PAGE 1

Row

Chart A

Chart B

ROW

Chart C

Chart D

---
title: "Macroeconomic Dashboards"
author: 'Marcos J Ribeiro'
output: 
  flexdashboard::flex_dashboard:
    orientation: rows
    social: [ "twitter", "facebook", "linkedin", "menu" ]
    source_code: embed
    vertical_layout: scroll
---


```{r setup, include=FALSE}
library(flexdashboard)
library(ggplot2)
library(haven)
library(plyr)
library(plotly)
```

```{r include=FALSE}
df <- read_dta("happy.dta")

attach(df)

f1 = df[year>2010, ]
f2 = df[year==2011, ]
```



PAGE 1
======================================================================

Row
-----------------------------------------------------------------------

### Chart A 

```{r echo=FALSE}


g15 = ggplot(data = f2, aes(x=lld, y=ppc/10000))+
  ylim(-0.001, 10.2) +
  geom_smooth(method = 'lm',formula = y~x, color='black', se=F) +
  geom_text(aes(label=CountryCode), size=4)


g16 = g15 + 
  ggtitle('GDP per capita and Life Satisfaction') + 
  xlab('Life Satisfaction') +
  ylab('GDP per capita') +
  theme(axis.title.x = element_text(colour = 'black', size=13),
        axis.title.y = element_text(colour = 'black', size=13),
        plot.title = element_text(hjust = 0.5))

ggplotly(g16)

```



### Chart B 

```{r echo=FALSE}

f2 = df[(year==2015)&(ppc/10000>=0.08)&(rendacod==1|rendacod==4), ]


g9 = ggplot(data = f2, aes(x=hc, y=ppc/10000))+
          ylim(-0.001, 10.2) +
          geom_smooth(method = 'lm',formula = y~x, color='black', se=F) +
          geom_text(aes(label=CountryCode), size=4)


g10 = g9 + 
  ggtitle('GDP per capita and HC') + 
  xlab('Human capital') +
  ylab('GDP per capita') +
  theme(axis.title.x = element_text(colour = 'black', size=13),
        axis.title.y = element_text(colour = 'black', size=13),
        plot.title = element_text(hjust = 0.5))

ggplotly(g10)
```

ROW
-----------------------------------------------------------------------

### Chart C 

```{r echo=FALSE}
##### PPC and Institutional quality


g11 = ggplot(data = f2, aes(x=qinst, y=ppc/10000))+
  geom_smooth(method = 'lm',formula = y~x, color='black', se=F) +
  geom_text(aes(label=CountryCode), size=4)


g12 = g11 + 
  ggtitle('GDP per capita and Institutional Quality') + 
  xlab('Institutional Quality') +
  ylab('GDP per capita') +
  theme(axis.title.x = element_text(colour = 'black', size=13),
        axis.title.y = element_text(colour = 'black', size=13),
        plot.title = element_text(hjust = 0.5))
ggplotly(g12)
```



### Chart D 

```{r echo=FALSE}
##### PPC and population growth

g13 = ggplot(data = f2, aes(x=crespop, y=ppc/10000))+
  xlim(-0.009, 0.04) +
  geom_smooth(method = 'lm',formula = y~x, color='black', se=F) +
  geom_text(aes(label=CountryCode), size=4)


g14 = g13 + 
  ggtitle('GDP per capita and Population Growth') + 
  xlab('Population Growth') +
  ylab('GDP per capita') +
  theme(axis.title.x = element_text(colour = 'black', size=13),
        axis.title.y = element_text(colour = 'black', size=13),
        plot.title = element_text(hjust = 0.5))

ggplotly(g14)
```