title: “Dist normal” author: “Alejandro Medrano” date: “19/6/2020” output: html_document —Objetivo Realizar algunos cálculos de probabilidad haciendo uso de la Distribución Normal Estándard y mediante la función dnorm() Las librerías

library(mosaic)
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Loading required package: lattice
## Loading required package: ggformula
## Loading required package: ggplot2
## Loading required package: ggstance
## 
## Attaching package: 'ggstance'
## The following objects are masked from 'package:ggplot2':
## 
##     geom_errorbarh, GeomErrorbarh
## 
## New to ggformula?  Try the tutorials: 
##  learnr::run_tutorial("introduction", package = "ggformula")
##  learnr::run_tutorial("refining", package = "ggformula")
## Loading required package: mosaicData
## Loading required package: Matrix
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Note: If you use the Matrix package, be sure to load it BEFORE loading mosaic.
## 
## Have you tried the ggformula package for your plots?
## 
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following object is masked from 'package:ggplot2':
## 
##     stat
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
library(dplyr)
  1. Encontar la probabildiad para cuando p(z≤1) con μ=0 y σ=1. Se usa pnorm() para encontrar probabilidad acumulada
pnorm(1, mean = 0, sd= 1)
## [1] 0.8413447

Visualizar la distribución de probabilidad normal estándard para cuando μ=0 y σ=1

plotDist("norm", mean = 0, sd = 1, groups = x < 1, type = "h")

2. Encontar la probabilidad para cuando p(−0.50≤x≤1.25) con μ=0 y σ=1. Se usa pnorm() para encontrar probabilidad acumulada y restando p(1.25)−p(−0.50)

pnorm(1.25, mean = 0, sd= 1) -pnorm(-0.50, mean = 0, sd= 1)
## [1] 0.5858127

####Visualizar la distribución de probabilidad normal estándard para cuando μ=0 y σ=1

plotDist("norm", mean = 0, sd = 1, groups = x > -0.50 & x < 1.25, type = "h")

3. Encontar la probabilidad para cuando p(z≥1.58) con μ=0 y σ=1. Se usa pnorm() para encontrar probabilidad acumulada y restando p(x>1.58)=1−p(x≤1.58)

1 - pnorm(c(1.58), mean = 0, sd= 1)
## [1] 0.05705343
pnorm(c(1.58), mean = 0, sd= 1, lower.tail= F)
## [1] 0.05705343

Visualizar la distribución de probabilidad normal estándard para cuando μ=0 y σ=1

plotDist("norm", mean = 0, sd = 1, groups = x > 1.58, type ="h")

Distribución de Probabilidad Normal 1.Para cuando cuando media es diferente de cero 2.Desviación estándard es diferente de 1 Realizar estos ejemplos: … Calcular probabilidades en cualquier distribucion normal, se tiene una distribución en la que: μ=10 y σ=2 ¿Cual es la probabilidad de que la variable aleatoria x este entre 10 y 14?

#primero convertir y luego
pnorm(2, mean=0, sd=1)-pnorm(0, mean=0, sd=1)
## [1] 0.4772499
pnorm(14, mean=10, sd=2)-pnorm(10, mean=10, sd=2)
## [1] 0.4772499

Visualizar la distribución de probabilidad normal estándard para cuando μ=10 y σ=2

plotDist("norm", mean = 10, sd = 2, groups = x > 10 & x < 14, type ="h")

pnorm(14, mean = 10, sd = 2) - pnorm(10, mean = 10, sd = 2)
## [1] 0.4772499

¿Cual es la probabilidad de que sea mayor que 12?

plotDist("norm", mean = 10, sd = 2, groups = x > 12, type ="h")

Opción 1

1 - pnorm(q=12, mean = 10, sd = 2)
## [1] 0.1586553

Opcion 2

pnorm(q=12, mean = 10, sd = 2, lower.tail = FALSE)
## [1] 0.1586553