Network Study

Basic network properties based on the first ten respondents (shown as the first ten in the tables, identified in red on the plots).

Ideas for analysis

Summary of the complete network

IGRAPH DN-- 78 1694 -- 
attr: name (v/c), Name (v/c), Interviewed (v/c), colour (v/c),
  Knows (e/n), Strength (e/n), advice (e/n), leadership (e/n),
  influence (e/n)

Problems with data.

  1. In some data sheets Rachael Williams spelt Rachael Wiliams (only one l)
  2. Sue Edwards sometimes spelt Su Edwards

“Is this person known to you?”

Summary of the network

IGRAPH DN-- 78 824 -- 
attr: name (v/c), Name (v/c), Interviewed (v/c), colour (v/c),
  Knows (e/n), Strength (e/n), advice (e/n), leadership (e/n),
  influence (e/n)

Graph of the network

Is person known to you

In-degrees

Name InDegree
AmandaDunne AmandaDunne 12
AnnSmallman AnnSmallman 19
CarolynBishop CarolynBishop 20
ClaireThomas ClaireThomas 21
DianeHobday DianeHobday 4
DotGillespie DotGillespie 17
DuncanRandall DuncanRandall 20
EmmaAspinall EmmaAspinall 20
FionaReynolds FionaReynolds 18
JaneCoad JaneCoad 21
JaneHoughton JaneHoughton 15
JimTindall JimTindall 21
KathJones KathJones 8
LouiseLeather LouiseLeather 10
NicolaFitzmaurice NicolaFitzmaurice 21
PankajShah PankajShah 4
RachaelWilliams RachaelWilliams 12
RachelBloomer RachelBloomer 11
SarahKirk SarahKirk 16
StephanieCourts StephanieCourts 17
SueDavies SueDavies 13
SueEdwards SueEdwards 11
AllisonCape AllisonCape 2
AngelaThompson AngelaThompson 22
AngieArnold AngieArnold 3
CarolDavies CarolDavies 14
CarolFarrell CarolFarrell 13
ChristopherReed ChristopherReed 19
DavidLewis DavidLewis 5
DavidWiddas DavidWiddas 21
DeborahGoodrich DeborahGoodrich 2
EdLandon EdLandon 0
GregField GregField 9
HelenHipkiss HelenHipkiss 15
HelenKelly HelenKelly 5
JackieGriffiths JackieGriffiths 3
JanetteVyse JanetteVyse 9
JasmineHeslop JasmineHeslop 3
JennyCharlton JennyCharlton 3
JoJones JoJones 15
JulieReed JulieReed 5
KarenShaw KarenShaw 13
KateNorton KateNorton 4
KathHill KathHill 6
KatyCoates KatyCoates 10
LindaCancelliere LindaCancelliere 12
LisaCuddeford LisaCuddeford 22
LouiseJones LouiseJones 3
LouiseTomkinson LouiseTomkinson 1
LynnTolley LynnTolley 7
LynneDodson LynneDodson 2
ManjulaShenoy ManjulaShenoy 8
MarieHazell MarieHazell 5
MariaHardy MariaHardy 7
MarionVersluijs MarionVersluijs 4
MaureenBytheway MaureenBytheway 12
MaybelleWallis MaybelleWallis 22
NarinderKular NarinderKular 14
PatFisher PatFisher 11
PatTurner PatTurner 16
PennyDison PennyDison 9
PeterMorris PeterMorris 10
RanjitKhular RanjitKhular 8
RhondaLee RhondaLee 6
RuthDavis RuthDavis 4
SandraBrown SandraBrown 1
SarahHumphrey SarahHumphrey 7
SarahMitchell SarahMitchell 6
SatvinderKaur SatvinderKaur 15
SharonSimkin SharonSimkin 13
StaceyNorwood StaceyNorwood 8
StephanieFriedl StephanieFriedl 6
SuRoxburgh SuRoxburgh 6
SueCurry SueCurry 6
SueHatton SueHatton 16
SueGallagher SueGallagher 4
SusanLongman SusanLongman 11
TraceyMalkin TraceyMalkin 10

deg.know Freq
1 0 1
2 1 2
3 2 3
4 3 5
5 4 6
6 5 4
7 6 6
8 7 3
9 8 4
10 9 3
11 10 4
12 11 4
13 12 4
14 13 4
15 14 2
16 15 4
17 16 3
18 17 2
19 18 1
20 19 2
21 20 3
22 21 5
23 22 3
plot of chunk know-degree

“Would you go to this person for advice?”

Summary of the network

IGRAPH DN-- 78 507 -- 
attr: name (v/c), Name (v/c), Interviewed (v/c), colour (v/c),
  Knows (e/n), Strength (e/n), advice (e/n), leadership (e/n),
  influence (e/n)

Would you go to this person for advice?

In-degrees

InDegree
AmandaDunne 7
AnnSmallman 14
CarolynBishop 15
ClaireThomas 16
DianeHobday 1
DotGillespie 10
DuncanRandall 10
EmmaAspinall 17
FionaReynolds 15
JaneCoad 15
JaneHoughton 10
JimTindall 11
KathJones 5
LouiseLeather 3
NicolaFitzmaurice 19
PankajShah 4
RachaelWilliams 7
RachelBloomer 5
SarahKirk 11
StephanieCourts 11
SueDavies 10
SueEdwards 8
AllisonCape 0
AngelaThompson 20
AngieArnold 1
CarolDavies 5
CarolFarrell 8
ChristopherReed 9
DavidLewis 3
DavidWiddas 20
DeborahGoodrich 1
EdLandon 0
GregField 4
HelenHipkiss 8
HelenKelly 1
JackieGriffiths 1
JanetteVyse 6
JasmineHeslop 1
JennyCharlton 3
JoJones 7
JulieReed 2
KarenShaw 6
KateNorton 3
KathHill 3
KatyCoates 8
LindaCancelliere 5
LisaCuddeford 21
LouiseJones 1
LouiseTomkinson 0
LynnTolley 1
LynneDodson 1
ManjulaShenoy 2
MarieHazell 2
MariaHardy 4
MarionVersluijs 1
MaureenBytheway 4
MaybelleWallis 17
NarinderKular 4
PatFisher 4
PatTurner 11
PennyDison 5
PeterMorris 6
RanjitKhular 3
RhondaLee 4
RuthDavis 2
SandraBrown 1
SarahHumphrey 0
SarahMitchell 4
SatvinderKaur 7
SharonSimkin 7
StaceyNorwood 6
StephanieFriedl 4
SuRoxburgh 4
SueCurry 5
SueHatton 11
SueGallagher 2
SusanLongman 9
TraceyMalkin 5

% latex table generated in R 2.15.1 by xtable 1.7-0 package
% Sun Jul 01 17:05:08 2012
\begin{table}[ht]
\begin{center}
\begin{tabular}{rlr}
\hline
& Degree.deg.adv & Degree.Freq \
\hline
1 & 0 & 4 \
2 & 1 & 11 \
3 & 2 & 5 \
4 & 3 & 6 \
5 & 4 & 10 \
6 & 5 & 7 \
7 & 6 & 4 \
8 & 7 & 5 \
9 & 8 & 4 \
10 & 9 & 2 \
11 & 10 & 4 \
12 & 11 & 5 \
13 & 14 & 1 \
14 & 15 & 3 \
15 & 16 & 1 \
16 & 17 & 2 \
17 & 19 & 1 \
18 & 20 & 2 \
19 & 21 & 1 \
\hline
\end{tabular}
\end{center}
\end{table}
plot of chunk advice-degree

“Does person occupy leadership role?”

Summary of the network

IGRAPH DN-- 78 443 -- 
attr: name (v/c), Name (v/c), Interviewed (v/c), colour (v/c),
  Knows (e/n), Strength (e/n), advice (e/n), leadership (e/n),
  influence (e/n)

Graph of the network

Does the person occupy a leadership role?

In-degrees

InDegree
AmandaDunne 6
AnnSmallman 13
CarolynBishop 14
ClaireThomas 21
DianeHobday 0
DotGillespie 11
DuncanRandall 10
EmmaAspinall 18
FionaReynolds 14
JaneCoad 21
JaneHoughton 11
JimTindall 19
KathJones 4
LouiseLeather 3
NicolaFitzmaurice 19
PankajShah 1
RachaelWilliams 4
RachelBloomer 2
SarahKirk 7
StephanieCourts 10
SueDavies 6
SueEdwards 8
AllisonCape 0
AngelaThompson 22
AngieArnold 2
CarolDavies 2
CarolFarrell 2
ChristopherReed 14
DavidLewis 2
DavidWiddas 21
DeborahGoodrich 0
EdLandon 0
GregField 2
HelenHipkiss 13
HelenKelly 3
JackieGriffiths 0
JanetteVyse 2
JasmineHeslop 0
JennyCharlton 0
JoJones 5
JulieReed 0
KarenShaw 2
KateNorton 1
KathHill 1
KatyCoates 2
LindaCancelliere 6
LisaCuddeford 21
LouiseJones 0
LouiseTomkinson 1
LynnTolley 0
LynneDodson 0
ManjulaShenoy 3
MarieHazell 1
MariaHardy 3
MarionVersluijs 1
MaureenBytheway 2
MaybelleWallis 19
NarinderKular 3
PatFisher 3
PatTurner 12
PennyDison 2
PeterMorris 6
RanjitKhular 3
RhondaLee 3
RuthDavis 1
SandraBrown 0
SarahHumphrey 0
SarahMitchell 1
SatvinderKaur 1
SharonSimkin 3
StaceyNorwood 3
StephanieFriedl 2
SuRoxburgh 5
SueCurry 2
SueHatton 12
SueGallagher 0
SusanLongman 3
TraceyMalkin 3

plot of chunk leader-degree

“Do you see the person as influential outside network?”

Summary

IGRAPH DN-- 78 378 -- 
attr: name (v/c), Name (v/c), Interviewed (v/c), colour (v/c),
  Knows (e/n), Strength (e/n), advice (e/n), leadership (e/n),
  influence (e/n)

Graph of the network (isolates removed)

Is the person influential outside network?

In-degree

InDegree
AmandaDunne 4
AnnSmallman 11
CarolynBishop 6
ClaireThomas 19
DianeHobday 0
DotGillespie 7
DuncanRandall 10
EmmaAspinall 13
FionaReynolds 14
JaneCoad 20
JaneHoughton 12
JimTindall 15
KathJones 4
LouiseLeather 2
NicolaFitzmaurice 20
PankajShah 3
RachaelWilliams 2
RachelBloomer 1
SarahKirk 2
StephanieCourts 8
SueDavies 3
SueEdwards 6
AllisonCape 0
AngelaThompson 21
AngieArnold 2
CarolDavies 3
CarolFarrell 2
ChristopherReed 8
DavidLewis 1
DavidWiddas 21
DeborahGoodrich 0
EdLandon 0
GregField 1
HelenHipkiss 12
HelenKelly 2
JackieGriffiths 0
JanetteVyse 4
JasmineHeslop 0
JennyCharlton 1
JoJones 3
JulieReed 1
KarenShaw 5
KateNorton 0
KathHill 2
KatyCoates 2
LindaCancelliere 2
LisaCuddeford 19
LouiseJones 0
LouiseTomkinson 1
LynnTolley 1
LynneDodson 1
ManjulaShenoy 2
MarieHazell 0
MariaHardy 3
MarionVersluijs 0
MaureenBytheway 2
MaybelleWallis 12
NarinderKular 3
PatFisher 1
PatTurner 10
PennyDison 4
PeterMorris 3
RanjitKhular 0
RhondaLee 4
RuthDavis 1
SandraBrown 0
SarahHumphrey 0
SarahMitchell 2
SatvinderKaur 3
SharonSimkin 4
StaceyNorwood 2
StephanieFriedl 2
SuRoxburgh 3
SueCurry 2
SueHatton 11
SueGallagher 0
SusanLongman 3
TraceyMalkin 4

plot of chunk influence-degree

Summary of all in-degrees

Knows Advice Leadership Influence
AmandaDunne 12 7 6 4
AnnSmallman 19 14 13 11
CarolynBishop 20 15 14 6
ClaireThomas 21 16 21 19
DianeHobday 4 1 0 0
DotGillespie 17 10 11 7
DuncanRandall 20 10 10 10
EmmaAspinall 20 17 18 13
FionaReynolds 18 15 14 14
JaneCoad 21 15 21 20
JaneHoughton 15 10 11 12
JimTindall 21 11 19 15
KathJones 8 5 4 4
LouiseLeather 10 3 3 2
NicolaFitzmaurice 21 19 19 20
PankajShah 4 4 1 3
RachaelWilliams 12 7 4 2
RachelBloomer 11 5 2 1
SarahKirk 16 11 7 2
StephanieCourts 17 11 10 8
SueDavies 13 10 6 3
SueEdwards 11 8 8 6
AllisonCape 2 0 0 0
AngelaThompson 22 20 22 21
AngieArnold 3 1 2 2
CarolDavies 14 5 2 3
CarolFarrell 13 8 2 2
ChristopherReed 19 9 14 8
DavidLewis 5 3 2 1
DavidWiddas 21 20 21 21
DeborahGoodrich 2 1 0 0
EdLandon 0 0 0 0
GregField 9 4 2 1
HelenHipkiss 15 8 13 12
HelenKelly 5 1 3 2
JackieGriffiths 3 1 0 0
JanetteVyse 9 6 2 4
JasmineHeslop 3 1 0 0
JennyCharlton 3 3 0 1
JoJones 15 7 5 3
JulieReed 5 2 0 1
KarenShaw 13 6 2 5
KateNorton 4 3 1 0
KathHill 6 3 1 2
KatyCoates 10 8 2 2
LindaCancelliere 12 5 6 2
LisaCuddeford 22 21 21 19
LouiseJones 3 1 0 0
LouiseTomkinson 1 0 1 1
LynnTolley 7 1 0 1
LynneDodson 2 1 0 1
ManjulaShenoy 8 2 3 2
MarieHazell 5 2 1 0
MariaHardy 7 4 3 3
MarionVersluijs 4 1 1 0
MaureenBytheway 12 4 2 2
MaybelleWallis 22 17 19 12
NarinderKular 14 4 3 3
PatFisher 11 4 3 1
PatTurner 16 11 12 10
PennyDison 9 5 2 4
PeterMorris 10 6 6 3
RanjitKhular 8 3 3 0
RhondaLee 6 4 3 4
RuthDavis 4 2 1 1
SandraBrown 1 1 0 0
SarahHumphrey 7 0 0 0
SarahMitchell 6 4 1 2
SatvinderKaur 15 7 1 3
SharonSimkin 13 7 3 4
StaceyNorwood 8 6 3 2
StephanieFriedl 6 4 2 2
SuRoxburgh 6 4 5 3
SueCurry 6 5 2 2
SueHatton 16 11 12 11
SueGallagher 4 2 0 0
SusanLongman 11 9 3 3
TraceyMalkin 10 5 3 4

Community structure.

Communities are highly connected between them but with few links to other vertices. Calculate walktrap community using the advice nextwork, with isolates removed. This uses a random walk algorithm to identify communities. Pascal Pons, Matthieu Latapy: Computing communities in large networks using random walks, http://arxiv.org/abs/physics/0512106.

Edge betweenness centrality

Network characteristics

Have to restrict to ties between respondents only.

dens <- function(g) {
    n.edge <- ecount(g)
    n.vert <- vcount(g)
    e.max <- n.vert^2 - n.vert
    if (is.directed(g)) {
        n.edge/e.max
    } else {
        n.edge/(e.max/2)
    }
}

Density of knows network: 0.7165
Density of advice network: 0.4848
Density of leadership network: 0.4805
Density of influence network: 0.3939

Leader network, interviewed people only

plot of chunk leader-int-plot

Dyad censuses

          Mutual Asymmetric Null Total Density
Knows        144         43   44   331  0.7165
Advice        78         68   85   224  0.4848
Leader        65         92   74   222  0.4805
Influence     49         84   98   182  0.3939

In-degree

      AmandaDunne       AnnSmallman     CarolynBishop      ClaireThomas 
                6                13                14                21 
      DianeHobday      DotGillespie     DuncanRandall      EmmaAspinall 
                0                11                10                18 
    FionaReynolds          JaneCoad      JaneHoughton        JimTindall 
               14                21                11                19 
        KathJones     LouiseLeather NicolaFitzmaurice        PankajShah 
                4                 3                19                 1 
  RachaelWilliams     RachelBloomer         SarahKirk   StephanieCourts 
                4                 2                 7                10 
        SueDavies        SueEdwards 
                6                 8 

In the leadership network, there is a group of five people who seem to be most prominent. This network is quite centralized, suggesting a form of hierarchical structure.

Centralization scores, in-degree

     Know    Advice    Leader Influence 
   0.2835    0.4199    0.5195    0.5584 

Centralization scores, betweenness

     Know    Advice    Leader Influence 
  0.03828   0.08451   0.07461   0.26069