library(readr)
datos <- read.csv("C:/Users/Aleja/Downloads/alumnos.deportes.2020.csv")
datos
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 1 1 Ana F FALSE FALSE FALSE FALSE FALSE FALSE
## 2 2 Antonio M FALSE FALSE FALSE FALSE FALSE FALSE
## 3 3 Aracely F FALSE FALSE FALSE FALSE FALSE TRUE
## 4 4 Carmen F FALSE TRUE FALSE FALSE FALSE FALSE
## 5 5 Eduardo M TRUE FALSE FALSE FALSE FALSE FALSE
## 6 6 Ernesto M FALSE TRUE FALSE FALSE FALSE FALSE
## 7 7 Gabino M FALSE TRUE FALSE FALSE FALSE FALSE
## 8 8 Gerardo M TRUE FALSE TRUE FALSE FALSE TRUE
## 9 9 Javier M FALSE TRUE FALSE FALSE FALSE FALSE
## 10 10 Jeorgina F FALSE TRUE FALSE FALSE FALSE FALSE
## 11 11 Juan M TRUE FALSE FALSE TRUE FALSE FALSE
## 12 12 Lalo M FALSE FALSE TRUE FALSE FALSE FALSE
## 13 13 Laura F FALSE TRUE FALSE FALSE FALSE FALSE
## 14 14 Lucy F TRUE FALSE TRUE TRUE FALSE FALSE
## 15 15 Luis M FALSE FALSE TRUE FALSE FALSE FALSE
## 16 16 Luisa F FALSE FALSE FALSE FALSE FALSE FALSE
## 17 17 Lupita F TRUE TRUE FALSE FALSE FALSE FALSE
## 18 18 Margarita F FALSE TRUE FALSE TRUE FALSE FALSE
## 19 19 Margarito M FALSE FALSE FALSE FALSE FALSE TRUE
## 20 20 Maria F FALSE TRUE FALSE FALSE FALSE FALSE
## 21 21 Memo M TRUE FALSE FALSE FALSE TRUE FALSE
## 22 22 Oscar M FALSE FALSE FALSE FALSE FALSE FALSE
## 23 23 Paco M TRUE FALSE TRUE FALSE TRUE FALSE
## 24 24 Patricia F TRUE FALSE FALSE TRUE FALSE FALSE
## 25 25 Paty F TRUE TRUE FALSE FALSE FALSE FALSE
## 26 26 Raul M TRUE FALSE FALSE FALSE FALSE FALSE
## 27 27 Romualdo M TRUE FALSE FALSE FALSE FALSE FALSE
## 28 28 Rosario F FALSE FALSE FALSE FALSE FALSE FALSE
## 29 29 Rubén M TRUE FALSE FALSE FALSE FALSE FALSE
## 30 30 Salvador M TRUE FALSE FALSE TRUE FALSE FALSE
## 31 31 Sandra F FALSE FALSE FALSE FALSE FALSE FALSE
## 32 32 Sandro M FALSE FALSE FALSE FALSE FALSE TRUE
## 33 33 Saul M TRUE FALSE TRUE FALSE FALSE FALSE
## 34 34 Yuri F TRUE FALSE FALSE FALSE FALSE FALSE
## 35 35 Arturo M FALSE FALSE FALSE FALSE FALSE FALSE
## 36 36 Angélica F TRUE TRUE TRUE FALSE FALSE FALSE
## 37 37 Arnulfo M FALSE FALSE TRUE FALSE FALSE FALSE
## 38 38 Bety F TRUE TRUE FALSE FALSE FALSE FALSE
## 39 39 Carlos M TRUE FALSE FALSE FALSE FALSE FALSE
## 40 40 Dagoberto M FALSE FALSE TRUE FALSE FALSE FALSE
## 41 41 Dany F TRUE TRUE FALSE FALSE FALSE FALSE
## 42 42 Dalia F TRUE FALSE FALSE FALSE FALSE FALSE
## 43 43 Efren M TRUE FALSE FALSE TRUE FALSE FALSE
## 44 44 Ernestina F TRUE FALSE TRUE FALSE TRUE FALSE
## 45 45 Fernando M TRUE FALSE FALSE TRUE FALSE FALSE
## 46 46 Fabián M FALSE TRUE TRUE FALSE FALSE FALSE
## 47 47 Fernanda F FALSE FALSE FALSE FALSE FALSE FALSE
## 48 48 Gabriela F FALSE FALSE FALSE FALSE FALSE FALSE
## 49 49 Gabriel M TRUE FALSE FALSE FALSE FALSE FALSE
## 50 50 Guille F TRUE FALSE FALSE FALSE TRUE FALSE
## 51 51 Jorge M TRUE TRUE FALSE FALSE FALSE FALSE
## 52 52 Lorenzo M TRUE FALSE TRUE FALSE FALSE FALSE
## 53 53 Mikaela F FALSE TRUE FALSE FALSE FALSE FALSE
## 54 54 Miguel M TRUE TRUE FALSE FALSE FALSE FALSE
## 55 55 Marcela F FALSE FALSE FALSE TRUE FALSE FALSE
## 56 56 Orlando M TRUE FALSE FALSE FALSE FALSE FALSE
## 57 57 Otilia F TRUE FALSE FALSE TRUE FALSE FALSE
## 58 58 Pedro M TRUE TRUE FALSE FALSE FALSE FALSE
## 59 59 Perla F FALSE FALSE FALSE FALSE FALSE FALSE
## 60 60 Raquel F TRUE TRUE FALSE FALSE FALSE FALSE
## 61 61 Susana F FALSE FALSE FALSE FALSE FALSE FALSE
## 62 62 Sandy F FALSE TRUE FALSE FALSE FALSE FALSE
## 63 63 Sotelo M FALSE FALSE TRUE TRUE FALSE FALSE
## 64 64 Tiburcio M FALSE FALSE FALSE TRUE FALSE FALSE
## 65 65 Teresa F FALSE FALSE FALSE FALSE FALSE FALSE
## 66 66 Walter F TRUE TRUE FALSE FALSE FALSE FALSE
## 67 67 Xóchitl F FALSE TRUE TRUE TRUE TRUE FALSE
n <- nrow(datos)
Se determinan los conjuntos según el género de la persona mediante la función subset() que permite filtrar datos. Hombres. Mujeres.
hombres <- subset(datos, sexo =='M')
mujeres <- subset(datos, sexo =='F')
hombres
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 2 2 Antonio M FALSE FALSE FALSE FALSE FALSE FALSE
## 5 5 Eduardo M TRUE FALSE FALSE FALSE FALSE FALSE
## 6 6 Ernesto M FALSE TRUE FALSE FALSE FALSE FALSE
## 7 7 Gabino M FALSE TRUE FALSE FALSE FALSE FALSE
## 8 8 Gerardo M TRUE FALSE TRUE FALSE FALSE TRUE
## 9 9 Javier M FALSE TRUE FALSE FALSE FALSE FALSE
## 11 11 Juan M TRUE FALSE FALSE TRUE FALSE FALSE
## 12 12 Lalo M FALSE FALSE TRUE FALSE FALSE FALSE
## 15 15 Luis M FALSE FALSE TRUE FALSE FALSE FALSE
## 19 19 Margarito M FALSE FALSE FALSE FALSE FALSE TRUE
## 21 21 Memo M TRUE FALSE FALSE FALSE TRUE FALSE
## 22 22 Oscar M FALSE FALSE FALSE FALSE FALSE FALSE
## 23 23 Paco M TRUE FALSE TRUE FALSE TRUE FALSE
## 26 26 Raul M TRUE FALSE FALSE FALSE FALSE FALSE
## 27 27 Romualdo M TRUE FALSE FALSE FALSE FALSE FALSE
## 29 29 Rubén M TRUE FALSE FALSE FALSE FALSE FALSE
## 30 30 Salvador M TRUE FALSE FALSE TRUE FALSE FALSE
## 32 32 Sandro M FALSE FALSE FALSE FALSE FALSE TRUE
## 33 33 Saul M TRUE FALSE TRUE FALSE FALSE FALSE
## 35 35 Arturo M FALSE FALSE FALSE FALSE FALSE FALSE
## 37 37 Arnulfo M FALSE FALSE TRUE FALSE FALSE FALSE
## 39 39 Carlos M TRUE FALSE FALSE FALSE FALSE FALSE
## 40 40 Dagoberto M FALSE FALSE TRUE FALSE FALSE FALSE
## 43 43 Efren M TRUE FALSE FALSE TRUE FALSE FALSE
## 45 45 Fernando M TRUE FALSE FALSE TRUE FALSE FALSE
## 46 46 Fabián M FALSE TRUE TRUE FALSE FALSE FALSE
## 49 49 Gabriel M TRUE FALSE FALSE FALSE FALSE FALSE
## 51 51 Jorge M TRUE TRUE FALSE FALSE FALSE FALSE
## 52 52 Lorenzo M TRUE FALSE TRUE FALSE FALSE FALSE
## 54 54 Miguel M TRUE TRUE FALSE FALSE FALSE FALSE
## 56 56 Orlando M TRUE FALSE FALSE FALSE FALSE FALSE
## 58 58 Pedro M TRUE TRUE FALSE FALSE FALSE FALSE
## 63 63 Sotelo M FALSE FALSE TRUE TRUE FALSE FALSE
## 64 64 Tiburcio M FALSE FALSE FALSE TRUE FALSE FALSE
mujeres
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 1 1 Ana F FALSE FALSE FALSE FALSE FALSE FALSE
## 3 3 Aracely F FALSE FALSE FALSE FALSE FALSE TRUE
## 4 4 Carmen F FALSE TRUE FALSE FALSE FALSE FALSE
## 10 10 Jeorgina F FALSE TRUE FALSE FALSE FALSE FALSE
## 13 13 Laura F FALSE TRUE FALSE FALSE FALSE FALSE
## 14 14 Lucy F TRUE FALSE TRUE TRUE FALSE FALSE
## 16 16 Luisa F FALSE FALSE FALSE FALSE FALSE FALSE
## 17 17 Lupita F TRUE TRUE FALSE FALSE FALSE FALSE
## 18 18 Margarita F FALSE TRUE FALSE TRUE FALSE FALSE
## 20 20 Maria F FALSE TRUE FALSE FALSE FALSE FALSE
## 24 24 Patricia F TRUE FALSE FALSE TRUE FALSE FALSE
## 25 25 Paty F TRUE TRUE FALSE FALSE FALSE FALSE
## 28 28 Rosario F FALSE FALSE FALSE FALSE FALSE FALSE
## 31 31 Sandra F FALSE FALSE FALSE FALSE FALSE FALSE
## 34 34 Yuri F TRUE FALSE FALSE FALSE FALSE FALSE
## 36 36 Angélica F TRUE TRUE TRUE FALSE FALSE FALSE
## 38 38 Bety F TRUE TRUE FALSE FALSE FALSE FALSE
## 41 41 Dany F TRUE TRUE FALSE FALSE FALSE FALSE
## 42 42 Dalia F TRUE FALSE FALSE FALSE FALSE FALSE
## 44 44 Ernestina F TRUE FALSE TRUE FALSE TRUE FALSE
## 47 47 Fernanda F FALSE FALSE FALSE FALSE FALSE FALSE
## 48 48 Gabriela F FALSE FALSE FALSE FALSE FALSE FALSE
## 50 50 Guille F TRUE FALSE FALSE FALSE TRUE FALSE
## 53 53 Mikaela F FALSE TRUE FALSE FALSE FALSE FALSE
## 55 55 Marcela F FALSE FALSE FALSE TRUE FALSE FALSE
## 57 57 Otilia F TRUE FALSE FALSE TRUE FALSE FALSE
## 59 59 Perla F FALSE FALSE FALSE FALSE FALSE FALSE
## 60 60 Raquel F TRUE TRUE FALSE FALSE FALSE FALSE
## 61 61 Susana F FALSE FALSE FALSE FALSE FALSE FALSE
## 62 62 Sandy F FALSE TRUE FALSE FALSE FALSE FALSE
## 65 65 Teresa F FALSE FALSE FALSE FALSE FALSE FALSE
## 66 66 Walter F TRUE TRUE FALSE FALSE FALSE FALSE
## 67 67 Xóchitl F FALSE TRUE TRUE TRUE TRUE FALSE
Determinar frecuencias mediante función table() que permite generar la frecuencia de una variable ¿Cuántos casos hay que son hombres? ¿Cuántos casos hay que son mujeres?
table(datos$sexo)
##
## F M
## 33 34
Determinar frecuencias relativas mediante función prop.table(table()). ¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos sea hombre? ¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos sea mujer? Se redondea a 4 posiciones decimales Se determinala probabilidad en %
round(prop.table(table(datos$sexo)),4)
##
## F M
## 0.4925 0.5075
round(prop.table(table(datos$sexo)),4) * 100
##
## F M
## 49.25 50.75
futbol <- subset(datos, futbol == TRUE)
futbol
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 5 5 Eduardo M TRUE FALSE FALSE FALSE FALSE FALSE
## 8 8 Gerardo M TRUE FALSE TRUE FALSE FALSE TRUE
## 11 11 Juan M TRUE FALSE FALSE TRUE FALSE FALSE
## 14 14 Lucy F TRUE FALSE TRUE TRUE FALSE FALSE
## 17 17 Lupita F TRUE TRUE FALSE FALSE FALSE FALSE
## 21 21 Memo M TRUE FALSE FALSE FALSE TRUE FALSE
## 23 23 Paco M TRUE FALSE TRUE FALSE TRUE FALSE
## 24 24 Patricia F TRUE FALSE FALSE TRUE FALSE FALSE
## 25 25 Paty F TRUE TRUE FALSE FALSE FALSE FALSE
## 26 26 Raul M TRUE FALSE FALSE FALSE FALSE FALSE
## 27 27 Romualdo M TRUE FALSE FALSE FALSE FALSE FALSE
## 29 29 Rubén M TRUE FALSE FALSE FALSE FALSE FALSE
## 30 30 Salvador M TRUE FALSE FALSE TRUE FALSE FALSE
## 33 33 Saul M TRUE FALSE TRUE FALSE FALSE FALSE
## 34 34 Yuri F TRUE FALSE FALSE FALSE FALSE FALSE
## 36 36 Angélica F TRUE TRUE TRUE FALSE FALSE FALSE
## 38 38 Bety F TRUE TRUE FALSE FALSE FALSE FALSE
## 39 39 Carlos M TRUE FALSE FALSE FALSE FALSE FALSE
## 41 41 Dany F TRUE TRUE FALSE FALSE FALSE FALSE
## 42 42 Dalia F TRUE FALSE FALSE FALSE FALSE FALSE
## 43 43 Efren M TRUE FALSE FALSE TRUE FALSE FALSE
## 44 44 Ernestina F TRUE FALSE TRUE FALSE TRUE FALSE
## 45 45 Fernando M TRUE FALSE FALSE TRUE FALSE FALSE
## 49 49 Gabriel M TRUE FALSE FALSE FALSE FALSE FALSE
## 50 50 Guille F TRUE FALSE FALSE FALSE TRUE FALSE
## 51 51 Jorge M TRUE TRUE FALSE FALSE FALSE FALSE
## 52 52 Lorenzo M TRUE FALSE TRUE FALSE FALSE FALSE
## 54 54 Miguel M TRUE TRUE FALSE FALSE FALSE FALSE
## 56 56 Orlando M TRUE FALSE FALSE FALSE FALSE FALSE
## 57 57 Otilia F TRUE FALSE FALSE TRUE FALSE FALSE
## 58 58 Pedro M TRUE TRUE FALSE FALSE FALSE FALSE
## 60 60 Raquel F TRUE TRUE FALSE FALSE FALSE FALSE
## 66 66 Walter F TRUE TRUE FALSE FALSE FALSE FALSE
Se determina el conjunto de personas que practican el deporte del fútbol según la disciplina de fubol
table(datos$futbol)
##
## FALSE TRUE
## 34 33
Determinar frecuencias relativas mediante función prop.table(table()). ¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos y que juegue fútbol? Se redondea a 4 posiciones decimales Se determinala probabilidad en %
round(prop.table(table(datos$futbol)),4)
##
## FALSE TRUE
## 0.5075 0.4925
round(prop.table(table(datos$futbol)),4) * 100
##
## FALSE TRUE
## 50.75 49.25
Se determina el conjunto de personas que practican el deporte del basquetbol según la disciplina de basquetbol
basquetbol <- subset(datos, basquetbol == TRUE)
basquetbol
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 4 4 Carmen F FALSE TRUE FALSE FALSE FALSE FALSE
## 6 6 Ernesto M FALSE TRUE FALSE FALSE FALSE FALSE
## 7 7 Gabino M FALSE TRUE FALSE FALSE FALSE FALSE
## 9 9 Javier M FALSE TRUE FALSE FALSE FALSE FALSE
## 10 10 Jeorgina F FALSE TRUE FALSE FALSE FALSE FALSE
## 13 13 Laura F FALSE TRUE FALSE FALSE FALSE FALSE
## 17 17 Lupita F TRUE TRUE FALSE FALSE FALSE FALSE
## 18 18 Margarita F FALSE TRUE FALSE TRUE FALSE FALSE
## 20 20 Maria F FALSE TRUE FALSE FALSE FALSE FALSE
## 25 25 Paty F TRUE TRUE FALSE FALSE FALSE FALSE
## 36 36 Angélica F TRUE TRUE TRUE FALSE FALSE FALSE
## 38 38 Bety F TRUE TRUE FALSE FALSE FALSE FALSE
## 41 41 Dany F TRUE TRUE FALSE FALSE FALSE FALSE
## 46 46 Fabián M FALSE TRUE TRUE FALSE FALSE FALSE
## 51 51 Jorge M TRUE TRUE FALSE FALSE FALSE FALSE
## 53 53 Mikaela F FALSE TRUE FALSE FALSE FALSE FALSE
## 54 54 Miguel M TRUE TRUE FALSE FALSE FALSE FALSE
## 58 58 Pedro M TRUE TRUE FALSE FALSE FALSE FALSE
## 60 60 Raquel F TRUE TRUE FALSE FALSE FALSE FALSE
## 62 62 Sandy F FALSE TRUE FALSE FALSE FALSE FALSE
## 66 66 Walter F TRUE TRUE FALSE FALSE FALSE FALSE
## 67 67 Xóchitl F FALSE TRUE TRUE TRUE TRUE FALSE
Determinar frecuencias mediante función table() que permite generar la frecuencia de una variable ¿Cuántas personas hay que practican Basquetbol?
table(datos$basquetbol)
##
## FALSE TRUE
## 45 22
Determinar frecuencias relativas mediante función prop.table(table()). ¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos y que juegue basquetbol? Se redondea a 4 posiciones decimales Se determinala probabilidad en %
round(prop.table(table(datos$basquetbol)),4)
##
## FALSE TRUE
## 0.6716 0.3284
round(prop.table(table(datos$basquetbol)),4) * 100
##
## FALSE TRUE
## 67.16 32.84
Se determina el conjunto de personas que practican el deporte del atletismo según la disciplina de atletismo
atletismo <- subset(datos, atletismo == TRUE)
atletismo
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 11 11 Juan M TRUE FALSE FALSE TRUE FALSE FALSE
## 14 14 Lucy F TRUE FALSE TRUE TRUE FALSE FALSE
## 18 18 Margarita F FALSE TRUE FALSE TRUE FALSE FALSE
## 24 24 Patricia F TRUE FALSE FALSE TRUE FALSE FALSE
## 30 30 Salvador M TRUE FALSE FALSE TRUE FALSE FALSE
## 43 43 Efren M TRUE FALSE FALSE TRUE FALSE FALSE
## 45 45 Fernando M TRUE FALSE FALSE TRUE FALSE FALSE
## 55 55 Marcela F FALSE FALSE FALSE TRUE FALSE FALSE
## 57 57 Otilia F TRUE FALSE FALSE TRUE FALSE FALSE
## 63 63 Sotelo M FALSE FALSE TRUE TRUE FALSE FALSE
## 64 64 Tiburcio M FALSE FALSE FALSE TRUE FALSE FALSE
## 67 67 Xóchitl F FALSE TRUE TRUE TRUE TRUE FALSE
Determinar frecuencias mediante función table() que permite generar la frecuencia de una variable ¿Cuántas personas hay que practican atletismo?
table(datos$atletismo )
##
## FALSE TRUE
## 55 12
Determinar frecuencias relativas mediante función prop.table(table()). ¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos y que juegue atletismo? Se redondea a 4 posiciones decimales Se determina la probabilidad en %
round(prop.table(table(datos$atletismo )),4)
##
## FALSE TRUE
## 0.8209 0.1791
round(prop.table(table(datos$atletismo )),4) * 100
##
## FALSE TRUE
## 82.09 17.91
Se determina el conjunto de personas que practican el deporte del ajedrez según la disciplina de ajedrez
ajedrez <- subset(datos, ajedrez == TRUE)
ajedrez
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 21 21 Memo M TRUE FALSE FALSE FALSE TRUE FALSE
## 23 23 Paco M TRUE FALSE TRUE FALSE TRUE FALSE
## 44 44 Ernestina F TRUE FALSE TRUE FALSE TRUE FALSE
## 50 50 Guille F TRUE FALSE FALSE FALSE TRUE FALSE
## 67 67 Xóchitl F FALSE TRUE TRUE TRUE TRUE FALSE
Determinar frecuencias mediante función table() que permite generar la frecuencia de una variable ¿Cuántas personas hay que practican ajedrez?
table(datos$ajedrez )
##
## FALSE TRUE
## 62 5
Determinar frecuencias relativas mediante función prop.table(table()). ¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos y que juegue ajedrez? Se redondea a 4 posiciones decimales Se determina la probabilidad en %
round(prop.table(table(datos$ajedrez )),4)
##
## FALSE TRUE
## 0.9254 0.0746
round(prop.table(table(datos$ajedrez )),4) * 100
##
## FALSE TRUE
## 92.54 7.46
La unión significa los de un conjunto integrando los del otro conjunto, si se repite se omite su valor. # Unión de fútbol y basquetbol Todos los nombres de alumnos que juegan fútbol y también los nombres de alumnos que juegan basquetbol. futbol basquetbol ¿Cuántos alumnos hay que juegan fútbol o basquetbol? ¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol basquetbol? Se determina su probabilidad por medio de la frecuencia relativa del conjunto fútbol union con basquetbol. (frecuencia / n)
futUbas <- union(futbol$nombres, basquetbol$nombres)
futUbas
## [1] "Eduardo" "Gerardo" "Juan" "Lucy" "Lupita" "Memo"
## [7] "Paco" "Patricia" "Paty" "Raul" "Romualdo" "Rubén"
## [13] "Salvador" "Saul" "Yuri" "Angélica" "Bety" "Carlos"
## [19] "Dany" "Dalia" "Efren" "Ernestina" "Fernando" "Gabriel"
## [25] "Guille" "Jorge" "Lorenzo" "Miguel" "Orlando" "Otilia"
## [31] "Pedro" "Raquel" "Walter" "Carmen" "Ernesto" "Gabino"
## [37] "Javier" "Jeorgina" "Laura" "Margarita" "Maria" "Fabián"
## [43] "Mikaela" "Sandy" "Xóchitl"
¿Cuántos alumnos hay que juegan fútbol o basquetbol? ¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol basquetbol? Se determina su probabilidad por medio de la frecuencia relativa del conjunto fútbol union con basquetbol. (frecuencia / n)
cat("Hay ", length(futUbas), " alumnos que juegan fútbol o basquetbol de un total de ",n)
## Hay 45 alumnos que juegan fútbol o basquetbol de un total de 67
prob.futUbas <- length(futUbas) / n
cat("* ¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol o basquetbol?
", prob.futUbas)
## * ¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol o basquetbol?
## 0.6716418
Cálculo de probabilidades utilizando tablas cruzadas futbol basquetbol La función prop.table(table()) generacia probabailidades El atributo dnn son los encabezados de la tabla, arribay y a la izquierda Con la matriz es mas fácil determinar probabilidades de conjuntos función rbind() para agregar renglon función cbind() para agregar columna apply() para alicar por ejemplo sum a cada renglon o columna
prob.tabla.cruzada <- round(prop.table(table(datos$futbol, datos$basquetbol, dnn = c('fútbol','basquetbol'))),4)
prob.tabla.cruzada
## basquetbol
## fútbol FALSE TRUE
## FALSE 0.3284 0.1791
## TRUE 0.3433 0.1493
prob.tabla.cruzada <- rbind(prob.tabla.cruzada,apply(prob.tabla.cruzada,2,sum))
prob.tabla.cruzada <- cbind(prob.tabla.cruzada, apply(prob.tabla.cruzada,1,sum))
prob.tabla.cruzada
## FALSE TRUE
## FALSE 0.3284 0.1791 0.5075
## TRUE 0.3433 0.1493 0.4926
## 0.6717 0.3284 1.0001
Interpretación de la tabla cruzada probabilidades Hay 34 alumnos que juegan futbol que representan el 49.26% del 100% Hay 22 personas que juegan basquetbol que representan el 32.84% del 100% Hay 22 personas que juegan futbol y basquetbol al mismo tiempo que representan el 14.93% del 100% o del total de alumnos
summary(datos)
## X nombres sexo futbol
## Min. : 1.0 Length:67 Length:67 Mode :logical
## 1st Qu.:17.5 Class :character Class :character FALSE:34
## Median :34.0 Mode :character Mode :character TRUE :33
## Mean :34.0
## 3rd Qu.:50.5
## Max. :67.0
## basquetbol voleybol atletismo ajedrez
## Mode :logical Mode :logical Mode :logical Mode :logical
## FALSE:45 FALSE:53 FALSE:55 FALSE:62
## TRUE :22 TRUE :14 TRUE :12 TRUE :5
##
##
##
## tenis
## Mode :logical
## FALSE:63
## TRUE :4
##
##
##
Conclusión: La probabilidad solo se refiere de manera resumida a qué tan posible es que ocurra un evento determinado. Esto solo cuando no estamos seguros del resultado de un evento, de este modo podemos hablar de la probabilidad de ciertos resultados: qué tan común es que ocurran. Al análisis de los eventos gobernados por la probabilidad se le llama estadística. Todo esto por medio de fórmulas matemáticas que nos permiten calcular con exactitud y veracidad cada evento.