The KNN classifier is typically used to solve classification problems (those with a qualitative response) by identifying the neighborhood of \(x_0\) and then estimating the conditional probability \(P(Y=j|X=x_0)\) for class \(j\) as the fraction of points in the neighborhood whose response values equal \(j\). The KNN regression method is used to solve regression problems (those with a quantitative response) by again identifying the neighborhood of \(x_0\) and then estimating \(f(x_0)\) as the average of all the training responses in the neighborhood.
library(ISLR)
## Warning: package 'ISLR' was built under R version 3.6.3
summary(Auto)
## mpg cylinders displacement horsepower weight
## Min. : 9.00 Min. :3.000 Min. : 68.0 Min. : 46.0 Min. :1613
## 1st Qu.:17.00 1st Qu.:4.000 1st Qu.:105.0 1st Qu.: 75.0 1st Qu.:2225
## Median :22.75 Median :4.000 Median :151.0 Median : 93.5 Median :2804
## Mean :23.45 Mean :5.472 Mean :194.4 Mean :104.5 Mean :2978
## 3rd Qu.:29.00 3rd Qu.:8.000 3rd Qu.:275.8 3rd Qu.:126.0 3rd Qu.:3615
## Max. :46.60 Max. :8.000 Max. :455.0 Max. :230.0 Max. :5140
##
## acceleration year origin name
## Min. : 8.00 Min. :70.00 Min. :1.000 amc matador : 5
## 1st Qu.:13.78 1st Qu.:73.00 1st Qu.:1.000 ford pinto : 5
## Median :15.50 Median :76.00 Median :1.000 toyota corolla : 5
## Mean :15.54 Mean :75.98 Mean :1.577 amc gremlin : 4
## 3rd Qu.:17.02 3rd Qu.:79.00 3rd Qu.:2.000 amc hornet : 4
## Max. :24.80 Max. :82.00 Max. :3.000 chevrolet chevette: 4
## (Other) :365
auto= read.csv("~/DA 6543 ALGORITHMS II/Assignment02/Auto.csv", header = TRUE, na.strings = "?")
auto=na.omit(auto)
attach(auto)
dim(auto)
## [1] 392 9
View(auto)
summary(auto)
## mpg cylinders displacement horsepower weight
## Min. : 9.00 Min. :3.000 Min. : 68.0 Min. : 46.0 Min. :1613
## 1st Qu.:17.00 1st Qu.:4.000 1st Qu.:105.0 1st Qu.: 75.0 1st Qu.:2225
## Median :22.75 Median :4.000 Median :151.0 Median : 93.5 Median :2804
## Mean :23.45 Mean :5.472 Mean :194.4 Mean :104.5 Mean :2978
## 3rd Qu.:29.00 3rd Qu.:8.000 3rd Qu.:275.8 3rd Qu.:126.0 3rd Qu.:3615
## Max. :46.60 Max. :8.000 Max. :455.0 Max. :230.0 Max. :5140
##
## acceleration year origin name
## Min. : 8.00 Min. :70.00 Min. :1.000 amc matador : 5
## 1st Qu.:13.78 1st Qu.:73.00 1st Qu.:1.000 ford pinto : 5
## Median :15.50 Median :76.00 Median :1.000 toyota corolla : 5
## Mean :15.54 Mean :75.98 Mean :1.577 amc gremlin : 4
## 3rd Qu.:17.02 3rd Qu.:79.00 3rd Qu.:2.000 amc hornet : 4
## Max. :24.80 Max. :82.00 Max. :3.000 chevrolet chevette: 4
## (Other) :365
str(auto)
## 'data.frame': 392 obs. of 9 variables:
## $ mpg : num 18 15 18 16 17 15 14 14 14 15 ...
## $ cylinders : int 8 8 8 8 8 8 8 8 8 8 ...
## $ displacement: num 307 350 318 304 302 429 454 440 455 390 ...
## $ horsepower : int 130 165 150 150 140 198 220 215 225 190 ...
## $ weight : int 3504 3693 3436 3433 3449 4341 4354 4312 4425 3850 ...
## $ acceleration: num 12 11.5 11 12 10.5 10 9 8.5 10 8.5 ...
## $ year : int 70 70 70 70 70 70 70 70 70 70 ...
## $ origin : int 1 1 1 1 1 1 1 1 1 1 ...
## $ name : Factor w/ 304 levels "amc ambassador brougham",..: 49 36 231 14 161 141 54 223 241 2 ...
## - attr(*, "na.action")= 'omit' Named int 33 127 331 337 355
## ..- attr(*, "names")= chr "33" "127" "331" "337" ...
pairs(Auto)
names(Auto)
## [1] "mpg" "cylinders" "displacement" "horsepower" "weight"
## [6] "acceleration" "year" "origin" "name"
cor(Auto[1:8])
## mpg cylinders displacement horsepower weight
## mpg 1.0000000 -0.7776175 -0.8051269 -0.7784268 -0.8322442
## cylinders -0.7776175 1.0000000 0.9508233 0.8429834 0.8975273
## displacement -0.8051269 0.9508233 1.0000000 0.8972570 0.9329944
## horsepower -0.7784268 0.8429834 0.8972570 1.0000000 0.8645377
## weight -0.8322442 0.8975273 0.9329944 0.8645377 1.0000000
## acceleration 0.4233285 -0.5046834 -0.5438005 -0.6891955 -0.4168392
## year 0.5805410 -0.3456474 -0.3698552 -0.4163615 -0.3091199
## origin 0.5652088 -0.5689316 -0.6145351 -0.4551715 -0.5850054
## acceleration year origin
## mpg 0.4233285 0.5805410 0.5652088
## cylinders -0.5046834 -0.3456474 -0.5689316
## displacement -0.5438005 -0.3698552 -0.6145351
## horsepower -0.6891955 -0.4163615 -0.4551715
## weight -0.4168392 -0.3091199 -0.5850054
## acceleration 1.0000000 0.2903161 0.2127458
## year 0.2903161 1.0000000 0.1815277
## origin 0.2127458 0.1815277 1.0000000
fit2 <- lm(mpg ~ . - name, data = Auto)
summary(fit2)
##
## Call:
## lm(formula = mpg ~ . - name, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.5903 -2.1565 -0.1169 1.8690 13.0604
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.218435 4.644294 -3.707 0.00024 ***
## cylinders -0.493376 0.323282 -1.526 0.12780
## displacement 0.019896 0.007515 2.647 0.00844 **
## horsepower -0.016951 0.013787 -1.230 0.21963
## weight -0.006474 0.000652 -9.929 < 2e-16 ***
## acceleration 0.080576 0.098845 0.815 0.41548
## year 0.750773 0.050973 14.729 < 2e-16 ***
## origin 1.426141 0.278136 5.127 4.67e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
## F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16
We can conclude that there is a relationship between predictors and response ‘mpg’ based on the F-statistic of 252.4 and significant p-value from the multiple linear regression.
The p-values of ‘displacement’, ‘weight’, ‘year’, and origin are statistically significant *** with response variable ‘mpg’. statistically insignificant: ‘cylinders’, ‘horsepower’ and ‘acceleration’.
The coefficient of the ‘year’ variable (0.750773) suggests that for every increase in 1 ‘year’, the ‘mpg’ increases by 0.7507727 (all other predictors remaining constant), i.e., each year, cars become more fuel efficient.
par(mfrow = c(2, 2))
plot(fit2)
The plot of Residuals vs Fitted values indicates the presence of slight non-linearity in the data. The plot of Standardized residuals vs Fitted values depict a more linear plot. Cook’s D indicates the presence of a few outliers (higher than 2 or lower than -2) and one high leverage point (point 14).
fit3 <- lm(mpg ~ cylinders * displacement+displacement * weight, data = Auto[, 1:8])
summary(fit3)
##
## Call:
## lm(formula = mpg ~ cylinders * displacement + displacement *
## weight, data = Auto[, 1:8])
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.2934 -2.5184 -0.3476 1.8399 17.7723
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.262e+01 2.237e+00 23.519 < 2e-16 ***
## cylinders 7.606e-01 7.669e-01 0.992 0.322
## displacement -7.351e-02 1.669e-02 -4.403 1.38e-05 ***
## weight -9.888e-03 1.329e-03 -7.438 6.69e-13 ***
## cylinders:displacement -2.986e-03 3.426e-03 -0.872 0.384
## displacement:weight 2.128e-05 5.002e-06 4.254 2.64e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.103 on 386 degrees of freedom
## Multiple R-squared: 0.7272, Adjusted R-squared: 0.7237
## F-statistic: 205.8 on 5 and 386 DF, p-value: < 2.2e-16
From the p-values, we can see that the interaction between displacement and weight is statistically signifcant, while the interactiion between cylinders and displacement is not.
The scatter plots demonstrate an inverse relationship between ‘horsepower’ and ‘mpg’. The log transformation gives the most linear looking plot compared to the others.
par(mfrow = c(2, 2))
plot(Auto$horsepower,Auto$mpg)
plot(log(Auto$horsepower), Auto$mpg)
plot(sqrt(Auto$horsepower), Auto$mpg)
plot((Auto$horsepower)^2, Auto$mpg)
attach(Carseats)
fit<-lm(Sales~Price+Urban+US)
summary(fit)
##
## Call:
## lm(formula = Sales ~ Price + Urban + US)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9206 -1.6220 -0.0564 1.5786 7.0581
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.043469 0.651012 20.036 < 2e-16 ***
## Price -0.054459 0.005242 -10.389 < 2e-16 ***
## UrbanYes -0.021916 0.271650 -0.081 0.936
## USYes 1.200573 0.259042 4.635 4.86e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2335
## F-statistic: 41.52 on 3 and 396 DF, p-value: < 2.2e-16
From the table above, ‘Price’ and ‘US’ are significant predictors of ‘Sales’, for every \(\$1\) increase my price, my sales go down by \(\$54\). Sales inside of the ‘US’ are \(\$1,200\) higher than sales outside of the US. ‘Urban’ has no effect on ‘Sales’.
\(Sales = 13.043469 -0.054459Price-0.021916Urban_{Yes}+1.200573XUS_{Yes}\)
We can reject the null hypothesis for ‘Price’ and ‘US’
fit<-lm(Sales~Price+US)
summary(fit)
##
## Call:
## lm(formula = Sales ~ Price + US)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9269 -1.6286 -0.0574 1.5766 7.0515
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.03079 0.63098 20.652 < 2e-16 ***
## Price -0.05448 0.00523 -10.416 < 2e-16 ***
## USYes 1.19964 0.25846 4.641 4.71e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2354
## F-statistic: 62.43 on 2 and 397 DF, p-value: < 2.2e-16
These models are not very good. Each model only explains 23.9% of the variance in Sales.
confint(fit)
## 2.5 % 97.5 %
## (Intercept) 11.79032020 14.27126531
## Price -0.06475984 -0.04419543
## USYes 0.69151957 1.70776632
R has built in functions to that can help us identify influential points using various statistics with one simple command. Researchers have suggested several cutoff levels or upper limits as to what is the acceptable influence an observation should have before being considered an outlier. For example, the average leverage \(\frac{(p+1)}{n}\) which for us is \(\frac{(2+1)}{400} = 0.0075\). You can see outliers in the Cook’s D graph (observations >2 and <-2).
par(mfrow=c(2,2))
plot(fit)
summary(influence.measures(fit))
## Potentially influential observations of
## lm(formula = Sales ~ Price + US) :
##
## dfb.1_ dfb.Pric dfb.USYs dffit cov.r cook.d hat
## 26 0.24 -0.18 -0.17 0.28_* 0.97_* 0.03 0.01
## 29 -0.10 0.10 -0.10 -0.18 0.97_* 0.01 0.01
## 43 -0.11 0.10 0.03 -0.11 1.05_* 0.00 0.04_*
## 50 -0.10 0.17 -0.17 0.26_* 0.98 0.02 0.01
## 51 -0.05 0.05 -0.11 -0.18 0.95_* 0.01 0.00
## 58 -0.05 -0.02 0.16 -0.20 0.97_* 0.01 0.01
## 69 -0.09 0.10 0.09 0.19 0.96_* 0.01 0.01
## 126 -0.07 0.06 0.03 -0.07 1.03_* 0.00 0.03_*
## 160 0.00 0.00 0.00 0.01 1.02_* 0.00 0.02
## 166 0.21 -0.23 -0.04 -0.24 1.02 0.02 0.03_*
## 172 0.06 -0.07 0.02 0.08 1.03_* 0.00 0.02
## 175 0.14 -0.19 0.09 -0.21 1.03_* 0.02 0.03_*
## 210 -0.14 0.15 -0.10 -0.22 0.97_* 0.02 0.01
## 270 -0.03 0.05 -0.03 0.06 1.03_* 0.00 0.02
## 298 -0.06 0.06 -0.09 -0.15 0.97_* 0.01 0.00
## 314 -0.05 0.04 0.02 -0.05 1.03_* 0.00 0.02_*
## 353 -0.02 0.03 0.09 0.15 0.97_* 0.01 0.00
## 357 0.02 -0.02 0.02 -0.03 1.03_* 0.00 0.02
## 368 0.26 -0.23 -0.11 0.27_* 1.01 0.02 0.02_*
## 377 0.14 -0.15 0.12 0.24 0.95_* 0.02 0.01
## 384 0.00 0.00 0.00 0.00 1.02_* 0.00 0.02
## 387 -0.03 0.04 -0.03 0.05 1.02_* 0.00 0.02
## 396 -0.05 0.05 0.08 0.14 0.98_* 0.01 0.00
R points out a few observations that violate various rules for each influence measure. Typically, one can demonstrate these statistics and report both a regression with all data included and one with the outliers removed and compare.{R} outyling.obs<-c(26,29,43,50,51,58,69,126,160,166,172,175,210,270,298,314,353,357,368,377,384,387,396) Carseats.small<-Carseats[-outyling.obs,] fit2<-lm(Sales~Price+US,data=Carseats.small) summary(fit2)
With these potential outliers or influential observations removed, very little changes from the linear model fit to the full data set. The confidence interval for the coefficient estimates produced by the linear model fit to the full data set contain the estimates of the coefficients for the estimates of the model with the outliers removed. It’s safe to include all of the data points in our model.
The coefficient estimate for the regression of Y onto X is \(\hat{\beta} = \frac{\sum_ix_iy_i}{\sum_jx_j^2};\)
The coefficient estimate for the regression of X onto Y is \(\hat{\beta}' = \frac{\sum_ix_iy_i}{\sum_jy_j^2}.\)
The coefficients are the same \(\sum_jx_j^2 = \sum_jy_j^2.\)
\(\hat{\beta} = \frac{\sum_ix_iy_i}{\sum_jx_j^2};\)
To do this, we need to ensure \(\Sigma_{i'=1}^{n} x_{i'}^{2}\) != \(\Sigma_{i'=1}^{n} y_{i'}^{2}\)
This feeds X with numbers 1 to 100 and does a random seed. Setting Y = 2x + rnorm(100).
set.seed(1)
x <- 1:100
sum(x^2)
## [1] 338350
As the functions are different, sum\((x^2)\) and sum\((y^2)\) should be different. The following print confirms.
y <- 2 * x + rnorm(100, sd = 0.1)
sum(y^2)
## [1] 1353606
fit.Y <- lm(y ~ x + 0)
fit.X <- lm(x ~ y + 0)
summary(fit.Y)
##
## Call:
## lm(formula = y ~ x + 0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.223590 -0.062560 0.004426 0.058507 0.230926
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## x 2.0001514 0.0001548 12920 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.09005 on 99 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 1.669e+08 on 1 and 99 DF, p-value: < 2.2e-16
summary(fit.X)
##
## Call:
## lm(formula = x ~ y + 0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.115418 -0.029231 -0.002186 0.031322 0.111795
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## y 5.00e-01 3.87e-05 12920 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04502 on 99 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 1.669e+08 on 1 and 99 DF, p-value: < 2.2e-16
The two models above fit, Note the coefficient estimates (1.997702 and 0.5005374) are different.
x <- 1:100
sum(x^2)
## [1] 338350
y <- 100:1
sum(y^2)
## [1] 338350
fit.Y <- lm(y ~ x + 0)
fit.X <- lm(x ~ y + 0)
summary(fit.Y)
##
## Call:
## lm(formula = y ~ x + 0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -49.75 -12.44 24.87 62.18 99.49
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## x 0.5075 0.0866 5.86 6.09e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared: 0.2575, Adjusted R-squared: 0.25
## F-statistic: 34.34 on 1 and 99 DF, p-value: 6.094e-08
summary(fit.X)
##
## Call:
## lm(formula = x ~ y + 0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -49.75 -12.44 24.87 62.18 99.49
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## y 0.5075 0.0866 5.86 6.09e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared: 0.2575, Adjusted R-squared: 0.25
## F-statistic: 34.34 on 1 and 99 DF, p-value: 6.094e-08