#Loading the rvest package
library('rvest')
## Loading required package: xml2
## Warning: package 'xml2' was built under R version 3.6.3
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.6.3
## -- Attaching packages ---------------------------------------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.1     v purrr   0.3.4
## v tibble  3.0.1     v dplyr   1.0.0
## v tidyr   1.1.0     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.5.0
## Warning: package 'ggplot2' was built under R version 3.6.3
## Warning: package 'tibble' was built under R version 3.6.3
## Warning: package 'tidyr' was built under R version 3.6.3
## Warning: package 'purrr' was built under R version 3.6.3
## Warning: package 'dplyr' was built under R version 3.6.3
## Warning: package 'forcats' was built under R version 3.6.3
## -- Conflicts ------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter()         masks stats::filter()
## x readr::guess_encoding() masks rvest::guess_encoding()
## x dplyr::lag()            masks stats::lag()
## x purrr::pluck()          masks rvest::pluck()
library('ggplot2')

#Specifying the url for desired website to be scraped
url <- 'http://www.imdb.com/search/title?count=100&release_date=2016,2016&title_type=feature'

#Reading the HTML code from the website
webpage <- read_html(url)

Ranking Section

#Using CSS selectors to scrape the rankings section
rank_data_html <- html_nodes(webpage,'.text-primary')

#Converting the ranking data to text
rank_data <- html_text(rank_data_html)

head(rank_data)
## [1] "1." "2." "3." "4." "5." "6."
#Data-Preprocessing: Converting rankings to numerical
rank_data<-as.numeric(rank_data)

head(rank_data)
## [1] 1 2 3 4 5 6

Title Section

#Using CSS selectors to scrape the title section
title_data_html <- html_nodes(webpage,'.lister-item-header a')

#Converting the title data to text
title_data <- html_text(title_data_html)

head(title_data)
## [1] "Moana"                                      
## [2] "Moonlight"                                  
## [3] "Suicide Squad"                              
## [4] "Rogue One: A Star Wars Story"               
## [5] "Miss Peregrine's Home for Peculiar Children"
## [6] "La La Land"

Description Section

#Using CSS selectors to scrape the description section
description_data_html <- html_nodes(webpage,'.ratings-bar+ .text-muted')

#Converting the description data to text
description_data <- html_text(description_data_html)

head(description_data)
## [1] "\n    In Ancient Polynesia, when a terrible curse incurred by the Demigod Maui reaches Moana's island, she answers the Ocean's call to seek out the Demigod to set things right."                                                                   
## [2] "\n    A young African-American man grapples with his identity and sexuality while experiencing the everyday struggles of childhood, adolescence, and burgeoning adulthood."                                                                         
## [3] "\n    A secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive task force. Their first mission: save the world from the apocalypse."                                                          
## [4] "\n    The daughter of an Imperial scientist joins the Rebel Alliance in a risky move to steal the Death Star plans."                                                                                                                                
## [5] "\n    When Jacob (Asa Butterfield) discovers clues to a mystery that stretches across time, he finds Miss Peregrine's Home for Peculiar Children. But the danger deepens after he gets to know the residents and learns about their special powers."
## [6] "\n    While navigating their careers in Los Angeles, a pianist and an actress fall in love while attempting to reconcile their aspirations for the future."
#Data-Preprocessing: removing '\n'
description_data<-gsub("\n","",description_data)

head(description_data)
## [1] "    In Ancient Polynesia, when a terrible curse incurred by the Demigod Maui reaches Moana's island, she answers the Ocean's call to seek out the Demigod to set things right."                                                                   
## [2] "    A young African-American man grapples with his identity and sexuality while experiencing the everyday struggles of childhood, adolescence, and burgeoning adulthood."                                                                         
## [3] "    A secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive task force. Their first mission: save the world from the apocalypse."                                                          
## [4] "    The daughter of an Imperial scientist joins the Rebel Alliance in a risky move to steal the Death Star plans."                                                                                                                                
## [5] "    When Jacob (Asa Butterfield) discovers clues to a mystery that stretches across time, he finds Miss Peregrine's Home for Peculiar Children. But the danger deepens after he gets to know the residents and learns about their special powers."
## [6] "    While navigating their careers in Los Angeles, a pianist and an actress fall in love while attempting to reconcile their aspirations for the future."

Runtime Section

#Using CSS selectors to scrape the Movie runtime section
runtime_data_html <- html_nodes(webpage,'.text-muted .runtime')

#Converting the runtime data to text
runtime_data <- html_text(runtime_data_html)

head(runtime_data)
## [1] "107 min" "111 min" "123 min" "133 min" "127 min" "128 min"
#Data-Preprocessing: removing mins and converting it to numerical
runtime_data<-gsub(" min","",runtime_data)
runtime_data<-as.numeric(runtime_data)

head(runtime_data)
## [1] 107 111 123 133 127 128

Genre Section

#Using CSS selectors to scrape the Movie genre section
genre_data_html <- html_nodes(webpage,'.genre')

#Converting the genre data to text
genre_data <- html_text(genre_data_html)

head(genre_data)
## [1] "\nAnimation, Adventure, Comedy            "
## [2] "\nDrama            "                       
## [3] "\nAction, Adventure, Fantasy            "  
## [4] "\nAction, Adventure, Sci-Fi            "   
## [5] "\nAdventure, Drama, Family            "    
## [6] "\nComedy, Drama, Music            "
#Data-Preprocessing: removing \n
genre_data<-gsub("\n","",genre_data)

#Data-Preprocessing: removing excess spaces
genre_data<-gsub(" ","",genre_data)

#taking only the first genre of each movie
genre_data<-gsub(",.*","",genre_data)

#Convering each genre from text to factor
genre_data<-as.factor(genre_data)

head(genre_data)
## [1] Animation Drama     Action    Action    Adventure Comedy   
## Levels: Action Adventure Animation Biography Comedy Crime Drama Horror

Rating Section

#Using CSS selectors to scrape the IMDB rating section
rating_data_html <- html_nodes(webpage,'.ratings-imdb-rating strong')

#Converting the ratings data to text
rating_data <- html_text(rating_data_html)

head(rating_data)
## [1] "7.6" "7.4" "6.0" "7.8" "6.7" "8.0"
#Data-Preprocessing: converting ratings to numerical
rating_data<-as.numeric(rating_data)

head(rating_data)
## [1] 7.6 7.4 6.0 7.8 6.7 8.0

Votes Section

#Using CSS selectors to scrape the votes section
votes_data_html <- html_nodes(webpage,'.sort-num_votes-visible span:nth-child(2)')

#Converting the votes data to text
votes_data <- html_text(votes_data_html)

head(votes_data)
## [1] "254,974" "258,640" "580,793" "532,959" "150,551" "480,751"
#Data-Preprocessing: removing commas
votes_data<-gsub(",","",votes_data)

#Data-Preprocessing: converting votes to numerical
votes_data<-as.numeric(votes_data)

head(votes_data)
## [1] 254974 258640 580793 532959 150551 480751

Directors Section

#Using CSS selectors to scrape the directors section
directors_data_html <- html_nodes(webpage,'.text-muted+ p a:nth-child(1)')

#Converting the directors data to text
directors_data <- html_text(directors_data_html)

head(directors_data)
## [1] "Ron Clements"    "Barry Jenkins"   "David Ayer"      "Gareth Edwards" 
## [5] "Tim Burton"      "Damien Chazelle"
#Data-Preprocessing: converting directors data into factors
directors_data<-as.factor(directors_data)

head(directors_data)
## [1] Ron Clements    Barry Jenkins   David Ayer      Gareth Edwards 
## [5] Tim Burton      Damien Chazelle
## 98 Levels: Alex Proyas Ana Lily Amirpour André Øvredal ... Zack Snyder

Actors Section

#Using CSS selectors to scrape the actors section
actors_data_html <- html_nodes(webpage,'.lister-item-content .ghost+ a')

#Converting the gross actors data to text
actors_data <- html_text(actors_data_html)

head(actors_data)
## [1] "Auli'i Cravalho" "Mahershala Ali"  "Will Smith"      "Felicity Jones" 
## [5] "Eva Green"       "Ryan Gosling"
#Data-Preprocessing: converting actors data into factors
actors_data<-as.factor(actors_data)

head(actors_data)
## [1] Auli'i Cravalho Mahershala Ali  Will Smith      Felicity Jones 
## [5] Eva Green       Ryan Gosling   
## 92 Levels: Aamir Khan Adam Driver Adam Sandler ... Zoey Deutch

Metascore Section

#Using CSS selectors to scrape the metascore section
metascore_data_html <- html_nodes(webpage,'.metascore')

#Converting the runtime data to text
metascore_data <- html_text(metascore_data_html)

head(metascore_data)
## [1] "81        " "99        " "40        " "65        " "57        "
## [6] "94        "
#Data-Preprocessing: removing extra space in metascore
metascore_data<-gsub(" ","",metascore_data)

length(metascore_data)
## [1] 98
# Adding NA's to missing values

for (i in c(22, 80)){

a<-metascore_data[1:(i-1)]

b<-metascore_data[i:length(metascore_data)]

metascore_data<-append(a,list("NA"))

metascore_data<-append(metascore_data,b)

}

#Data-Preprocessing: converting metascore to numerical
metascore_data<-as.numeric(metascore_data)
## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion
length(metascore_data)
## [1] 100
#Summary statistics
summary(metascore_data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   21.00   47.25   62.00   60.19   73.50   99.00       2

Gross Revenue Section

#Using CSS selectors to scrape the gross revenue section
gross_data_html <- html_nodes(webpage,'.ghost~ .text-muted+ span')

#Converting the gross revenue data to text
gross_data <- html_text(gross_data_html)

head(gross_data)
## [1] "$248.76M" "$27.85M"  "$325.10M" "$532.18M" "$87.24M"  "$151.10M"
#Data-Preprocessing: removing '$' and 'M' signs
gross_data<-gsub("M","",gross_data)

gross_data<-substring(gross_data,2,6)

length(gross_data)
## [1] 90
#Filling missing entries with NA
for (i in c(22, 48, 52, 63, 72, 84, 91, 93, 94, 100)){

a<-gross_data[1:(i-1)]

b<-gross_data[i:length(gross_data)]

gross_data<-append(a,list("NA"))

gross_data<-append(gross_data,b)

}

length(gross_data)
## [1] 102
#Data-Preprocessing: converting gross to numerical
unlist(gross_data)
##   [1] "248.7" "27.85" "325.1" "532.1" "87.24" "151.1" "330.3" "341.2" "100.5"
##  [10] "36.26" "67.21" "232.6" "408.0" "363.0" "5.02"  "58.70" "234.0" "5.88" 
##  [19] "2.01"  "169.6" "2.13"  "NA"    "93.43" "138.2" "56.25" "54.65" "10.64"
##  [28] "126.6" "34.34" "158.8" "52.85" "155.4" "47.70" "1.33"  "100.0" "270.4"
##  [37] "86.26" "103.1" "89.22" "35.82" "97.69" "51.74" "14.43" "75.40" "26.86"
##  [46] "7.70"  "61.43" "NA"    "162.4" "153.7" "127.4" "NA"    "31.15" "65.08"
##  [55] "30.08" "47.37" "4.21"  "35.59" "8.58"  "55.12" "72.08" "102.4" "NA"   
##  [64] "5.20"  "7.10"  "364.0" "128.3" "43.03" "46.84" "67.27" "125.0" "NA"   
##  [73] "30.35" "60.32" "66.18" "26.41" "40.10" "486.3" "113.2" "12.39" "12.79"
##  [82] "26.83" "82.05" "NA"    "0.18"  "62.68" "34.92" "0.66"  "8.11"  "368.3"
##  [91] "NA"    "21.59" "NA"    "NA"    "31.89" "46.01" "10.91" "2.14"  "57.64"
## [100] "NA"    "57.64"
gross_data <- gross_data[-c(101,102)]

gross_data<-as.numeric(gross_data)
## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion
length(gross_data)
## [1] 100
summary(gross_data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    0.18   27.11   58.17   99.58  126.20  532.10      10

Combine the data to create a dataframe and inspect its structure

#Combining all the lists to form a data frame
movies_df<-data.frame(Rank = rank_data, Title = title_data,
                      Description = description_data, Runtime = runtime_data,
                      Genre = genre_data, Rating = rating_data,
                      Metascore = metascore_data, Votes = votes_data, 
                      Gross_Earning_in_Mil = gross_data,
                      Director = directors_data, Actor = actors_data)

#Structure of the data frame
str(movies_df)
## 'data.frame':    100 obs. of  11 variables:
##  $ Rank                : num  1 2 3 4 5 6 7 8 9 10 ...
##  $ Title               : Factor w/ 100 levels "10 Cloverfield Lane",..: 49 50 66 58 48 40 11 100 8 88 ...
##  $ Description         : Factor w/ 100 levels "    A deaf and mute writer who retreated into the woods to live a solitary life must fight for her life in sile"| __truncated__,..: 60 29 20 78 94 98 47 57 13 56 ...
##  $ Runtime             : num  107 111 123 133 127 128 151 108 116 116 ...
##  $ Genre               : Factor w/ 8 levels "Action","Adventure",..: 3 7 1 1 2 5 1 3 7 1 ...
##  $ Rating              : num  7.6 7.4 6 7.8 6.7 8 6.5 8 7.9 7.4 ...
##  $ Metascore           : num  81 99 40 65 57 94 44 78 81 70 ...
##  $ Votes               : num  254974 258640 580793 532959 150551 ...
##  $ Gross_Earning_in_Mil: num  248.7 27.9 325.1 532.1 87.2 ...
##  $ Director            : Factor w/ 98 levels "Alex Proyas",..: 82 11 25 35 92 20 98 14 29 86 ...
##  $ Actor               : Factor w/ 92 levels "Aamir Khan","Adam Driver",..: 8 52 89 32 31 72 9 34 5 70 ...

Analyzing scraped data from the web

Question 1: Based on the above data, which movie from which Genre had the longest runtime?

#qplot(data = movies_df,Runtime,fill = Genre,bins = 30) 
ggplot(data = movies_df) +
  geom_boxplot(mapping = aes(x = Genre, y = Runtime), fill = "red")

movies_df %>% filter(Runtime == max(Runtime)) %>%
  select (Title, Genre, Runtime)
##            Title Genre Runtime
## 1 American Honey Drama     163

Answer: The movie “American Honey” of the Drama genre has the longest runtime of 163 minutes.

Question 2: Based on the above data, in the Runtime of 130-160 mins, which genre has the highest votes?

ggplot(movies_df,aes(x=Runtime,y=Rating))+
  geom_point(aes(size=Votes,col=Genre))

movies_df %>% filter(Runtime >= 130 & Runtime <= 160) %>%
  group_by(Genre) %>%
  summarise(sum = sum(Votes)) 
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 6 x 2
##   Genre         sum
##   <fct>       <dbl>
## 1 Action    2535200
## 2 Adventure  394319
## 3 Animation   38048
## 4 Biography  616113
## 5 Drama      510893
## 6 Horror     260153

Answer: The genre Action has the highest total votes of 2,535,200.

Question 3: Based on the above data, across all genres which genre has the highest average gross earnings in runtime 100 to 120?

ggplot(movies_df,aes(x=Runtime,y=Gross_Earning_in_Mil))+
  geom_point(aes(size=Rating,col=Genre))
## Warning: Removed 10 rows containing missing values (geom_point).

movies_df %>% filter(Runtime >= 100 & Runtime <= 120) %>%
  group_by(Genre) %>%
  summarise(mean = mean(Gross_Earning_in_Mil, na.rm = TRUE))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 8 x 2
##   Genre      mean
##   <fct>     <dbl>
## 1 Action     90.7
## 2 Adventure 185. 
## 3 Animation 216. 
## 4 Biography  35.9
## 5 Comedy     38.6
## 6 Crime      75.4
## 7 Drama      52.5
## 8 Horror     69.8

Answer: Across all genres, the Animation genre has the highest average gross earnings of 216 minutes in runtime 100 to 120.