This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

library(car)
library("ggplot2")
library(scales)
library(RColorBrewer)
library(reshape2)
setwd("/Volumes/KINGSTON/MedScholars/Data")
educ1 <- read.csv("Data analysis workbook 5_edu.csv")

Correlation between ERC and Years of Education

corr1<-lm(ERC_avg~Education,data = educ1)
summary (corr1)
## 
## Call:
## lm(formula = ERC_avg ~ Education, data = educ1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.64236 -0.20996 -0.04316  0.17982  0.58890 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.13784    0.47848   6.558 6.96e-08 ***
## Education   -0.04922    0.02868  -1.716   0.0936 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3066 on 41 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.06703,    Adjusted R-squared:  0.04428 
## F-statistic: 2.946 on 1 and 41 DF,  p-value: 0.09365

Correlation between SRLM and Years of Education

corr2<-lm(SRLM_avg~Education,data = educ1)
summary (corr2)
## 
## Call:
## lm(formula = SRLM_avg ~ Education, data = educ1)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.126260 -0.039644  0.000924  0.034633  0.157153 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.583142   0.094137   6.195 2.29e-07 ***
## Education   -0.001318   0.005642  -0.234    0.816    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.06032 on 41 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00133,    Adjusted R-squared:  -0.02303 
## F-statistic: 0.0546 on 1 and 41 DF,  p-value: 0.8164

Correlation between SRLM and Age

corr3<-lm(SRLM_avg~Age,data = educ1)
summary (corr3)
## 
## Call:
## lm(formula = SRLM_avg ~ Age, data = educ1)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.110721 -0.032315  0.006491  0.031379  0.135860 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.7385856  0.0631518  11.695 1.22e-14 ***
## Age         -0.0026313  0.0009287  -2.833  0.00711 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.05519 on 41 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1637, Adjusted R-squared:  0.1433 
## F-statistic: 8.028 on 1 and 41 DF,  p-value: 0.007114

Linear regression predicting SRLM with Age and Education

corr4<-lm(SRLM_avg~Age+Education,data = educ1)
summary (corr4)
## 
## Call:
## lm(formula = SRLM_avg ~ Age + Education, data = educ1)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.110913 -0.032236  0.006584  0.031328  0.135928 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.7362731  0.1030733   7.143 1.19e-08 ***
## Age         -0.0026340  0.0009450  -2.787  0.00809 ** 
## Education    0.0001503  0.0052536   0.029  0.97732    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.05588 on 40 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1638, Adjusted R-squared:  0.1219 
## F-statistic: 3.917 on 2 and 40 DF,  p-value: 0.02797

Linear regression predicting SRLM with Age x Education

corr5<-lm(SRLM_avg~Age+Education+I(Age*Education),data = educ1)
summary (corr5)
## 
## Call:
## lm(formula = SRLM_avg ~ Age + Education + I(Age * Education), 
##     data = educ1)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.107093 -0.028620  0.005766  0.023842  0.140072 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)        -0.1269938  0.6146907  -0.207    0.837
## Age                 0.0099601  0.0088929   1.120    0.270
## Education           0.0517849  0.0366283   1.414    0.165
## I(Age * Education) -0.0007522  0.0005282  -1.424    0.162
## 
## Residual standard error: 0.05517 on 39 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.2051, Adjusted R-squared:  0.1439 
## F-statistic: 3.354 on 3 and 39 DF,  p-value: 0.02846