_save("figs/items_accuracy.png")

Random Forest

#make a model
#use ranger
ves_model <- 
  rand_forest(
    mode = "regression",
    trees = 100,
    mtry = tune()
    ) %>% 
  set_engine("ranger")

#make workflow
ves_wf <- 
  workflow() %>% 
  add_model(ves_model) %>% 
  add_recipe(ves_recipe)

#fit
ves_fit_rf <- cache_object({
  ves_wf %>% 
  tune_grid(
    resamples = ves_folds,
    grid = 25,
    control = control_grid(
      save_pred = TRUE
    )
  )
}, filename = "cache/ves_fit_rf.rds")
## Cache found, reading object from disk
#metrics
collect_metrics(ves_fit_rf) %>% 
  filter(.metric == "rsq") %>% 
  arrange(.metric)
collect_metrics(ves_fit_rf) %>% 
  ggplot(aes(mtry, mean)) +
  geom_line() +
  facet_wrap(".metric")

#plot out of sample predictions
ves_fit_rf %>% 
  collect_predictions(parameters = select_best(ves_fit_rf, metric = "rsq")) %>% 
  ggplot(aes(.pred, g)) +
  geom_point() +
  geom_smooth() +
  xlab("Prediction (out of sample)") +
  ylab("g")
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

ggsave("figs/ves_scatter_rf.png")
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
#numerical
ves_fit_rf %>% 
  collect_predictions(parameters = select_best(ves_fit_rf, metric = "rsq")) %$% 
  cor.test(.pred, g)
## 
##  Pearson's product-moment correlation
## 
## data:  .pred and g
## t = 81, df = 4318, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.766 0.790
## sample estimates:
##   cor 
## 0.778

Meta

#save data
d %>% write_rds("data/data_out.rds")
d %>% writexl::write_xlsx("data/data_out.xlsx")

#versions
write_sessioninfo()
## R version 4.0.1 (2020-06-06)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Linux Mint 19.3
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=de_DE.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=de_DE.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] glmnet_4.0-2          osfr_0.2.8            yardstick_0.0.6      
##  [4] workflows_0.1.1       tune_0.1.0            rsample_0.0.6        
##  [7] recipes_0.1.12        parsnip_0.1.1         infer_0.5.1          
## [10] dials_0.0.6           scales_1.1.1          broom_0.5.6          
## [13] tidymodels_0.1.0      doFuture_0.9.0        iterators_1.0.12     
## [16] foreach_1.5.0         globals_0.12.5        future_1.17.0        
## [19] mirt_1.32.1           readxl_1.3.1          haven_2.3.1          
## [22] ggeffects_0.14.3      rms_5.1-4             SparseM_1.78         
## [25] kirkegaard_2020-07-02 metafor_2.4-0         Matrix_1.2-18        
## [28] psych_1.9.12.31       magrittr_1.5          assertthat_0.2.1     
## [31] weights_1.0.1         mice_3.9.0            gdata_2.18.0         
## [34] Hmisc_4.4-0           Formula_1.2-3         survival_3.1-12      
## [37] lattice_0.20-41       forcats_0.5.0         stringr_1.4.0        
## [40] dplyr_0.8.99.9003     purrr_0.3.4           readr_1.3.1          
## [43] tidyr_1.1.0           tibble_3.0.1          ggplot2_3.3.2        
## [46] tidyverse_1.3.0       pacman_0.5.1         
## 
## loaded via a namespace (and not attached):
##   [1] SnowballC_0.7.0       GGally_1.5.0          Rcsdp_0.1.57.1       
##   [4] acepack_1.4.1         knitr_1.29            dygraphs_1.1.1.6     
##   [7] multcomp_1.4-13       data.table_1.12.8     rpart_4.1-15         
##  [10] inline_0.3.15         hardhat_0.1.2         generics_0.0.2       
##  [13] GPfit_1.0-8           callr_3.4.3           TH.data_1.0-10       
##  [16] polspline_1.1.19      tokenizers_0.2.1      xml2_1.3.2           
##  [19] lubridate_1.7.9       httpuv_1.5.2          StanHeaders_2.19.2   
##  [22] gower_0.2.1           xfun_0.15             hms_0.5.3            
##  [25] bayesplot_1.7.1       evaluate_0.14         promises_1.1.0       
##  [28] fansi_0.4.1           dbplyr_1.4.4          igraph_1.2.5         
##  [31] DBI_1.1.0             tmvnsim_1.0-2         htmlwidgets_1.5.1    
##  [34] reshape_0.8.8         ellipsis_0.3.1        crosstalk_1.1.0.1    
##  [37] backports_1.1.8       insight_0.8.4         permute_0.9-5        
##  [40] markdown_1.1          vctrs_0.3.1           quantreg_5.55        
##  [43] sjlabelled_1.1.4      withr_2.2.0           checkmate_2.0.0      
##  [46] vegan_2.5-6           xts_0.12-0            prettyunits_1.1.1    
##  [49] mnormt_2.0.1          cluster_2.1.0         crayon_1.3.4         
##  [52] crul_0.9.0            pkgconfig_2.0.3       labeling_0.3         
##  [55] nlme_3.1-147          nnet_7.3-14           rlang_0.4.6          
##  [58] lifecycle_0.2.0       miniUI_0.1.1.1        psychometric_2.2     
##  [61] colourpicker_1.0      MatrixModels_0.4-1    sandwich_2.5-1       
##  [64] httpcode_0.3.0        modelr_0.1.8          tidytext_0.2.4       
##  [67] cellranger_1.1.0      matrixStats_0.56.0    loo_2.2.0            
##  [70] boot_1.3-25           zoo_1.8-8             reprex_0.3.0         
##  [73] base64enc_0.1-3       ggridges_0.5.2        processx_3.4.2       
##  [76] png_0.1-7             pROC_1.16.2           blob_1.2.1           
##  [79] shape_1.4.4           jpeg_0.1-8.1          shinystan_2.5.0      
##  [82] memoise_1.1.0         plyr_1.8.6            threejs_0.3.3        
##  [85] compiler_4.0.1        rstantools_2.0.0      RColorBrewer_1.1-2   
##  [88] lme4_1.1-23           cli_2.0.2             DiceDesign_1.8-1     
##  [91] listenv_0.8.0         janeaustenr_0.1.5     ps_1.3.3             
##  [94] htmlTable_2.0.0       MASS_7.3-51.6         mgcv_1.8-31          
##  [97] tidyselect_1.1.0      stringi_1.4.6         yaml_2.2.1           
## [100] ggrepel_0.8.2         latticeExtra_0.6-29   grid_4.0.1           
## [103] tidypredict_0.4.5     tools_4.0.1           rstudioapi_0.11      
## [106] foreign_0.8-79        GPArotation_2014.11-1 gridExtra_2.3        
## [109] prodlim_2019.11.13    farver_2.0.3          digest_0.6.25        
## [112] shiny_1.4.0.2         lava_1.6.7            Rcpp_1.0.4.6         
## [115] writexl_1.3           later_1.0.0           httr_1.4.1           
## [118] rsconnect_0.8.16      Deriv_4.0             colorspace_1.4-1     
## [121] rvest_0.3.5           fs_1.4.2              splines_4.0.1        
## [124] statmod_1.4.34        multilevel_2.6        shinythemes_1.1.2    
## [127] xtable_1.8-4          rstanarm_2.19.3       jsonlite_1.7.0       
## [130] nloptr_1.2.2.1        timeDate_3043.102     rstan_2.19.3         
## [133] dcurver_0.9.1         ipred_0.9-9           R6_2.4.1             
## [136] lhs_1.0.2             pillar_1.4.4          htmltools_0.5.0      
## [139] mime_0.9              glue_1.4.1            fastmap_1.0.1        
## [142] minqa_1.2.4           DT_0.13               class_7.3-17         
## [145] codetools_0.2-16      pkgbuild_1.0.8        mvtnorm_1.1-0        
## [148] furrr_0.1.0           curl_4.3              gtools_3.8.2         
## [151] tidyposterior_0.0.2   shinyjs_1.1           rmarkdown_2.3        
## [154] munsell_0.5.0         reshape2_1.4.4        gtable_0.3.0
#upload files to OSF
if (F) {
  osf_auth(read_lines("~/.config/osf_token"))
  osf_proj = osf_retrieve_node("https://osf.io/dbn4k/")
  osf_upload(osf_proj,
             path = c("notebook.Rmd", "notebook.html", "figs", "data"), 
             conflicts = "overwrite")
}