Las personas de cualquier género trabajan en algún sector, en función del género determinado de manera inicial se trata de encontrar la probabilidad del sector en donde laboran. Al elegir aleatoriamente a una persona se conoce el género, Hombre o Mujer y se solicita encontrar la probabilidad de que pertenezca a algún sector.
Se trata de encontrar las probabilidades condicionales usando el Teorema de Bayes para personas que trabajan en algún sector (‘Servicios’, ‘Salud’ u ‘Otros’) y sean o que estén en función de algún género (‘Hombre’ o ‘Mujer’).
Prob.Servi <- 0.40
Prob.Salud <- 0.35
Prob.Otros <- 0.25
cat("Las probabilidades por cada servicio")
## Las probabilidades por cada servicio
Prob.Servi; Prob.Salud; Prob.Otros
## [1] 0.4
## [1] 0.35
## [1] 0.25
Se dan las probabilidades de que sea de algún género en fucnón del servicio. ##### Sector Servicios * En el sector Servicios la probabilidad de que sea Mujer es del 0.30 * En el sector Servicios la probabilidad de que sea Hombre es del 0.70 + PServ.Mujer + PServ.Hombre
PServ.Mujer <- 0.30
PServ.Hombre <- 0.70
PSalud.Mujer <- 0.60
PSalud.Hombre <- 0.40
PSalud.Mujer; PSalud.Hombre
## [1] 0.6
## [1] 0.4
POtros.Mujer <- 0.45
POtros.Hombre <- 0.55
POtros.Mujer; PSalud.Hombre
## [1] 0.45
## [1] 0.4
La Ley de la Multiplicación es útil para calcular la probabilidad de la intersección de dos eventos. La ley de la multiplicación se basa en la definición de probabilidad condicional. Se multiplican las probabilidades, y en este caso tendiendo las probabilidades identificadas en el árbol se determinan fácilmente. ##### Probabilidad de que sea Hombre o Mujer en función de Servicios * ProbServ.I.Mujer <- Prob.Servi * PServ.Mujer * ProbServ.I.Hombre <- Prob.Servi * PServ.Hombre
ProbServ.I.Mujer <- Prob.Servi * PServ.Mujer
ProbServ.I.Hombre <- Prob.Servi * PServ.Hombre
ProbServ.I.Mujer ; ProbServ.I.Hombre
## [1] 0.12
## [1] 0.28
ProbSalud.I.Mujer <- Prob.Salud * PSalud.Mujer
ProbSalud.I.Hombre <- Prob.Salud * PSalud.Hombre
ProbSalud.I.Mujer ; ProbSalud.I.Hombre
## [1] 0.21
## [1] 0.14
Probabilidad de que sea Hombre o Mujer en función de Otros * ProbOtros.I.Mujer <- Prob.Otros * POtros.Mujer * ProbOtros.I.Hombre <- Prob.Otros * POtros.Hombre
ProbOtros.I.Mujer <- Prob.Otros * POtros.Mujer
ProbOtros.I.Hombre <- Prob.Otros * POtros.Hombre
ProbOtros.I.Mujer ; ProbOtros.I.Hombre
## [1] 0.1125
## [1] 0.1375
TBResult <- ProbSalud.I.Hombre / (ProbServ.I.Hombre + ProbSalud.I.Hombre + ProbOtros.I.Hombre)
TBResult
## [1] 0.2511211
cat ("1. Prob(Salud | Hombre): Persona que sea del sector Salud y que sea hombre es: ", TBResult)
## 1. Prob(Salud | Hombre): Persona que sea del sector Salud y que sea hombre es: 0.2511211
TBResult <- ProbSalud.I.Mujer / (ProbServ.I.Mujer + ProbSalud.I.Mujer + ProbOtros.I.Mujer)
TBResult
## [1] 0.4745763
cat ("1. Prob(Salud | Mujer): Persona que sea del sector Salud y que sea mujer es: ", TBResult)
## 1. Prob(Salud | Mujer): Persona que sea del sector Salud y que sea mujer es: 0.4745763
TBResult <- ProbServ.I.Hombre / (ProbServ.I.Hombre + ProbSalud.I.Hombre + ProbOtros.I.Hombre)
TBResult
## [1] 0.5022422
cat ("1. Prob(Servicios | Hombre): Persona que sea del sector Servicios y que sea hombre es: ", TBResult)
## 1. Prob(Servicios | Hombre): Persona que sea del sector Servicios y que sea hombre es: 0.5022422
TBResult <- ProbServ.I.Mujer / (ProbServ.I.Mujer + ProbSalud.I.Mujer + ProbOtros.I.Mujer)
TBResult
## [1] 0.2711864
cat ("1. Prob(Servicios | Mujer): Persona que sea del sector Servicios y que sea mujer es: ", TBResult)
## 1. Prob(Servicios | Mujer): Persona que sea del sector Servicios y que sea mujer es: 0.2711864