(Questions 2, 9, 10 and 12)

2. Carefully explain the differences between KNN classifier and KNN regression methods
Answer: Carefully explain the differences between the KNN classifier and KNN regression methods.

The KNN classifier is typically used to solve classification problems (those with a qualitative response) by identifying the neighborhood of \(x_0\) and then estimating the conditional probability \(P(Y=j|X=x_0)\) for class \(j\) as the fraction of points in the neighborhood whose response values equal \(j\). The KNN regression method is used to solve regression problems (those with a quantitative response) by again identifying the neighborhood of \(x_0\) and then estimating \(f(x_0)\) as the average of all the training responses in the neighborhood.

(a) Produce a scatterplot matrix which include all the variables in the data set.
library(ISLR)
## Warning: package 'ISLR' was built under R version 3.6.3
summary(Auto)
##       mpg          cylinders      displacement     horsepower        weight    
##  Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0   Min.   :1613  
##  1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0   1st Qu.:2225  
##  Median :22.75   Median :4.000   Median :151.0   Median : 93.5   Median :2804  
##  Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5   Mean   :2978  
##  3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0   3rd Qu.:3615  
##  Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0   Max.   :5140  
##                                                                                
##   acceleration        year           origin                      name    
##  Min.   : 8.00   Min.   :70.00   Min.   :1.000   amc matador       :  5  
##  1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000   ford pinto        :  5  
##  Median :15.50   Median :76.00   Median :1.000   toyota corolla    :  5  
##  Mean   :15.54   Mean   :75.98   Mean   :1.577   amc gremlin       :  4  
##  3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000   amc hornet        :  4  
##  Max.   :24.80   Max.   :82.00   Max.   :3.000   chevrolet chevette:  4  
##                                                  (Other)           :365
auto= read.csv("~/DA 6543 ALGORITHMS II/Assignment02/Auto.csv", header = TRUE, na.strings = "?")
auto=na.omit(auto)
attach(auto)
dim(auto)
## [1] 392   9
View(auto)
summary(auto)
##       mpg          cylinders      displacement     horsepower        weight    
##  Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0   Min.   :1613  
##  1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0   1st Qu.:2225  
##  Median :22.75   Median :4.000   Median :151.0   Median : 93.5   Median :2804  
##  Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5   Mean   :2978  
##  3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0   3rd Qu.:3615  
##  Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0   Max.   :5140  
##                                                                                
##   acceleration        year           origin                      name    
##  Min.   : 8.00   Min.   :70.00   Min.   :1.000   amc matador       :  5  
##  1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000   ford pinto        :  5  
##  Median :15.50   Median :76.00   Median :1.000   toyota corolla    :  5  
##  Mean   :15.54   Mean   :75.98   Mean   :1.577   amc gremlin       :  4  
##  3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000   amc hornet        :  4  
##  Max.   :24.80   Max.   :82.00   Max.   :3.000   chevrolet chevette:  4  
##                                                  (Other)           :365
str(auto)
## 'data.frame':    392 obs. of  9 variables:
##  $ mpg         : num  18 15 18 16 17 15 14 14 14 15 ...
##  $ cylinders   : int  8 8 8 8 8 8 8 8 8 8 ...
##  $ displacement: num  307 350 318 304 302 429 454 440 455 390 ...
##  $ horsepower  : int  130 165 150 150 140 198 220 215 225 190 ...
##  $ weight      : int  3504 3693 3436 3433 3449 4341 4354 4312 4425 3850 ...
##  $ acceleration: num  12 11.5 11 12 10.5 10 9 8.5 10 8.5 ...
##  $ year        : int  70 70 70 70 70 70 70 70 70 70 ...
##  $ origin      : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ name        : Factor w/ 304 levels "amc ambassador brougham",..: 49 36 231 14 161 141 54 223 241 2 ...
##  - attr(*, "na.action")= 'omit' Named int  33 127 331 337 355
##   ..- attr(*, "names")= chr  "33" "127" "331" "337" ...
pairs(Auto)

(b) Compute the matrix of correlations between the variables using the function cor(). You will need to exclude the name variable, cor() which is qualitative.
names(Auto)
## [1] "mpg"          "cylinders"    "displacement" "horsepower"   "weight"      
## [6] "acceleration" "year"         "origin"       "name"
cor(Auto[1:8])
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
##              acceleration       year     origin
## mpg             0.4233285  0.5805410  0.5652088
## cylinders      -0.5046834 -0.3456474 -0.5689316
## displacement   -0.5438005 -0.3698552 -0.6145351
## horsepower     -0.6891955 -0.4163615 -0.4551715
## weight         -0.4168392 -0.3091199 -0.5850054
## acceleration    1.0000000  0.2903161  0.2127458
## year            0.2903161  1.0000000  0.1815277
## origin          0.2127458  0.1815277  1.0000000
(c) Use the lm() function to perform a multiple linear regression with mpg as the response and all other variables except name as the predictors. Use the summary() function to print the results. Comment on the output. For instance:
i. Is there a relationship between the predictors and the response?
fit2 <- lm(mpg ~ . - name, data = Auto)
summary(fit2)
## 
## Call:
## lm(formula = mpg ~ . - name, data = Auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.5903 -2.1565 -0.1169  1.8690 13.0604 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -17.218435   4.644294  -3.707  0.00024 ***
## cylinders     -0.493376   0.323282  -1.526  0.12780    
## displacement   0.019896   0.007515   2.647  0.00844 ** 
## horsepower    -0.016951   0.013787  -1.230  0.21963    
## weight        -0.006474   0.000652  -9.929  < 2e-16 ***
## acceleration   0.080576   0.098845   0.815  0.41548    
## year           0.750773   0.050973  14.729  < 2e-16 ***
## origin         1.426141   0.278136   5.127 4.67e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared:  0.8215, Adjusted R-squared:  0.8182 
## F-statistic: 252.4 on 7 and 384 DF,  p-value: < 2.2e-16

We can conclude that there is a relationship between predictors and response ‘mpg’ based on the F-statistic of 252.4 and significant p-value from the multiple linear regression.

ii. Which predictors appear to have a statistically significant relationship to the response?

The p-values of ‘displacement’, ‘weight’, ‘year’, and origin are statistically significant *** with response variable ‘mpg’. statistically insignificant: ‘cylinders’, ‘horsepower’ and ‘acceleration’.

iii. What does the coefficient for the “year” variable suggest ?

The coefficient of the ‘year’ variable (0.750773) suggests that for every increase in 1 ‘year’, the ‘mpg’ increases by 0.7507727 (all other predictors remaining constant), i.e., each year, cars become more fuel efficient.

(d) Use the plot() function to produce diagnostic plots of the linear regression fit. Comment on any problems you see with the fit. Do the residual plots suggest any unusually large outliers ? Does the leverage plots identify any observations with unusually high leverages ?
par(mfrow = c(2, 2))
plot(fit2)

The plot of Residuals vs Fitted values indicates the presence of slight non-linearity in the data. The plot of Standardized residuals vs Fitted values depict a more linear plot. Cook’s D indicates the presence of a few outliers (higher than 2 or lower than -2) and one high leverage point (point 14).

(e) Use the * and : symbols to fit linear regression models with interaction effects. Do any interactions appear to be statistically significant ?
fit3 <- lm(mpg ~ cylinders * displacement+displacement * weight, data = Auto[, 1:8])
summary(fit3)
## 
## Call:
## lm(formula = mpg ~ cylinders * displacement + displacement * 
##     weight, data = Auto[, 1:8])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13.2934  -2.5184  -0.3476   1.8399  17.7723 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             5.262e+01  2.237e+00  23.519  < 2e-16 ***
## cylinders               7.606e-01  7.669e-01   0.992    0.322    
## displacement           -7.351e-02  1.669e-02  -4.403 1.38e-05 ***
## weight                 -9.888e-03  1.329e-03  -7.438 6.69e-13 ***
## cylinders:displacement -2.986e-03  3.426e-03  -0.872    0.384    
## displacement:weight     2.128e-05  5.002e-06   4.254 2.64e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.103 on 386 degrees of freedom
## Multiple R-squared:  0.7272, Adjusted R-squared:  0.7237 
## F-statistic: 205.8 on 5 and 386 DF,  p-value: < 2.2e-16

From the p-values, we can see that the interaction between displacement and weight is statistically signifcant, while the interactiion between cylinders and displacement is not.

  1. Try a few different transformations of the variables, such as \(\log{X}, \sqrt{X}, X^2\). Comment on your findings.

The scatter plots demonstrate an inverse relationship between ‘horsepower’ and ‘mpg’. The log transformation gives the most linear looking plot compared to the others.

par(mfrow = c(2, 2))
plot(Auto$horsepower,Auto$mpg)
plot(log(Auto$horsepower), Auto$mpg)
plot(sqrt(Auto$horsepower), Auto$mpg)
plot((Auto$horsepower)^2, Auto$mpg)

Problem 10

This question should be answered using the Carseats data set.
attach(Carseats)
(a) Fit a multiple regression model to predict Sales using Price,Urban, and US.
fit<-lm(Sales~Price+Urban+US)
summary(fit)
## 
## Call:
## lm(formula = Sales ~ Price + Urban + US)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9206 -1.6220 -0.0564  1.5786  7.0581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.043469   0.651012  20.036  < 2e-16 ***
## Price       -0.054459   0.005242 -10.389  < 2e-16 ***
## UrbanYes    -0.021916   0.271650  -0.081    0.936    
## USYes        1.200573   0.259042   4.635 4.86e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2335 
## F-statistic: 41.52 on 3 and 396 DF,  p-value: < 2.2e-16
(b) Provide an interpretation of each coefficient in the model. Be careful - some of the variables in the model are qualitative!

From the table above, ‘Price’ and ‘US’ are significant predictors of ‘Sales’, for every \(\$1\) increase my price, my sales go down by \(\$54\). Sales inside of the ‘US’ are \(\$1,200\) higher than sales outside of the US. ‘Urban’ has no effect on ‘Sales’.

(c) Write out the model in equation form, being careful to handle the qualitative variables properly.

\(Sales = 13.043469 -0.054459Price-0.021916Urban_{Yes}+1.200573XUS_{Yes}\)

(d) For which of the predictors can you reject the null hypothesis.

We can reject the null hypothesis for ‘Price’ and ‘US’

(e) On the basis of your response to the previous question, fit a smaller model that only uses the predictors for which there is evidence of association with the outcome.
fit<-lm(Sales~Price+US)
summary(fit)
## 
## Call:
## lm(formula = Sales ~ Price + US)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9269 -1.6286 -0.0574  1.5766  7.0515 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.03079    0.63098  20.652  < 2e-16 ***
## Price       -0.05448    0.00523 -10.416  < 2e-16 ***
## USYes        1.19964    0.25846   4.641 4.71e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2354 
## F-statistic: 62.43 on 2 and 397 DF,  p-value: < 2.2e-16
(f) How well do the models in (a) and (e) fit the data?

These models are not very good. Each model only explains 23.9% of the variance in Sales.

(g) Using the model from (e), obtain 95 % confidence intervals for the coefficient(s).
confint(fit)
##                   2.5 %      97.5 %
## (Intercept) 11.79032020 14.27126531
## Price       -0.06475984 -0.04419543
## USYes        0.69151957  1.70776632
(h) Is there evidence of outliers or high leverage observations in the model from (e)?

R has built in functions to that can help us identify influential points using various statistics with one simple command. Researchers have suggested several cutoff levels or upper limits as to what is the acceptable influence an observation should have before being considered an outlier. For example, the average leverage \(\frac{(p+1)}{n}\) which for us is \(\frac{(2+1)}{400} = 0.0075\). You can see outliers in the Cook’s D graph (observations >2 and <-2).

par(mfrow=c(2,2))
plot(fit)

summary(influence.measures(fit))
## Potentially influential observations of
##   lm(formula = Sales ~ Price + US) :
## 
##     dfb.1_ dfb.Pric dfb.USYs dffit   cov.r   cook.d hat    
## 26   0.24  -0.18    -0.17     0.28_*  0.97_*  0.03   0.01  
## 29  -0.10   0.10    -0.10    -0.18    0.97_*  0.01   0.01  
## 43  -0.11   0.10     0.03    -0.11    1.05_*  0.00   0.04_*
## 50  -0.10   0.17    -0.17     0.26_*  0.98    0.02   0.01  
## 51  -0.05   0.05    -0.11    -0.18    0.95_*  0.01   0.00  
## 58  -0.05  -0.02     0.16    -0.20    0.97_*  0.01   0.01  
## 69  -0.09   0.10     0.09     0.19    0.96_*  0.01   0.01  
## 126 -0.07   0.06     0.03    -0.07    1.03_*  0.00   0.03_*
## 160  0.00   0.00     0.00     0.01    1.02_*  0.00   0.02  
## 166  0.21  -0.23    -0.04    -0.24    1.02    0.02   0.03_*
## 172  0.06  -0.07     0.02     0.08    1.03_*  0.00   0.02  
## 175  0.14  -0.19     0.09    -0.21    1.03_*  0.02   0.03_*
## 210 -0.14   0.15    -0.10    -0.22    0.97_*  0.02   0.01  
## 270 -0.03   0.05    -0.03     0.06    1.03_*  0.00   0.02  
## 298 -0.06   0.06    -0.09    -0.15    0.97_*  0.01   0.00  
## 314 -0.05   0.04     0.02    -0.05    1.03_*  0.00   0.02_*
## 353 -0.02   0.03     0.09     0.15    0.97_*  0.01   0.00  
## 357  0.02  -0.02     0.02    -0.03    1.03_*  0.00   0.02  
## 368  0.26  -0.23    -0.11     0.27_*  1.01    0.02   0.02_*
## 377  0.14  -0.15     0.12     0.24    0.95_*  0.02   0.01  
## 384  0.00   0.00     0.00     0.00    1.02_*  0.00   0.02  
## 387 -0.03   0.04    -0.03     0.05    1.02_*  0.00   0.02  
## 396 -0.05   0.05     0.08     0.14    0.98_*  0.01   0.00

R points out a few observations that violate various rules for each influence measure. Typically, one can demonstrate these statistics and report both a regression with all data included and one with the outliers removed and compare.{R} outyling.obs<-c(26,29,43,50,51,58,69,126,160,166,172,175,210,270,298,314,353,357,368,377,384,387,396) Carseats.small<-Carseats[-outyling.obs,] fit2<-lm(Sales~Price+US,data=Carseats.small) summary(fit2)

With these potential outliers or influential observations removed, very little changes from the linear model fit to the full data set. The confidence interval for the coefficient estimates produced by the linear model fit to the full data set contain the estimates of the coefficients for the estimates of the model with the outliers removed. It’s safe to include all of the data points in our model.

Problem 12

This problem involves simple linear regression without an intercept.
(a) Recall that the coefficient estimate β^ for the linear regression of Y onto X witout an intercept is given by (3.38). Under what circumstance is the coefficient estimate for the regression of X onto Y the same as the coefficient estimate for the regression of Y onto X ?

The coefficient estimate for the regression of Y onto X is \(\hat{\beta} = \frac{\sum_ix_iy_i}{\sum_jx_j^2};\)

The coefficient estimate for the regression of X onto Y is \(\hat{\beta}' = \frac{\sum_ix_iy_i}{\sum_jy_j^2}.\)

The coefficients are the same \(\sum_jx_j^2 = \sum_jy_j^2.\)

(b) Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is different from the coefficient estimate for the regression of Y onto X.

\(\hat{\beta} = \frac{\sum_ix_iy_i}{\sum_jx_j^2};\)

To do this, we need to ensure \(\Sigma_{i'=1}^{n} x_{i'}^{2}\) != \(\Sigma_{i'=1}^{n} y_{i'}^{2}\)

This feeds X with numbers 1 to 100 and does a random seed. Setting Y = 2x + rnorm(100).

set.seed(1)
x <- 1:100
sum(x^2)
## [1] 338350

As the functions are different, sum\((x^2)\) and sum\((y^2)\) should be different. The following print confirms.

y <- 2 * x + rnorm(100, sd = 0.1)
sum(y^2)
## [1] 1353606
fit.Y <- lm(y ~ x + 0)
fit.X <- lm(x ~ y + 0)
summary(fit.Y)
## 
## Call:
## lm(formula = y ~ x + 0)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.223590 -0.062560  0.004426  0.058507  0.230926 
## 
## Coefficients:
##    Estimate Std. Error t value Pr(>|t|)    
## x 2.0001514  0.0001548   12920   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.09005 on 99 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 1.669e+08 on 1 and 99 DF,  p-value: < 2.2e-16
summary(fit.X)
## 
## Call:
## lm(formula = x ~ y + 0)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.115418 -0.029231 -0.002186  0.031322  0.111795 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## y 5.00e-01   3.87e-05   12920   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.04502 on 99 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 1.669e+08 on 1 and 99 DF,  p-value: < 2.2e-16

The two models above fit, Note the coefficient estimates (1.997702 and 0.5005374) are different.

(c) Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is the same as the coefficient estimate for the regression of Y onto X.
x <- 1:100
sum(x^2)
## [1] 338350
y <- 100:1
sum(y^2)
## [1] 338350
fit.Y <- lm(y ~ x + 0)
fit.X <- lm(x ~ y + 0)
summary(fit.Y)
## 
## Call:
## lm(formula = y ~ x + 0)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -49.75 -12.44  24.87  62.18  99.49 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## x   0.5075     0.0866    5.86 6.09e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared:  0.2575, Adjusted R-squared:   0.25 
## F-statistic: 34.34 on 1 and 99 DF,  p-value: 6.094e-08
summary(fit.X)
## 
## Call:
## lm(formula = x ~ y + 0)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -49.75 -12.44  24.87  62.18  99.49 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## y   0.5075     0.0866    5.86 6.09e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared:  0.2575, Adjusted R-squared:   0.25 
## F-statistic: 34.34 on 1 and 99 DF,  p-value: 6.094e-08