Identificar datos de la muestra

Ordenar datos y mostrar

muestra <-sample(70:100, 1000, replace = TRUE)
muestraord <- sort(muestra)
muestraord
##    [1]  70  70  70  70  70  70  70  70  70  70  70  70  70  70  70  70  70  70
##   [19]  70  70  70  70  70  70  70  70  70  71  71  71  71  71  71  71  71  71
##   [37]  71  71  71  71  71  71  71  71  71  71  71  71  71  71  71  71  71  71
##   [55]  71  71  71  71  71  71  71  71  71  72  72  72  72  72  72  72  72  72
##   [73]  72  72  72  72  72  72  72  72  72  72  72  72  72  72  72  72  72  72
##   [91]  72  72  72  72  72  72  72  72  72  72  72  72  72  73  73  73  73  73
##  [109]  73  73  73  73  73  73  73  73  73  73  73  73  73  73  73  73  73  73
##  [127]  73  73  73  73  73  73  73  73  73  73  73  74  74  74  74  74  74  74
##  [145]  74  74  74  74  74  74  74  74  74  74  74  74  74  74  74  74  74  74
##  [163]  74  74  74  74  74  74  74  74  74  74  74  75  75  75  75  75  75  75
##  [181]  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75
##  [199]  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75  75  76
##  [217]  76  76  76  76  76  76  76  76  76  76  76  76  76  76  76  76  76  76
##  [235]  76  76  76  76  76  76  76  76  77  77  77  77  77  77  77  77  77  77
##  [253]  77  77  77  77  77  77  77  77  77  77  77  77  77  77  77  77  77  77
##  [271]  77  77  77  78  78  78  78  78  78  78  78  78  78  78  78  78  78  78
##  [289]  78  78  78  78  78  78  78  78  78  78  78  78  79  79  79  79  79  79
##  [307]  79  79  79  79  79  79  79  79  79  79  79  79  79  79  79  79  79  79
##  [325]  79  79  79  79  79  79  79  79  80  80  80  80  80  80  80  80  80  80
##  [343]  80  80  80  80  80  80  80  80  80  80  80  80  80  80  80  80  80  80
##  [361]  80  80  80  80  81  81  81  81  81  81  81  81  81  81  81  81  81  81
##  [379]  81  81  81  81  81  81  81  81  81  81  81  81  81  81  81  82  82  82
##  [397]  82  82  82  82  82  82  82  82  82  82  82  82  82  82  82  82  82  82
##  [415]  82  82  82  82  82  82  82  82  82  82  82  83  83  83  83  83  83  83
##  [433]  83  83  83  83  83  83  83  83  83  83  83  83  83  83  83  83  83  83
##  [451]  83  83  83  83  83  83  84  84  84  84  84  84  84  84  84  84  84  84
##  [469]  84  84  84  84  84  84  84  84  84  84  84  84  84  84  84  84  84  84
##  [487]  84  84  84  84  85  85  85  85  85  85  85  85  85  85  85  85  85  85
##  [505]  85  85  85  85  85  85  85  85  85  85  85  85  85  85  85  85  85  85
##  [523]  85  85  85  85  86  86  86  86  86  86  86  86  86  86  86  86  86  86
##  [541]  86  86  86  86  86  86  86  86  86  86  86  86  86  86  86  86  86  86
##  [559]  86  87  87  87  87  87  87  87  87  87  87  87  87  87  87  87  87  87
##  [577]  87  87  87  87  87  87  87  87  88  88  88  88  88  88  88  88  88  88
##  [595]  88  88  88  88  88  88  88  88  88  88  88  88  89  89  89  89  89  89
##  [613]  89  89  89  89  89  89  89  89  89  89  89  89  89  89  89  89  89  89
##  [631]  89  89  89  89  89  89  90  90  90  90  90  90  90  90  90  90  90  90
##  [649]  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  91
##  [667]  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91  91
##  [685]  91  91  91  91  91  91  91  91  91  91  91  92  92  92  92  92  92  92
##  [703]  92  92  92  92  92  92  92  92  92  92  92  92  92  92  92  92  92  92
##  [721]  92  92  92  92  92  92  92  92  92  92  92  92  92  93  93  93  93  93
##  [739]  93  93  93  93  93  93  93  93  93  93  93  93  93  93  93  93  93  93
##  [757]  93  93  93  93  93  93  93  93  93  93  93  93  93  93  93  93  93  93
##  [775]  93  93  93  93  93  93  93  93  93  93  94  94  94  94  94  94  94  94
##  [793]  94  94  94  94  94  94  94  94  94  94  94  94  94  94  94  94  94  94
##  [811]  94  94  94  94  94  94  94  94  94  94  95  95  95  95  95  95  95  95
##  [829]  95  95  95  95  95  95  95  95  95  95  95  95  95  95  95  95  95  95
##  [847]  95  96  96  96  96  96  96  96  96  96  96  96  96  96  96  96  96  96
##  [865]  96  96  96  96  96  96  96  96  96  96  96  96  96  97  97  97  97  97
##  [883]  97  97  97  97  97  97  97  97  97  97  97  97  97  97  97  97  97  97
##  [901]  97  97  97  97  98  98  98  98  98  98  98  98  98  98  98  98  98  98
##  [919]  98  98  98  98  98  98  98  98  98  98  98  98  98  98  98  98  98  98
##  [937]  98  98  98  98  98  99  99  99  99  99  99  99  99  99  99  99  99  99
##  [955]  99  99  99  99  99  99  99  99  99  99  99  99  99  99  99  99  99  99
##  [973]  99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
##  [991] 100 100 100 100 100 100 100 100 100 100

Encontrar un numero de elementos n, valores máximos y míximos , rango y amplitud del rango de la muestra

n <- length(muestra)
n
## [1] 1000
max(muestra)
## [1] 100
rango <- range(muestra) 
rango
## [1]  70 100
amplitud <- diff(rango) 
amplitud
## [1] 30

FORMA HABITUAL PARA AGRUPAR DATOS

¿Cuántos intérvalos se quiere tener? ¿Cuántos grupos?

Determinar número de intervalos igual a 5

nointervalos <- 5  
rangointervalos <- amplitud / nointervalos
rangointervalos
## [1] 6
print(paste("Los valores de cada grupos van ..."," de ", rangointervalos, " en  ", rangointervalos, " a partir de :", min(muestra)))
## [1] "Los valores de cada grupos van ...  de  6  en   6  a partir de : 70"

Mostrar tabla de frecuencia de datos agrupados

Se empieza del valor menor para evitar errores de agrupamiento

tabla.intervalos <- transform(table(cut(muestra, breaks = 5)))
tabla.intervalos
##       Var1 Freq
## 1  (70,76]  242
## 2  (76,82]  183
## 3  (82,88]  181
## 4  (88,94]  214
## 5 (94,100]  180

Plot o graficar tabla de frecuencia

plot(tabla.intervalos, main = "¿De cuál intervalo hay más y menos elementos?")

#REGLA DE STURGES. # ¿De manera mantematica sugiere los intérvalos y las amplitudes de cada intervalo # ¿Cuáles intérvalos genera? ¿cual es la amplitud de cada intérvalo? # Fórmula: K=1+3.322(log N) /* Logaritmo de base 10 */

1 + 3.3222* (log10(n)) 
## [1] 10.9666
nointervalos <- nclass.Sturges(muestra) 
nointervalos
## [1] 11
cut(muestra, breaks = nointervalos) 
##    [1] (94.5,97.3] (94.5,97.3] (70,72.7]   (72.7,75.5] (91.8,94.5] (75.5,78.2]
##    [7] (83.6,86.4] (91.8,94.5] (78.2,80.9] (72.7,75.5] (72.7,75.5] (72.7,75.5]
##   [13] (94.5,97.3] (86.4,89.1] (91.8,94.5] (72.7,75.5] (72.7,75.5] (91.8,94.5]
##   [19] (78.2,80.9] (89.1,91.8] (70,72.7]   (89.1,91.8] (94.5,97.3] (86.4,89.1]
##   [25] (75.5,78.2] (80.9,83.6] (97.3,100]  (91.8,94.5] (89.1,91.8] (72.7,75.5]
##   [31] (70,72.7]   (91.8,94.5] (97.3,100]  (80.9,83.6] (91.8,94.5] (78.2,80.9]
##   [37] (70,72.7]   (89.1,91.8] (70,72.7]   (91.8,94.5] (75.5,78.2] (83.6,86.4]
##   [43] (86.4,89.1] (78.2,80.9] (86.4,89.1] (75.5,78.2] (80.9,83.6] (75.5,78.2]
##   [49] (97.3,100]  (75.5,78.2] (97.3,100]  (70,72.7]   (70,72.7]   (72.7,75.5]
##   [55] (75.5,78.2] (91.8,94.5] (86.4,89.1] (80.9,83.6] (75.5,78.2] (75.5,78.2]
##   [61] (86.4,89.1] (80.9,83.6] (86.4,89.1] (80.9,83.6] (75.5,78.2] (94.5,97.3]
##   [67] (80.9,83.6] (70,72.7]   (78.2,80.9] (72.7,75.5] (75.5,78.2] (78.2,80.9]
##   [73] (72.7,75.5] (91.8,94.5] (89.1,91.8] (75.5,78.2] (70,72.7]   (94.5,97.3]
##   [79] (91.8,94.5] (83.6,86.4] (70,72.7]   (80.9,83.6] (86.4,89.1] (70,72.7]  
##   [85] (86.4,89.1] (75.5,78.2] (70,72.7]   (75.5,78.2] (70,72.7]   (83.6,86.4]
##   [91] (75.5,78.2] (89.1,91.8] (72.7,75.5] (75.5,78.2] (72.7,75.5] (83.6,86.4]
##   [97] (86.4,89.1] (80.9,83.6] (72.7,75.5] (91.8,94.5] (97.3,100]  (83.6,86.4]
##  [103] (94.5,97.3] (89.1,91.8] (70,72.7]   (83.6,86.4] (83.6,86.4] (83.6,86.4]
##  [109] (83.6,86.4] (94.5,97.3] (70,72.7]   (75.5,78.2] (97.3,100]  (97.3,100] 
##  [115] (94.5,97.3] (70,72.7]   (89.1,91.8] (97.3,100]  (83.6,86.4] (97.3,100] 
##  [121] (94.5,97.3] (80.9,83.6] (80.9,83.6] (70,72.7]   (94.5,97.3] (80.9,83.6]
##  [127] (80.9,83.6] (91.8,94.5] (83.6,86.4] (75.5,78.2] (97.3,100]  (78.2,80.9]
##  [133] (80.9,83.6] (89.1,91.8] (86.4,89.1] (91.8,94.5] (94.5,97.3] (97.3,100] 
##  [139] (72.7,75.5] (83.6,86.4] (89.1,91.8] (89.1,91.8] (91.8,94.5] (97.3,100] 
##  [145] (83.6,86.4] (91.8,94.5] (97.3,100]  (78.2,80.9] (86.4,89.1] (91.8,94.5]
##  [151] (94.5,97.3] (75.5,78.2] (78.2,80.9] (83.6,86.4] (91.8,94.5] (80.9,83.6]
##  [157] (83.6,86.4] (89.1,91.8] (78.2,80.9] (70,72.7]   (97.3,100]  (89.1,91.8]
##  [163] (78.2,80.9] (83.6,86.4] (94.5,97.3] (80.9,83.6] (86.4,89.1] (75.5,78.2]
##  [169] (78.2,80.9] (70,72.7]   (78.2,80.9] (72.7,75.5] (78.2,80.9] (83.6,86.4]
##  [175] (83.6,86.4] (91.8,94.5] (80.9,83.6] (83.6,86.4] (83.6,86.4] (83.6,86.4]
##  [181] (83.6,86.4] (80.9,83.6] (83.6,86.4] (89.1,91.8] (97.3,100]  (72.7,75.5]
##  [187] (83.6,86.4] (75.5,78.2] (70,72.7]   (80.9,83.6] (89.1,91.8] (72.7,75.5]
##  [193] (70,72.7]   (94.5,97.3] (97.3,100]  (83.6,86.4] (91.8,94.5] (72.7,75.5]
##  [199] (94.5,97.3] (91.8,94.5] (72.7,75.5] (86.4,89.1] (83.6,86.4] (83.6,86.4]
##  [205] (97.3,100]  (75.5,78.2] (97.3,100]  (83.6,86.4] (83.6,86.4] (80.9,83.6]
##  [211] (86.4,89.1] (72.7,75.5] (89.1,91.8] (91.8,94.5] (97.3,100]  (91.8,94.5]
##  [217] (72.7,75.5] (75.5,78.2] (80.9,83.6] (80.9,83.6] (80.9,83.6] (80.9,83.6]
##  [223] (86.4,89.1] (72.7,75.5] (94.5,97.3] (70,72.7]   (91.8,94.5] (97.3,100] 
##  [229] (75.5,78.2] (83.6,86.4] (75.5,78.2] (91.8,94.5] (97.3,100]  (91.8,94.5]
##  [235] (78.2,80.9] (78.2,80.9] (83.6,86.4] (72.7,75.5] (70,72.7]   (75.5,78.2]
##  [241] (91.8,94.5] (80.9,83.6] (75.5,78.2] (94.5,97.3] (80.9,83.6] (70,72.7]  
##  [247] (91.8,94.5] (86.4,89.1] (83.6,86.4] (80.9,83.6] (80.9,83.6] (72.7,75.5]
##  [253] (70,72.7]   (75.5,78.2] (78.2,80.9] (94.5,97.3] (89.1,91.8] (78.2,80.9]
##  [259] (97.3,100]  (97.3,100]  (91.8,94.5] (70,72.7]   (70,72.7]   (97.3,100] 
##  [265] (72.7,75.5] (70,72.7]   (89.1,91.8] (91.8,94.5] (91.8,94.5] (91.8,94.5]
##  [271] (91.8,94.5] (72.7,75.5] (80.9,83.6] (94.5,97.3] (97.3,100]  (80.9,83.6]
##  [277] (72.7,75.5] (91.8,94.5] (70,72.7]   (83.6,86.4] (97.3,100]  (91.8,94.5]
##  [283] (97.3,100]  (75.5,78.2] (89.1,91.8] (78.2,80.9] (72.7,75.5] (91.8,94.5]
##  [289] (91.8,94.5] (91.8,94.5] (97.3,100]  (89.1,91.8] (70,72.7]   (94.5,97.3]
##  [295] (70,72.7]   (94.5,97.3] (70,72.7]   (78.2,80.9] (91.8,94.5] (91.8,94.5]
##  [301] (70,72.7]   (91.8,94.5] (86.4,89.1] (83.6,86.4] (72.7,75.5] (70,72.7]  
##  [307] (70,72.7]   (75.5,78.2] (80.9,83.6] (72.7,75.5] (97.3,100]  (75.5,78.2]
##  [313] (97.3,100]  (80.9,83.6] (97.3,100]  (75.5,78.2] (97.3,100]  (86.4,89.1]
##  [319] (78.2,80.9] (94.5,97.3] (72.7,75.5] (83.6,86.4] (78.2,80.9] (78.2,80.9]
##  [325] (89.1,91.8] (75.5,78.2] (97.3,100]  (89.1,91.8] (75.5,78.2] (86.4,89.1]
##  [331] (83.6,86.4] (72.7,75.5] (86.4,89.1] (83.6,86.4] (72.7,75.5] (72.7,75.5]
##  [337] (86.4,89.1] (72.7,75.5] (91.8,94.5] (91.8,94.5] (80.9,83.6] (97.3,100] 
##  [343] (70,72.7]   (70,72.7]   (72.7,75.5] (91.8,94.5] (78.2,80.9] (72.7,75.5]
##  [349] (83.6,86.4] (70,72.7]   (78.2,80.9] (75.5,78.2] (91.8,94.5] (97.3,100] 
##  [355] (83.6,86.4] (83.6,86.4] (94.5,97.3] (86.4,89.1] (70,72.7]   (91.8,94.5]
##  [361] (91.8,94.5] (72.7,75.5] (91.8,94.5] (70,72.7]   (94.5,97.3] (75.5,78.2]
##  [367] (80.9,83.6] (91.8,94.5] (94.5,97.3] (80.9,83.6] (94.5,97.3] (78.2,80.9]
##  [373] (72.7,75.5] (83.6,86.4] (83.6,86.4] (75.5,78.2] (89.1,91.8] (72.7,75.5]
##  [379] (83.6,86.4] (86.4,89.1] (80.9,83.6] (72.7,75.5] (89.1,91.8] (94.5,97.3]
##  [385] (80.9,83.6] (70,72.7]   (72.7,75.5] (97.3,100]  (75.5,78.2] (97.3,100] 
##  [391] (94.5,97.3] (83.6,86.4] (75.5,78.2] (86.4,89.1] (80.9,83.6] (70,72.7]  
##  [397] (72.7,75.5] (97.3,100]  (97.3,100]  (97.3,100]  (75.5,78.2] (78.2,80.9]
##  [403] (83.6,86.4] (89.1,91.8] (83.6,86.4] (78.2,80.9] (86.4,89.1] (83.6,86.4]
##  [409] (70,72.7]   (91.8,94.5] (97.3,100]  (89.1,91.8] (83.6,86.4] (83.6,86.4]
##  [415] (83.6,86.4] (72.7,75.5] (91.8,94.5] (72.7,75.5] (91.8,94.5] (80.9,83.6]
##  [421] (86.4,89.1] (97.3,100]  (72.7,75.5] (89.1,91.8] (72.7,75.5] (80.9,83.6]
##  [427] (72.7,75.5] (94.5,97.3] (78.2,80.9] (72.7,75.5] (78.2,80.9] (91.8,94.5]
##  [433] (94.5,97.3] (70,72.7]   (86.4,89.1] (91.8,94.5] (94.5,97.3] (97.3,100] 
##  [439] (91.8,94.5] (94.5,97.3] (97.3,100]  (70,72.7]   (80.9,83.6] (75.5,78.2]
##  [445] (78.2,80.9] (72.7,75.5] (91.8,94.5] (94.5,97.3] (70,72.7]   (86.4,89.1]
##  [451] (72.7,75.5] (70,72.7]   (72.7,75.5] (75.5,78.2] (78.2,80.9] (78.2,80.9]
##  [457] (80.9,83.6] (83.6,86.4] (91.8,94.5] (83.6,86.4] (80.9,83.6] (80.9,83.6]
##  [463] (91.8,94.5] (75.5,78.2] (75.5,78.2] (86.4,89.1] (80.9,83.6] (70,72.7]  
##  [469] (70,72.7]   (91.8,94.5] (94.5,97.3] (86.4,89.1] (70,72.7]   (86.4,89.1]
##  [475] (83.6,86.4] (80.9,83.6] (94.5,97.3] (86.4,89.1] (70,72.7]   (97.3,100] 
##  [481] (91.8,94.5] (89.1,91.8] (70,72.7]   (80.9,83.6] (86.4,89.1] (83.6,86.4]
##  [487] (86.4,89.1] (91.8,94.5] (78.2,80.9] (94.5,97.3] (75.5,78.2] (83.6,86.4]
##  [493] (86.4,89.1] (94.5,97.3] (80.9,83.6] (97.3,100]  (80.9,83.6] (70,72.7]  
##  [499] (72.7,75.5] (75.5,78.2] (70,72.7]   (91.8,94.5] (70,72.7]   (97.3,100] 
##  [505] (97.3,100]  (86.4,89.1] (97.3,100]  (86.4,89.1] (94.5,97.3] (97.3,100] 
##  [511] (91.8,94.5] (91.8,94.5] (91.8,94.5] (97.3,100]  (97.3,100]  (70,72.7]  
##  [517] (89.1,91.8] (94.5,97.3] (75.5,78.2] (72.7,75.5] (91.8,94.5] (89.1,91.8]
##  [523] (72.7,75.5] (70,72.7]   (94.5,97.3] (83.6,86.4] (97.3,100]  (86.4,89.1]
##  [529] (80.9,83.6] (91.8,94.5] (83.6,86.4] (89.1,91.8] (97.3,100]  (91.8,94.5]
##  [535] (80.9,83.6] (97.3,100]  (75.5,78.2] (72.7,75.5] (80.9,83.6] (86.4,89.1]
##  [541] (94.5,97.3] (86.4,89.1] (86.4,89.1] (94.5,97.3] (72.7,75.5] (94.5,97.3]
##  [547] (89.1,91.8] (83.6,86.4] (91.8,94.5] (83.6,86.4] (72.7,75.5] (91.8,94.5]
##  [553] (83.6,86.4] (91.8,94.5] (91.8,94.5] (72.7,75.5] (70,72.7]   (97.3,100] 
##  [559] (70,72.7]   (86.4,89.1] (70,72.7]   (89.1,91.8] (91.8,94.5] (75.5,78.2]
##  [565] (72.7,75.5] (97.3,100]  (72.7,75.5] (80.9,83.6] (72.7,75.5] (91.8,94.5]
##  [571] (86.4,89.1] (94.5,97.3] (94.5,97.3] (91.8,94.5] (97.3,100]  (97.3,100] 
##  [577] (75.5,78.2] (86.4,89.1] (75.5,78.2] (91.8,94.5] (83.6,86.4] (75.5,78.2]
##  [583] (78.2,80.9] (91.8,94.5] (91.8,94.5] (72.7,75.5] (83.6,86.4] (97.3,100] 
##  [589] (78.2,80.9] (86.4,89.1] (72.7,75.5] (89.1,91.8] (72.7,75.5] (70,72.7]  
##  [595] (83.6,86.4] (86.4,89.1] (75.5,78.2] (94.5,97.3] (97.3,100]  (72.7,75.5]
##  [601] (83.6,86.4] (91.8,94.5] (91.8,94.5] (70,72.7]   (86.4,89.1] (78.2,80.9]
##  [607] (70,72.7]   (94.5,97.3] (72.7,75.5] (78.2,80.9] (72.7,75.5] (72.7,75.5]
##  [613] (72.7,75.5] (91.8,94.5] (72.7,75.5] (80.9,83.6] (83.6,86.4] (91.8,94.5]
##  [619] (78.2,80.9] (97.3,100]  (97.3,100]  (75.5,78.2] (91.8,94.5] (97.3,100] 
##  [625] (86.4,89.1] (86.4,89.1] (97.3,100]  (94.5,97.3] (91.8,94.5] (75.5,78.2]
##  [631] (80.9,83.6] (72.7,75.5] (80.9,83.6] (94.5,97.3] (70,72.7]   (97.3,100] 
##  [637] (94.5,97.3] (89.1,91.8] (70,72.7]   (72.7,75.5] (97.3,100]  (89.1,91.8]
##  [643] (83.6,86.4] (89.1,91.8] (72.7,75.5] (91.8,94.5] (94.5,97.3] (83.6,86.4]
##  [649] (78.2,80.9] (83.6,86.4] (72.7,75.5] (70,72.7]   (72.7,75.5] (97.3,100] 
##  [655] (70,72.7]   (70,72.7]   (70,72.7]   (86.4,89.1] (70,72.7]   (91.8,94.5]
##  [661] (97.3,100]  (91.8,94.5] (70,72.7]   (75.5,78.2] (78.2,80.9] (83.6,86.4]
##  [667] (72.7,75.5] (83.6,86.4] (97.3,100]  (94.5,97.3] (91.8,94.5] (78.2,80.9]
##  [673] (97.3,100]  (72.7,75.5] (97.3,100]  (80.9,83.6] (70,72.7]   (80.9,83.6]
##  [679] (86.4,89.1] (91.8,94.5] (94.5,97.3] (83.6,86.4] (91.8,94.5] (78.2,80.9]
##  [685] (80.9,83.6] (72.7,75.5] (70,72.7]   (75.5,78.2] (80.9,83.6] (80.9,83.6]
##  [691] (97.3,100]  (91.8,94.5] (78.2,80.9] (91.8,94.5] (91.8,94.5] (83.6,86.4]
##  [697] (91.8,94.5] (97.3,100]  (89.1,91.8] (78.2,80.9] (97.3,100]  (83.6,86.4]
##  [703] (72.7,75.5] (94.5,97.3] (72.7,75.5] (75.5,78.2] (72.7,75.5] (70,72.7]  
##  [709] (94.5,97.3] (78.2,80.9] (78.2,80.9] (94.5,97.3] (91.8,94.5] (75.5,78.2]
##  [715] (72.7,75.5] (83.6,86.4] (86.4,89.1] (72.7,75.5] (86.4,89.1] (75.5,78.2]
##  [721] (80.9,83.6] (70,72.7]   (97.3,100]  (94.5,97.3] (70,72.7]   (89.1,91.8]
##  [727] (75.5,78.2] (91.8,94.5] (94.5,97.3] (80.9,83.6] (72.7,75.5] (70,72.7]  
##  [733] (78.2,80.9] (78.2,80.9] (72.7,75.5] (97.3,100]  (97.3,100]  (94.5,97.3]
##  [739] (75.5,78.2] (83.6,86.4] (94.5,97.3] (89.1,91.8] (86.4,89.1] (86.4,89.1]
##  [745] (89.1,91.8] (94.5,97.3] (78.2,80.9] (91.8,94.5] (86.4,89.1] (94.5,97.3]
##  [751] (89.1,91.8] (80.9,83.6] (97.3,100]  (91.8,94.5] (91.8,94.5] (97.3,100] 
##  [757] (97.3,100]  (91.8,94.5] (70,72.7]   (86.4,89.1] (78.2,80.9] (75.5,78.2]
##  [763] (94.5,97.3] (72.7,75.5] (83.6,86.4] (86.4,89.1] (94.5,97.3] (72.7,75.5]
##  [769] (72.7,75.5] (83.6,86.4] (78.2,80.9] (89.1,91.8] (72.7,75.5] (75.5,78.2]
##  [775] (83.6,86.4] (83.6,86.4] (91.8,94.5] (86.4,89.1] (70,72.7]   (78.2,80.9]
##  [781] (86.4,89.1] (83.6,86.4] (86.4,89.1] (83.6,86.4] (97.3,100]  (97.3,100] 
##  [787] (91.8,94.5] (91.8,94.5] (91.8,94.5] (80.9,83.6] (89.1,91.8] (70,72.7]  
##  [793] (86.4,89.1] (97.3,100]  (70,72.7]   (91.8,94.5] (72.7,75.5] (94.5,97.3]
##  [799] (94.5,97.3] (86.4,89.1] (75.5,78.2] (91.8,94.5] (86.4,89.1] (70,72.7]  
##  [805] (83.6,86.4] (75.5,78.2] (80.9,83.6] (80.9,83.6] (80.9,83.6] (97.3,100] 
##  [811] (91.8,94.5] (97.3,100]  (91.8,94.5] (80.9,83.6] (72.7,75.5] (72.7,75.5]
##  [817] (91.8,94.5] (80.9,83.6] (72.7,75.5] (70,72.7]   (91.8,94.5] (83.6,86.4]
##  [823] (89.1,91.8] (78.2,80.9] (89.1,91.8] (80.9,83.6] (70,72.7]   (91.8,94.5]
##  [829] (78.2,80.9] (78.2,80.9] (72.7,75.5] (78.2,80.9] (80.9,83.6] (80.9,83.6]
##  [835] (78.2,80.9] (94.5,97.3] (83.6,86.4] (86.4,89.1] (89.1,91.8] (83.6,86.4]
##  [841] (75.5,78.2] (70,72.7]   (78.2,80.9] (97.3,100]  (89.1,91.8] (94.5,97.3]
##  [847] (78.2,80.9] (75.5,78.2] (78.2,80.9] (75.5,78.2] (72.7,75.5] (83.6,86.4]
##  [853] (80.9,83.6] (70,72.7]   (72.7,75.5] (94.5,97.3] (70,72.7]   (83.6,86.4]
##  [859] (86.4,89.1] (70,72.7]   (70,72.7]   (80.9,83.6] (83.6,86.4] (75.5,78.2]
##  [865] (78.2,80.9] (91.8,94.5] (91.8,94.5] (91.8,94.5] (80.9,83.6] (72.7,75.5]
##  [871] (80.9,83.6] (91.8,94.5] (70,72.7]   (91.8,94.5] (75.5,78.2] (83.6,86.4]
##  [877] (83.6,86.4] (89.1,91.8] (70,72.7]   (80.9,83.6] (91.8,94.5] (86.4,89.1]
##  [883] (78.2,80.9] (72.7,75.5] (75.5,78.2] (83.6,86.4] (70,72.7]   (94.5,97.3]
##  [889] (89.1,91.8] (75.5,78.2] (83.6,86.4] (75.5,78.2] (97.3,100]  (75.5,78.2]
##  [895] (83.6,86.4] (94.5,97.3] (94.5,97.3] (75.5,78.2] (75.5,78.2] (89.1,91.8]
##  [901] (83.6,86.4] (83.6,86.4] (94.5,97.3] (80.9,83.6] (70,72.7]   (86.4,89.1]
##  [907] (70,72.7]   (86.4,89.1] (86.4,89.1] (97.3,100]  (70,72.7]   (97.3,100] 
##  [913] (94.5,97.3] (80.9,83.6] (91.8,94.5] (80.9,83.6] (78.2,80.9] (94.5,97.3]
##  [919] (80.9,83.6] (97.3,100]  (70,72.7]   (72.7,75.5] (94.5,97.3] (70,72.7]  
##  [925] (97.3,100]  (80.9,83.6] (75.5,78.2] (80.9,83.6] (75.5,78.2] (72.7,75.5]
##  [931] (97.3,100]  (89.1,91.8] (94.5,97.3] (80.9,83.6] (75.5,78.2] (86.4,89.1]
##  [937] (72.7,75.5] (91.8,94.5] (72.7,75.5] (70,72.7]   (94.5,97.3] (91.8,94.5]
##  [943] (97.3,100]  (91.8,94.5] (97.3,100]  (89.1,91.8] (86.4,89.1] (80.9,83.6]
##  [949] (72.7,75.5] (86.4,89.1] (75.5,78.2] (91.8,94.5] (80.9,83.6] (83.6,86.4]
##  [955] (83.6,86.4] (70,72.7]   (91.8,94.5] (86.4,89.1] (70,72.7]   (70,72.7]  
##  [961] (89.1,91.8] (75.5,78.2] (86.4,89.1] (70,72.7]   (72.7,75.5] (70,72.7]  
##  [967] (83.6,86.4] (75.5,78.2] (75.5,78.2] (72.7,75.5] (97.3,100]  (89.1,91.8]
##  [973] (83.6,86.4] (94.5,97.3] (75.5,78.2] (91.8,94.5] (91.8,94.5] (94.5,97.3]
##  [979] (72.7,75.5] (72.7,75.5] (83.6,86.4] (83.6,86.4] (80.9,83.6] (80.9,83.6]
##  [985] (80.9,83.6] (89.1,91.8] (89.1,91.8] (94.5,97.3] (72.7,75.5] (80.9,83.6]
##  [991] (80.9,83.6] (83.6,86.4] (86.4,89.1] (94.5,97.3] (94.5,97.3] (89.1,91.8]
##  [997] (89.1,91.8] (72.7,75.5] (72.7,75.5] (72.7,75.5]
## 11 Levels: (70,72.7] (72.7,75.5] (75.5,78.2] (78.2,80.9] ... (97.3,100]
tabla.intervalos <- transform(table(cut(muestra, breaks = nointervalos))) 
tabla.intervalos
##           Var1 Freq
## 1    (70,72.7]  103
## 2  (72.7,75.5]  112
## 3  (75.5,78.2]   85
## 4  (78.2,80.9]   64
## 5  (80.9,83.6]   92
## 6  (83.6,86.4]  103
## 7  (86.4,89.1]   77
## 8  (89.1,91.8]   59
## 9  (91.8,94.5]  125
## 10 (94.5,97.3]   84
## 11  (97.3,100]   96
pie(tabla.intervalos$Freq, labels = paste(tabla.intervalos$Var1, " - ", tabla.intervalos$Freq), main = "¿De cuál intervalo hay más y menos elementos?. Sturges")

#En esta práctica se dio a conocer la agrupación de datos en la herramienta R, la cual facilita el proceso que implica la agrupación de datos las cuales son: ordenar, clasificar y expresar los en una tabla de frecuencias. Se agrupan los datos, esto quiere decir que se pueden clasificar de forma coherente y lógica mediante una tabla de frecuencias la cual hace más entendibles las muestras que se dan a conocer y las personas tienen a entender más. El objetivo de la agrupación de los datos es resumir la información, por lo general es de una muestra mayor a 20 datos, la agrupación puede ser de forma simple o mediante intervalos de clase.ervalos$Var1, " - ", tabla.intervalos$Freq), main = "¿De cuál intervalo hay más y menos elementos?. Sturges")