ISLR Chapter 3: Linear Regression

Problem 2.

Carefully explain the differences between the KNN classifier and KNN regression methods.

The KNN classifier method is typically used to solve classification problems with a qualitative response. The KNN class is solved by identifying the neighborhood of \(x0\) and then estimating the conditional probability \(P(Y=j|X=x0)\) for class \(j\) as the fraction of points in the neighborhood whose response values equal \(j\).

The KNN regression method is used to solve regression problems with a quantitative response by again identifying the neighborhood of \(x0\) and then estimating \(f(x0)\) as the average of all the training responses in the neighborhood.

Problem 9.

This question involves the use of multiple linear regression on the Auto data set.

library(ISLR)
data(Auto)
summary(Auto)
##       mpg          cylinders      displacement     horsepower        weight    
##  Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0   Min.   :1613  
##  1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0   1st Qu.:2225  
##  Median :22.75   Median :4.000   Median :151.0   Median : 93.5   Median :2804  
##  Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5   Mean   :2978  
##  3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0   3rd Qu.:3615  
##  Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0   Max.   :5140  
##                                                                                
##   acceleration        year           origin                      name    
##  Min.   : 8.00   Min.   :70.00   Min.   :1.000   amc matador       :  5  
##  1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000   ford pinto        :  5  
##  Median :15.50   Median :76.00   Median :1.000   toyota corolla    :  5  
##  Mean   :15.54   Mean   :75.98   Mean   :1.577   amc gremlin       :  4  
##  3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000   amc hornet        :  4  
##  Max.   :24.80   Max.   :82.00   Max.   :3.000   chevrolet chevette:  4  
##                                                  (Other)           :365
str(Auto)
## 'data.frame':    392 obs. of  9 variables:
##  $ mpg         : num  18 15 18 16 17 15 14 14 14 15 ...
##  $ cylinders   : num  8 8 8 8 8 8 8 8 8 8 ...
##  $ displacement: num  307 350 318 304 302 429 454 440 455 390 ...
##  $ horsepower  : num  130 165 150 150 140 198 220 215 225 190 ...
##  $ weight      : num  3504 3693 3436 3433 3449 ...
##  $ acceleration: num  12 11.5 11 12 10.5 10 9 8.5 10 8.5 ...
##  $ year        : num  70 70 70 70 70 70 70 70 70 70 ...
##  $ origin      : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ name        : Factor w/ 304 levels "amc ambassador brougham",..: 49 36 231 14 161 141 54 223 241 2 ...

(a) Produce a scatterplot matrix which includes all of the variables in the data set.

pairs(Auto)

(b) Compute the matrix of correlations between the variables using the function cor(). You will need to exclude the name variable, cor() which is qualitative.

cor(Auto[1:8])
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
##              acceleration       year     origin
## mpg             0.4233285  0.5805410  0.5652088
## cylinders      -0.5046834 -0.3456474 -0.5689316
## displacement   -0.5438005 -0.3698552 -0.6145351
## horsepower     -0.6891955 -0.4163615 -0.4551715
## weight         -0.4168392 -0.3091199 -0.5850054
## acceleration    1.0000000  0.2903161  0.2127458
## year            0.2903161  1.0000000  0.1815277
## origin          0.2127458  0.1815277  1.0000000

(c) Use the lm() function to perform a multiple linear regression with mpg as the response and all other variables except name as the predictors. Use the summary() function to print the results. Comment on the output.

Auto_fit<-lm(mpg~.-name, data = Auto)
summary(Auto_fit)
## 
## Call:
## lm(formula = mpg ~ . - name, data = Auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.5903 -2.1565 -0.1169  1.8690 13.0604 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -17.218435   4.644294  -3.707  0.00024 ***
## cylinders     -0.493376   0.323282  -1.526  0.12780    
## displacement   0.019896   0.007515   2.647  0.00844 ** 
## horsepower    -0.016951   0.013787  -1.230  0.21963    
## weight        -0.006474   0.000652  -9.929  < 2e-16 ***
## acceleration   0.080576   0.098845   0.815  0.41548    
## year           0.750773   0.050973  14.729  < 2e-16 ***
## origin         1.426141   0.278136   5.127 4.67e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared:  0.8215, Adjusted R-squared:  0.8182 
## F-statistic: 252.4 on 7 and 384 DF,  p-value: < 2.2e-16

For instance:
i. Is there a relationship between the predictors and the response?

Based on the p-value of the f-statistic (<2.2e-16), there is a relationship between mpg and at least one other variable.

ii. Which predictors appear to have a statistically significant relationship to the response?
Based on the results of the model, the significant predictors of mpg are displacement, weight, year, and origin with p-values below .05.

iii. What does the coefficient for the year variable suggest?
For every unit increase in year results in 0.750773 increase in mpg, meaning vehicles are more fuel efficient with each year.

(d) Use the plot() function to produce diagnostic plots of the linear regression fit. Comment on any problems you see with the fit. Do the residual plots suggest any unusually large outliers? Does the leverage plot identify any observations with unusually high leverage?

par(mfrow = c(2,2))
plot(Auto_fit)

The plots are indicating the presence of outliers. The Residuals vs. Fitted plot has a slight dip in the line, which suggests non-linearity. Each plot is identifying outliers for observations 323, 327, and 326. In Cook’s D plot, the bottom right-hand point is showing observation 14 with high leverage.

(e) Use the * and : symbols to fit linear regression models with interaction effects. Do any interactions appear to be statistically significant?
Based on the correlation plot in (b) above, there appears to be a strong correlation (\(>=90%\)) between:
cylinders * displacement 0.9508233
cylinders * weight 0.8975273
displacement * weight 0.9329944
horsepower * displacement 0.8972570
Therefore, I will re-fit the model to these predictors including their interactions.

Auto_fit_int<-lm(mpg~cylinders*displacement + cylinders*weight + displacement*weight + horsepower*displacement, data = Auto[,1:8])

summary(Auto_fit_int)
## 
## Call:
## lm(formula = mpg ~ cylinders * displacement + cylinders * weight + 
##     displacement * weight + horsepower * displacement, data = Auto[, 
##     1:8])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11.1599  -2.1702  -0.3695   1.8505  16.9403 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              5.888e+01  6.574e+00   8.956  < 2e-16 ***
## cylinders               -5.920e-01  2.013e+00  -0.294   0.7689    
## displacement            -7.692e-02  3.980e-02  -1.933   0.0540 .  
## weight                  -5.043e-03  2.934e-03  -1.719   0.0865 .  
## horsepower              -1.890e-01  3.002e-02  -6.297 8.32e-10 ***
## cylinders:displacement   4.489e-04  4.220e-03   0.106   0.9153    
## cylinders:weight         3.482e-04  6.924e-04   0.503   0.6153    
## displacement:weight      3.078e-07  9.623e-06   0.032   0.9745    
## displacement:horsepower  4.448e-04  1.065e-04   4.178 3.65e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.869 on 383 degrees of freedom
## Multiple R-squared:  0.7593, Adjusted R-squared:  0.7543 
## F-statistic:   151 on 8 and 383 DF,  p-value: < 2.2e-16

Based on the model, the interaction of displacement and horsepower appears to be statistically significant with a low p-value of 3.65e-05.

(f) Try a few different transformations of the variables, such as \(log(X), √ X, X2\). Comment on your findings.
Since horsepower was significant in my second model Auto_fit_int and not the original, I will conduct the transformations on this predictor.

par(mfrow = c(2,2))
plot((Auto$horsepower), Auto$mpg, xlab = "horsepower", ylab ="MPG")
plot(log(Auto$horsepower), Auto$mpg, xlab = "log(horsepower)", ylab ="MPG")
plot(sqrt(Auto$horsepower), Auto$mpg, xlab = "sqrt(horsepower)", ylab ="MPG")
plot((Auto$horsepower)^2, Auto$mpg, xlab = "horsepower^2", ylab ="MPG")

Auto_fit_log<-lm(mpg~displacement + weight + year + origin + log(horsepower), data=Auto)
summary(Auto_fit_log)
## 
## Call:
## lm(formula = mpg ~ displacement + weight + year + origin + log(horsepower), 
##     data = Auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.8091 -1.9147 -0.1579  1.8765 12.5231 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      9.2041460  6.1865858   1.488  0.13763    
## displacement     0.0166532  0.0049675   3.352  0.00088 ***
## weight          -0.0054967  0.0005671  -9.693  < 2e-16 ***
## year             0.7163068  0.0488094  14.676  < 2e-16 ***
## origin           1.5005416  0.2608891   5.752  1.8e-08 ***
## log(horsepower) -6.4123276  1.1128868  -5.762  1.7e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.215 on 386 degrees of freedom
## Multiple R-squared:  0.8325, Adjusted R-squared:  0.8303 
## F-statistic: 383.7 on 5 and 386 DF,  p-value: < 2.2e-16

Based on the results of the Auto_fit_log model, the originally significant predictors remain significant along with the log(horsepower).

Problem 10.

This question should be answered using the Carseats data set.

library(ISLR)
summary(Carseats)
##      Sales          CompPrice       Income        Advertising    
##  Min.   : 0.000   Min.   : 77   Min.   : 21.00   Min.   : 0.000  
##  1st Qu.: 5.390   1st Qu.:115   1st Qu.: 42.75   1st Qu.: 0.000  
##  Median : 7.490   Median :125   Median : 69.00   Median : 5.000  
##  Mean   : 7.496   Mean   :125   Mean   : 68.66   Mean   : 6.635  
##  3rd Qu.: 9.320   3rd Qu.:135   3rd Qu.: 91.00   3rd Qu.:12.000  
##  Max.   :16.270   Max.   :175   Max.   :120.00   Max.   :29.000  
##    Population        Price        ShelveLoc        Age          Education   
##  Min.   : 10.0   Min.   : 24.0   Bad   : 96   Min.   :25.00   Min.   :10.0  
##  1st Qu.:139.0   1st Qu.:100.0   Good  : 85   1st Qu.:39.75   1st Qu.:12.0  
##  Median :272.0   Median :117.0   Medium:219   Median :54.50   Median :14.0  
##  Mean   :264.8   Mean   :115.8                Mean   :53.32   Mean   :13.9  
##  3rd Qu.:398.5   3rd Qu.:131.0                3rd Qu.:66.00   3rd Qu.:16.0  
##  Max.   :509.0   Max.   :191.0                Max.   :80.00   Max.   :18.0  
##  Urban       US     
##  No :118   No :142  
##  Yes:282   Yes:258  
##                     
##                     
##                     
## 

(a) Fit a multiple regression model to predict Sales using Price , Urban, and US.

fit<-lm(Sales~Price+Urban+US, data = Carseats)
summary(fit)
## 
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9206 -1.6220 -0.0564  1.5786  7.0581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.043469   0.651012  20.036  < 2e-16 ***
## Price       -0.054459   0.005242 -10.389  < 2e-16 ***
## UrbanYes    -0.021916   0.271650  -0.081    0.936    
## USYes        1.200573   0.259042   4.635 4.86e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2335 
## F-statistic: 41.52 on 3 and 396 DF,  p-value: < 2.2e-16

(b) Provide an interpretation of each coefficient in the model. Be careful—some of the variables in the model are qualitative!
Based on the results of the model, the significant predictors of Sales are Price and US. For every unit ($1) increase in Price, Sales decrease by $54.Sales within the US are $1,200 higher than those outside the US. Urban is not a significant predictor of Sales.

(c) Write out the model in equation form, being careful to handle the qualitative variables properly.
\(Sales = 13.043469 - (0.0544588)Price - (0.021916)Urban_{Yes} + (1.200573)US_{Yes} + ε\)

(d) For which of the predictors can you reject the null hypothesis \(H_0 : \beta_j = 0\)?
Price and US

(e) On the basis of your response to the previous question, fit a smaller model that only uses the predictors for which there is evidence of association with the outcome.

fit2<-lm(Sales~Price+US, data = Carseats)
summary(fit2)
## 
## Call:
## lm(formula = Sales ~ Price + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9269 -1.6286 -0.0574  1.5766  7.0515 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.03079    0.63098  20.652  < 2e-16 ***
## Price       -0.05448    0.00523 -10.416  < 2e-16 ***
## USYes        1.19964    0.25846   4.641 4.71e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2354 
## F-statistic: 62.43 on 2 and 397 DF,  p-value: < 2.2e-16

(f) How well do the models in (a) and (e) fit the data?
The model is explained by approximately 23% of the variance in Sales for both models in (a) and (e), which is not a strong fit.

(g) Using the model from (e), obtain 95% confidence intervals for the coefficient(s).

confint(fit2)
##                   2.5 %      97.5 %
## (Intercept) 11.79032020 14.27126531
## Price       -0.06475984 -0.04419543
## USYes        0.69151957  1.70776632

(h) Is there evidence of outliers or high leverage observations in the model from (e)?

par(mfrow=c(2,2))
plot(fit2)

It does not appear there are significant outliers in fit2, but there are a few observations that appear to show a higher leverage, though the standardized residual is not significantly different than the rest.

Problem 12.

This problem involves simple linear regression without an intercept.

(a) Recall that the coefficient estimate \(\hat{beta}\) for the linear regression of Y onto X without an intercept is given by (3.38). Under what circumstance is the coefficient estimate for the regression of X onto Y the same as the coefficient estimate for the regression of Y onto X?
The coefficient estimate of the regression of Y onto X is:
\(\hat{\beta} = \frac{\sum_ix_iy_i}{\sum_jx_j^2}\)

The coefficient estimate of the regression of X onto Y is:
\(\hat{\beta}' = \frac{\sum_ix_iy_i}{\sum_jy_j^2}\)

The coefficients are the same if \(\sum_jx_j^2 = \sum_jy_j^2\)

(b) Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is different from the coefficient estimate for the regression of Y onto X.

set.seed(1)
x = rnorm(100)
y = 2*x
y_lm_fit = lm(y~ x + 0)
x_lm_fit2 = lm(x~ y + 0)
summary(y_lm_fit)
## 
## Call:
## lm(formula = y ~ x + 0)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -3.776e-16 -3.378e-17  2.680e-18  6.113e-17  5.105e-16 
## 
## Coefficients:
##    Estimate Std. Error   t value Pr(>|t|)    
## x 2.000e+00  1.296e-17 1.543e+17   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.167e-16 on 99 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 2.382e+34 on 1 and 99 DF,  p-value: < 2.2e-16
summary(x_lm_fit2)
## 
## Call:
## lm(formula = x ~ y + 0)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.888e-16 -1.689e-17  1.339e-18  3.057e-17  2.552e-16 
## 
## Coefficients:
##   Estimate Std. Error   t value Pr(>|t|)    
## y 5.00e-01   3.24e-18 1.543e+17   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.833e-17 on 99 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 2.382e+34 on 1 and 99 DF,  p-value: < 2.2e-16

The regression coefficients are different for each linear regression, x 2.000e+00 and y 5.00e-01.

(c) Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is the same as the coefficient estimate for the regression of Y onto X.

set.seed(1)
x <- rnorm(100)
y <- -sample(x, 100)
sum(x^2)
## [1] 81.05509
sum(y^2)
## [1] 81.05509
y_lm_fit <- lm(y~ x + 0)
x_lm_fit2 <- lm(x~ y + 0)
summary(y_lm_fit)
## 
## Call:
## lm(formula = y ~ x + 0)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.2833 -0.6945 -0.1140  0.4995  2.1665 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)
## x  0.07768    0.10020   0.775     0.44
## 
## Residual standard error: 0.9021 on 99 degrees of freedom
## Multiple R-squared:  0.006034,   Adjusted R-squared:  -0.004006 
## F-statistic: 0.601 on 1 and 99 DF,  p-value: 0.4401
summary(x_lm_fit2)
## 
## Call:
## lm(formula = x ~ y + 0)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.2182 -0.4969  0.1595  0.6782  2.4017 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)
## y  0.07768    0.10020   0.775     0.44
## 
## Residual standard error: 0.9021 on 99 degrees of freedom
## Multiple R-squared:  0.006034,   Adjusted R-squared:  -0.004006 
## F-statistic: 0.601 on 1 and 99 DF,  p-value: 0.4401

In these results, the regression coefficients are the same for each linear regression, x 0.07768 and y 0.07768. Based on the response in (a), as long as the sum(x^2) = sum(y^2) we can expect the coefficient estimates to be the same as well for X onto Y and Y onto X.