| title: “Distribucion poisson” |
| author: “Alejandro Medrano” |
| date: “19/6/2020” |
| output: html_document |
CASO: Una empresa electrónica observa que el número de componentes que fallan antes de cumplir 100 horas de funcionamiento es una variable aleatoria de Poisson. Si el número promedio de estos fallos es 8 1. ¿Cuál es la media de que falle un componente en 25 horas?
media <- 25 * 8 / 100
media
## [1] 2
prob.x <- round(dpois(0:9, lambda = media),4)
prob.x
## [1] 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361 0.0120 0.0034 0.0009 0.0002
prob.acum.x <- round(ppois(q = 0:9, lambda = media),4)
prob.acum.x
## [1] 0.1353 0.4060 0.6767 0.8571 0.9473 0.9834 0.9955 0.9989 0.9998 1.0000
tabla <- data.frame(1:10, 0:9, prob.x, prob.acum.x)
colnames(tabla) <- c("pos","x", "prob.x", "prob.acum.x")
tabla
## pos x prob.x prob.acum.x
## 1 1 0 0.1353 0.1353
## 2 2 1 0.2707 0.4060
## 3 3 2 0.2707 0.6767
## 4 4 3 0.1804 0.8571
## 5 5 4 0.0902 0.9473
## 6 6 5 0.0361 0.9834
## 7 7 6 0.0120 0.9955
## 8 8 7 0.0034 0.9989
## 9 9 8 0.0009 0.9998
## 10 10 9 0.0002 1.0000
i=2
tabla$prob.x[i] # i es el valor del vector
## [1] 0.2707
dpois(x=1, media)
## [1] 0.2706706
i=2
1 - tabla$prob.acum.x[i]
## [1] 0.594
1 - ppois(1, media)
## [1] 0.5939942
media1 <- 50 * 8 / 100
media1
## [1] 4
prob.x <- round(dpois(0:9, lambda = media1),4)
prob.x
## [1] 0.0183 0.0733 0.1465 0.1954 0.1954 0.1563 0.1042 0.0595 0.0298 0.0132
prob.acum.x <- round(ppois(q = 0:9, lambda = media1),4)
prob.acum.x
## [1] 0.0183 0.0916 0.2381 0.4335 0.6288 0.7851 0.8893 0.9489 0.9786 0.9919
tabla <- data.frame(1:10, 0:9, prob.x, prob.acum.x)
colnames(tabla) <- c("pos","x", "prob.x", "prob.acum.x")
tabla
## pos x prob.x prob.acum.x
## 1 1 0 0.0183 0.0183
## 2 2 1 0.0733 0.0916
## 3 3 2 0.1465 0.2381
## 4 4 3 0.1954 0.4335
## 5 5 4 0.1954 0.6288
## 6 6 5 0.1563 0.7851
## 7 7 6 0.1042 0.8893
## 8 8 7 0.0595 0.9489
## 9 9 8 0.0298 0.9786
## 10 10 9 0.0132 0.9919
dpois(x=2, media1)
## [1] 0.1465251
8.¿Cuál es la probabilidad de que falle tres o más componentes en 50 horas?
i=3
1 - tabla$prob.acum.x[i]
## [1] 0.7619
media2 <- 125 * 8 / 100
media2
## [1] 10
prob.x <- round(dpois(0:9, lambda = media2),4)
prob.x
## [1] 0.0000 0.0005 0.0023 0.0076 0.0189 0.0378 0.0631 0.0901 0.1126 0.1251
prob.acum.x <- round(ppois(q = 0:9, lambda = media2),4)
prob.acum.x
## [1] 0.0000 0.0005 0.0028 0.0103 0.0293 0.0671 0.1301 0.2202 0.3328 0.4579
tabla <- data.frame(1:10, 0:9, prob.x, prob.acum.x)
colnames(tabla) <- c("pos","x", "prob.x", "prob.acum.x")
tabla
## pos x prob.x prob.acum.x
## 1 1 0 0.0000 0.0000
## 2 2 1 0.0005 0.0005
## 3 3 2 0.0023 0.0028
## 4 4 3 0.0076 0.0103
## 5 5 4 0.0189 0.0293
## 6 6 5 0.0378 0.0671
## 7 7 6 0.0631 0.1301
## 8 8 7 0.0901 0.2202
## 9 9 8 0.1126 0.3328
## 10 10 9 0.1251 0.4579
dpois(x=2, media2)
## [1] 0.002269996
12.¿Cuál es la probabilidad de que falle tres o más componentes en 125 horas?
i=3
1 - tabla$prob.acum.x[i]
## [1] 0.9972
media <- 125*8/100
media
## [1] 10
ppois(5,media) - ppois(3, media)
## [1] 0.05674991