# Set the working directory to the location on your computer.
x <- getwd()
setwd(x)
library(knitr)
library(reshape2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(lattice)
library(magrittr)
library(lme4)
## Warning: package 'lme4' was built under R version 3.6.2
## Loading required package: Matrix
library(lmerTest)
## Warning: package 'lmerTest' was built under R version 3.6.2
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
## lmer
## The following object is masked from 'package:stats':
##
## step
library(optimx)
## Warning: package 'optimx' was built under R version 3.6.3
library(knitr)
opts_chunk$set(fig.path='figure/',fig.ext=NULL)
data <- read.table("bfijudgement.w.snsfreq.csv" ,header = T, sep = ",")
colnames(data) [1]<- "JID"
#IG - Instagram
#TW - Twitter
#sr - selfreport
#Con/Cond - condition
IG.Cond <- read.table("IGCon.csv", header = T, sep = ",")
TW.Cond <- read.table("TWCon.csv", header = T, sep = ",")
#sometimes the first column in the data set will have a weird name. This is for changing that.
names(IG.Cond)[names(IG.Cond) == "ï..ConType"] <- "ConType"
names(TW.Cond)[names(TW.Cond) == "ï..ConType"] <- "ConType"
# Each target has a realistic accuracy criterion composed of a self-rating of the BFI2-S
# read in target self-reports
sr.targets = read.table("targets1.csv", fill= TRUE, header = T, sep = ",")
colnames(sr.targets) [1]<- 'TID'
# In order to properly organize the data, there must be a seperate dataframe for each targets' self-ratings.
# Create dataframes for those targets that have validity ratings based on the BFI2S.
sr.1 <- sr.targets %>% filter(TID == "1")
sr.2 <- sr.targets %>% filter(TID == "2")
sr.3 <- sr.targets %>% filter(TID == "3")
sr.4 <- sr.targets %>% filter(TID == "4")
sr.5 <- sr.targets %>% filter(TID == "5")
sr.6 <- sr.targets %>% filter(TID == "6")
sr.7 <- sr.targets %>% filter(TID == "7")
sr.8 <- sr.targets %>% filter(TID == "8")
sr.9 <- sr.targets %>% filter(TID == "9")
sr.10 <- sr.targets %>% filter(TID == "10")
sr.11 <- sr.targets %>% filter(TID == "11")
sr.12 <- sr.targets %>% filter(TID == "12")
sr.13 <- sr.targets %>% filter(TID == "13")
sr.14 <- sr.targets %>% filter(TID == "14")
sr.15 <- sr.targets %>% filter(TID == "15")
sr.16 <- sr.targets %>% filter(TID == "16")
sr.17 <- sr.targets %>% filter(TID == "17")
sr.18 <- sr.targets %>% filter(TID == "18")
sr.19 <- sr.targets %>% filter(TID == "19")
sr.20 <- sr.targets %>% filter(TID == "20")
sr.21 <- sr.targets %>% filter(TID == "21")
sr.22 <- sr.targets %>% filter(TID == "22")
sr.23 <- sr.targets %>% filter(TID == "23")
sr.24 <- sr.targets %>% filter(TID == "24")
sr.25 <- sr.targets %>% filter(TID == "25")
sr.26 <- sr.targets %>% filter(TID == "26")
sr.27 <- sr.targets %>% filter(TID == "27")
sr.28 <- sr.targets %>% filter(TID == "28")
sr.29 <- sr.targets %>% filter(TID == "29")
sr.30 <- sr.targets %>% filter(TID == "30")
sr.31 <- sr.targets %>% filter(TID == "31")
sr.32 <- sr.targets %>% filter(TID == "32")
sr.33 <- sr.targets %>% filter(TID == "33")
sr.34 <- sr.targets %>% filter(TID == "34")
sr.35 <- sr.targets %>% filter(TID == "35")
sr.36 <- sr.targets %>% filter(TID == "36")
sr.37 <- sr.targets %>% filter(TID == "37")
sr.38 <- sr.targets %>% filter(TID == "38")
sr.39 <- sr.targets %>% filter(TID == "39")
sr.40 <- sr.targets %>% filter(TID == "40")
sr.41 <- sr.targets %>% filter(TID == "41")
sr.42 <- sr.targets %>% filter(TID == "42")
sr.43 <- sr.targets %>% filter(TID == "43")
sr.44 <- sr.targets %>% filter(TID == "44")
sr.45 <- sr.targets %>% filter(TID == "45")
sr.46 <- sr.targets %>% filter(TID == "46")
sr.47 <- sr.targets %>% filter(TID == "47")
sr.48 <- sr.targets %>% filter(TID == "48")
sr.49 <- sr.targets %>% filter(TID == "49")
sr.50 <- sr.targets %>% filter(TID == "50")
sr.51 <- sr.targets %>% filter(TID == "51")
sr.52 <- sr.targets %>% filter(TID == "52")
sr.53 <- sr.targets %>% filter(TID == "53")
sr.54 <- sr.targets %>% filter(TID == "54")
sr.55 <- sr.targets %>% filter(TID == "55")
sr.56 <- sr.targets %>% filter(TID == "56")
sr.57 <- sr.targets %>% filter(TID == "57")
sr.58 <- sr.targets %>% filter(TID == "58")
sr.59 <- sr.targets %>% filter(TID == "59")
sr.60 <- sr.targets %>% filter(TID == "60")
sr.61 <- sr.targets %>% filter(TID == "61")
sr.62 <- sr.targets %>% filter(TID == "62")
sr.63 <- sr.targets %>% filter(TID == "63")
sr.64 <- sr.targets %>% filter(TID == "64")
sr.65 <- sr.targets %>% filter(TID == "65")
sr.66 <- sr.targets %>% filter(TID == "66")
sr.67 <- sr.targets %>% filter(TID == "67")
sr.68 <- sr.targets %>% filter(TID == "68")
sr.69 <- sr.targets %>% filter(TID == "69")
sr.70 <- sr.targets %>% filter(TID == "70")
sr.71 <- sr.targets %>% filter(TID == "71")
sr.72 <- sr.targets %>% filter(TID == "72")
sr.73 <- sr.targets %>% filter(TID == "73")
sr.74 <- sr.targets %>% filter(TID == "74")
sr.75 <- sr.targets %>% filter(TID == "75")
sr.76 <- sr.targets %>% filter(TID == "76")
sr.77 <- sr.targets %>% filter(TID == "77")
sr.78 <- sr.targets %>% filter(TID == "78")
sr.79 <- sr.targets %>% filter(TID == "79")
sr.80 <- sr.targets %>% filter(TID == "80")
sr.81 <- sr.targets %>% filter(TID == "81")
sr.82 <- sr.targets %>% filter(TID == "82")
sr.83 <- sr.targets %>% filter(TID == "83")
sr.84 <- sr.targets %>% filter(TID == "84")
sr.85 <- sr.targets %>% filter(TID == "85")
sr.86 <- sr.targets %>% filter(TID == "86")
sr.87 <- sr.targets %>% filter(TID == "87")
sr.88 <- sr.targets %>% filter(TID == "88")
sr.89 <- sr.targets %>% filter(TID == "89")
sr.90 <- sr.targets %>% filter(TID == "90")
sr.91 <- sr.targets %>% filter(TID == "91")
sr.92 <- sr.targets %>% filter(TID == "92")
sr.93 <- sr.targets %>% filter(TID == "93")
sr.94 <- sr.targets %>% filter(TID == "94")
sr.95 <- sr.targets %>% filter(TID == "95")
sr.96 <- sr.targets %>% filter(TID == "96")
sr.97 <- sr.targets %>% filter(TID == "97")
sr.98 <- sr.targets %>% filter(TID == "98")
sr.99 <- sr.targets %>% filter(TID == "99")
sr.100 <- sr.targets %>% filter(TID == "100")
sr.101 <- sr.targets %>% filter(TID == "101")
sr.102 <- sr.targets %>% filter(TID == "102")
sr.103 <- sr.targets %>% filter(TID == "103")
sr.104 <- sr.targets %>% filter(TID == "104")
sr.105 <- sr.targets %>% filter(TID == "105")
sr.106 <- sr.targets %>% filter(TID == "106")
sr.107 <- sr.targets %>% filter(TID == "107")
sr.108 <- sr.targets %>% filter(TID == "108")
sr.109 <- sr.targets %>% filter(TID == "109")
sr.110 <- sr.targets %>% filter(TID == "110")
sr.111 <- sr.targets %>% filter(TID == "111")
sr.112 <- sr.targets %>% filter(TID == "112")
sr.113 <- sr.targets %>% filter(TID == "113")
sr.114 <- sr.targets %>% filter(TID == "114")
sr.115 <- sr.targets %>% filter(TID == "115")
sr.116 <- sr.targets %>% filter(TID == "116")
sr.117 <- sr.targets %>% filter(TID == "117")
sr.118 <- sr.targets %>% filter(TID == "118")
sr.119 <- sr.targets %>% filter(TID == "119")
sr.120 <- sr.targets %>% filter(TID == "120")
sr.121 <- sr.targets %>% filter(TID == "121")
sr.122 <- sr.targets %>% filter(TID == "122")
sr.123 <- sr.targets %>% filter(TID == "123")
sr.124 <- sr.targets %>% filter(TID == "124")
sr.125 <- sr.targets %>% filter(TID == "125")
sr.126 <- sr.targets %>% filter(TID == "126")
sr.127 <- sr.targets %>% filter(TID == "127")
sr.128 <- sr.targets %>% filter(TID == "128")
sr.129 <- sr.targets %>% filter(TID == "129")
sr.130 <- sr.targets %>% filter(TID == "130")
sr.131 <- sr.targets %>% filter(TID == "131")
sr.132 <- sr.targets %>% filter(TID == "132")
sr.133 <- sr.targets %>% filter(TID == "133")
sr.134 <- sr.targets %>% filter(TID == "134")
sr.135 <- sr.targets %>% filter(TID == "135")
sr.136 <- sr.targets %>% filter(TID == "136")
sr.137 <- sr.targets %>% filter(TID == "137")
sr.138 <- sr.targets %>% filter(TID == "138")
sr.139 <- sr.targets %>% filter(TID == "139")
sr.140 <- sr.targets %>% filter(TID == "140")
sr.141 <- sr.targets %>% filter(TID == "141")
sr.142 <- sr.targets %>% filter(TID == "142")
sr.143 <- sr.targets %>% filter(TID == "143")
sr.144 <- sr.targets %>% filter(TID == "144")
sr.145 <- sr.targets %>% filter(TID == "145")
sr.146 <- sr.targets %>% filter(TID == "146")
sr.147 <- sr.targets %>% filter(TID == "147")
sr.148 <- sr.targets %>% filter(TID == "148")
sr.149 <- sr.targets %>% filter(TID == "149")
sr.150 <- sr.targets %>% filter(TID == "150")
# Import the normative profile for each of the BFI2-S.
normbfi = read.table("NormativeBFI2.csv", fill=TRUE, header = T, sep = ",")
longcrit.1.bfi2 <- melt(sr.1, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.2.bfi2 <- melt(sr.2, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.3.bfi2 <- melt(sr.3, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.4.bfi2 <- melt(sr.4, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.5.bfi2 <- melt(sr.5, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.6.bfi2 <- melt(sr.6, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.7.bfi2 <- melt(sr.7, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.8.bfi2 <- melt(sr.8, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.9.bfi2 <- melt(sr.9, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.10.bfi2 <- melt(sr.10, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.11.bfi2 <- melt(sr.11, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.12.bfi2 <- melt(sr.12, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.13.bfi2 <- melt(sr.13, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.14.bfi2 <- melt(sr.14, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.15.bfi2 <- melt(sr.15, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.16.bfi2 <- melt(sr.16, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.17.bfi2 <- melt(sr.17, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.18.bfi2 <- melt(sr.18, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.19.bfi2 <- melt(sr.19, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.20.bfi2 <- melt(sr.20, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.21.bfi2 <- melt(sr.21, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.22.bfi2 <- melt(sr.22, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.23.bfi2 <- melt(sr.23, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.24.bfi2 <- melt(sr.24, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.25.bfi2 <- melt(sr.25, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.26.bfi2 <- melt(sr.26, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.27.bfi2 <- melt(sr.27, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.28.bfi2 <- melt(sr.28, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.29.bfi2 <- melt(sr.29, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.30.bfi2 <- melt(sr.30, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.31.bfi2 <- melt(sr.31, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.32.bfi2 <- melt(sr.32, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.33.bfi2 <- melt(sr.33, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.34.bfi2 <- melt(sr.34, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.35.bfi2 <- melt(sr.35, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.36.bfi2 <- melt(sr.36, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.37.bfi2 <- melt(sr.37, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.38.bfi2 <- melt(sr.38, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.39.bfi2 <- melt(sr.39, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.40.bfi2 <- melt(sr.40, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.41.bfi2 <- melt(sr.41, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.42.bfi2 <- melt(sr.42, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.43.bfi2 <- melt(sr.43, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.44.bfi2 <- melt(sr.44, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.45.bfi2 <- melt(sr.45, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.46.bfi2 <- melt(sr.46, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.47.bfi2 <- melt(sr.47, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.48.bfi2 <- melt(sr.48, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.49.bfi2 <- melt(sr.49, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.50.bfi2 <- melt(sr.50, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.51.bfi2 <- melt(sr.51, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.52.bfi2 <- melt(sr.52, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.53.bfi2 <- melt(sr.53, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.54.bfi2 <- melt(sr.54, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.55.bfi2 <- melt(sr.55, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.56.bfi2 <- melt(sr.56, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.57.bfi2 <- melt(sr.57, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.58.bfi2 <- melt(sr.58, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.59.bfi2 <- melt(sr.59, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.60.bfi2 <- melt(sr.60, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.61.bfi2 <- melt(sr.61, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.62.bfi2 <- melt(sr.62, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.63.bfi2 <- melt(sr.63, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.64.bfi2 <- melt(sr.64, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.65.bfi2 <- melt(sr.65, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.66.bfi2 <- melt(sr.66, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.67.bfi2 <- melt(sr.67, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.68.bfi2 <- melt(sr.68, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.69.bfi2 <- melt(sr.69, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.70.bfi2 <- melt(sr.70, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.71.bfi2 <- melt(sr.71, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.72.bfi2 <- melt(sr.72, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.73.bfi2 <- melt(sr.73, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.74.bfi2 <- melt(sr.74, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.75.bfi2 <- melt(sr.75, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.76.bfi2 <- melt(sr.76, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.77.bfi2 <- melt(sr.77, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.78.bfi2 <- melt(sr.78, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.79.bfi2 <- melt(sr.79, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.80.bfi2 <- melt(sr.80, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.81.bfi2 <- melt(sr.81, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.82.bfi2 <- melt(sr.82, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.83.bfi2 <- melt(sr.83, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.84.bfi2 <- melt(sr.84, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.85.bfi2 <- melt(sr.85, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.86.bfi2 <- melt(sr.86, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.87.bfi2 <- melt(sr.87, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.88.bfi2 <- melt(sr.88, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.89.bfi2 <- melt(sr.89, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.90.bfi2 <- melt(sr.90, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.91.bfi2 <- melt(sr.91, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.92.bfi2 <- melt(sr.92, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.93.bfi2 <- melt(sr.93, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.94.bfi2 <- melt(sr.94, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.95.bfi2 <- melt(sr.95, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.96.bfi2 <- melt(sr.96, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.97.bfi2 <- melt(sr.97, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.98.bfi2 <- melt(sr.98, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.99.bfi2 <- melt(sr.99, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.100.bfi2 <- melt(sr.100, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.101.bfi2 <- melt(sr.101, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.102.bfi2 <- melt(sr.102, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.103.bfi2 <- melt(sr.103, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.104.bfi2 <- melt(sr.104, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.105.bfi2 <- melt(sr.105, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.106.bfi2 <- melt(sr.106, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.107.bfi2 <- melt(sr.107, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.108.bfi2 <- melt(sr.108, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.109.bfi2 <- melt(sr.109, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.110.bfi2 <- melt(sr.110, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.111.bfi2 <- melt(sr.111, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.112.bfi2 <- melt(sr.112, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.113.bfi2 <- melt(sr.113, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.114.bfi2 <- melt(sr.114, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.115.bfi2 <- melt(sr.115, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.116.bfi2 <- melt(sr.116, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.117.bfi2 <- melt(sr.117, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.118.bfi2 <- melt(sr.118, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.119.bfi2 <- melt(sr.119, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.120.bfi2 <- melt(sr.120, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.121.bfi2 <- melt(sr.121, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.122.bfi2 <- melt(sr.122, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.123.bfi2 <- melt(sr.123, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.124.bfi2 <- melt(sr.124, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.125.bfi2 <- melt(sr.125, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.126.bfi2 <- melt(sr.126, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.127.bfi2 <- melt(sr.127, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.128.bfi2 <- melt(sr.128, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.129.bfi2 <- melt(sr.129, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.130.bfi2 <- melt(sr.130, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.131.bfi2 <- melt(sr.131, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.132.bfi2 <- melt(sr.132, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.133.bfi2 <- melt(sr.133, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.134.bfi2 <- melt(sr.134, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.135.bfi2 <- melt(sr.135, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.136.bfi2 <- melt(sr.136, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.137.bfi2 <- melt(sr.137, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.138.bfi2 <- melt(sr.138, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.139.bfi2 <- melt(sr.139, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.140.bfi2 <- melt(sr.140, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.141.bfi2 <- melt(sr.141, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.142.bfi2 <- melt(sr.142, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.143.bfi2 <- melt(sr.143, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.144.bfi2 <- melt(sr.144, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.145.bfi2 <- melt(sr.145, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.146.bfi2 <- melt(sr.146, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.147.bfi2 <- melt(sr.147, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.148.bfi2 <- melt(sr.148, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.149.bfi2 <- melt(sr.149, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longcrit.150.bfi2 <- melt(sr.150, id.vars = c(1), measure.vars = c(2:31), variable.name = "Sr.item", value.name = "Sr")
longnorm.bfi2 <- melt(normbfi, measure.vars = c(1:30), variable.name = "Norm.item", value.name = "Norm")
# BFI2S
longratings.1.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2:31), variable.name = "Rating.item", value.name = "Rating")
longratings.1.bfi2 <- longratings.1.bfi2[order(longratings.1.bfi2$JID, longratings.1.bfi2$Rating.item),]
longratings.2.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(32:61), variable.name = "Rating.item", value.name = "Rating")
longratings.2.bfi2 <- longratings.2.bfi2[order(longratings.2.bfi2$JID, longratings.2.bfi2$Rating.item),]
longratings.3.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(62:91), variable.name = "Rating.item", value.name = "Rating")
longratings.3.bfi2 <- longratings.3.bfi2[order(longratings.3.bfi2$JID, longratings.3.bfi2$Rating.item),]
longratings.4.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(92:121), variable.name = "Rating.item", value.name = "Rating")
longratings.4.bfi2 <- longratings.4.bfi2[order(longratings.4.bfi2$JID, longratings.4.bfi2$Rating.item),]
longratings.5.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(122:151), variable.name = "Rating.item", value.name = "Rating")
longratings.5.bfi2 <- longratings.5.bfi2[order(longratings.5.bfi2$JID, longratings.5.bfi2$Rating.item),]
longratings.6.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(152:181), variable.name = "Rating.item", value.name = "Rating")
longratings.6.bfi2 <- longratings.6.bfi2[order(longratings.6.bfi2$JID, longratings.6.bfi2$Rating.item),]
longratings.7.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(182:211), variable.name = "Rating.item", value.name = "Rating")
longratings.7.bfi2 <- longratings.7.bfi2[order(longratings.7.bfi2$JID, longratings.7.bfi2$Rating.item),]
longratings.8.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(212:241), variable.name = "Rating.item", value.name = "Rating")
longratings.8.bfi2 <- longratings.8.bfi2[order(longratings.8.bfi2$JID, longratings.8.bfi2$Rating.item),]
longratings.9.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(242:271), variable.name = "Rating.item", value.name = "Rating")
longratings.9.bfi2 <- longratings.9.bfi2[order(longratings.9.bfi2$JID, longratings.9.bfi2$Rating.item),]
longratings.10.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(272:301), variable.name = "Rating.item", value.name = "Rating")
longratings.10.bfi2 <- longratings.10.bfi2[order(longratings.10.bfi2$JID, longratings.10.bfi2$Rating.item),]
longratings.11.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(302:331), variable.name = "Rating.item", value.name = "Rating")
longratings.11.bfi2 <- longratings.11.bfi2[order(longratings.11.bfi2$JID, longratings.11.bfi2$Rating.item),]
longratings.12.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(332:361), variable.name = "Rating.item", value.name = "Rating")
longratings.12.bfi2 <- longratings.12.bfi2[order(longratings.12.bfi2$JID, longratings.12.bfi2$Rating.item),]
longratings.13.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(362:391), variable.name = "Rating.item", value.name = "Rating")
longratings.13.bfi2 <- longratings.13.bfi2[order(longratings.13.bfi2$JID, longratings.13.bfi2$Rating.item),]
longratings.14.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(392:421), variable.name = "Rating.item", value.name = "Rating")
longratings.14.bfi2 <- longratings.14.bfi2[order(longratings.14.bfi2$JID, longratings.14.bfi2$Rating.item),]
longratings.15.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(422:451), variable.name = "Rating.item", value.name = "Rating")
longratings.15.bfi2 <- longratings.15.bfi2[order(longratings.15.bfi2$JID, longratings.15.bfi2$Rating.item),]
longratings.16.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(452:481), variable.name = "Rating.item", value.name = "Rating")
longratings.16.bfi2 <- longratings.16.bfi2[order(longratings.16.bfi2$JID, longratings.16.bfi2$Rating.item),]
longratings.17.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(482:511), variable.name = "Rating.item", value.name = "Rating")
longratings.17.bfi2 <- longratings.17.bfi2[order(longratings.17.bfi2$JID, longratings.17.bfi2$Rating.item),]
longratings.18.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(512:541), variable.name = "Rating.item", value.name = "Rating")
longratings.18.bfi2 <- longratings.18.bfi2[order(longratings.18.bfi2$JID, longratings.18.bfi2$Rating.item),]
longratings.19.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(542:571), variable.name = "Rating.item", value.name = "Rating")
longratings.19.bfi2 <- longratings.19.bfi2[order(longratings.19.bfi2$JID, longratings.19.bfi2$Rating.item),]
longratings.20.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(572:601), variable.name = "Rating.item", value.name = "Rating")
longratings.20.bfi2 <- longratings.20.bfi2[order(longratings.20.bfi2$JID, longratings.20.bfi2$Rating.item),]
longratings.21.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(602:631), variable.name = "Rating.item", value.name = "Rating")
longratings.21.bfi2 <- longratings.21.bfi2[order(longratings.21.bfi2$JID, longratings.21.bfi2$Rating.item),]
longratings.22.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(632:661), variable.name = "Rating.item", value.name = "Rating")
longratings.22.bfi2 <- longratings.22.bfi2[order(longratings.22.bfi2$JID, longratings.22.bfi2$Rating.item),]
longratings.23.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(662:691), variable.name = "Rating.item", value.name = "Rating")
longratings.23.bfi2 <- longratings.23.bfi2[order(longratings.23.bfi2$JID, longratings.23.bfi2$Rating.item),]
longratings.24.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(692:721), variable.name = "Rating.item", value.name = "Rating")
longratings.24.bfi2 <- longratings.24.bfi2[order(longratings.24.bfi2$JID, longratings.24.bfi2$Rating.item),]
longratings.25.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(722:751), variable.name = "Rating.item", value.name = "Rating")
longratings.25.bfi2 <- longratings.25.bfi2[order(longratings.25.bfi2$JID, longratings.25.bfi2$Rating.item),]
longratings.26.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(752:781), variable.name = "Rating.item", value.name = "Rating")
longratings.26.bfi2 <- longratings.26.bfi2[order(longratings.26.bfi2$JID, longratings.26.bfi2$Rating.item),]
longratings.27.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(782:811), variable.name = "Rating.item", value.name = "Rating")
longratings.27.bfi2 <- longratings.27.bfi2[order(longratings.27.bfi2$JID, longratings.27.bfi2$Rating.item),]
longratings.28.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(812:841), variable.name = "Rating.item", value.name = "Rating")
longratings.28.bfi2 <- longratings.28.bfi2[order(longratings.28.bfi2$JID, longratings.28.bfi2$Rating.item),]
longratings.29.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(842:871), variable.name = "Rating.item", value.name = "Rating")
longratings.29.bfi2 <- longratings.29.bfi2[order(longratings.29.bfi2$JID, longratings.29.bfi2$Rating.item),]
longratings.30.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(872:901), variable.name = "Rating.item", value.name = "Rating")
longratings.30.bfi2 <- longratings.30.bfi2[order(longratings.30.bfi2$JID, longratings.30.bfi2$Rating.item),]
longratings.31.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(902:931), variable.name = "Rating.item", value.name = "Rating")
longratings.31.bfi2 <- longratings.31.bfi2[order(longratings.31.bfi2$JID, longratings.31.bfi2$Rating.item),]
longratings.32.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(932:961), variable.name = "Rating.item", value.name = "Rating")
longratings.32.bfi2 <- longratings.32.bfi2[order(longratings.32.bfi2$JID, longratings.32.bfi2$Rating.item),]
longratings.33.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(962:991), variable.name = "Rating.item", value.name = "Rating")
longratings.33.bfi2 <- longratings.33.bfi2[order(longratings.33.bfi2$JID, longratings.33.bfi2$Rating.item),]
longratings.34.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(992:1021), variable.name = "Rating.item", value.name = "Rating")
longratings.34.bfi2 <- longratings.34.bfi2[order(longratings.34.bfi2$JID, longratings.34.bfi2$Rating.item),]
longratings.35.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1022:1051), variable.name = "Rating.item", value.name = "Rating")
longratings.35.bfi2 <- longratings.35.bfi2[order(longratings.35.bfi2$JID, longratings.35.bfi2$Rating.item),]
longratings.36.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1052:1081), variable.name = "Rating.item", value.name = "Rating")
longratings.36.bfi2 <- longratings.36.bfi2[order(longratings.36.bfi2$JID, longratings.36.bfi2$Rating.item),]
longratings.37.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1082:1111), variable.name = "Rating.item", value.name = "Rating")
longratings.37.bfi2 <- longratings.37.bfi2[order(longratings.37.bfi2$JID, longratings.37.bfi2$Rating.item),]
longratings.38.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1112:1141), variable.name = "Rating.item", value.name = "Rating")
longratings.38.bfi2 <- longratings.38.bfi2[order(longratings.38.bfi2$JID, longratings.38.bfi2$Rating.item),]
longratings.39.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1142:1171), variable.name = "Rating.item", value.name = "Rating")
longratings.39.bfi2 <- longratings.39.bfi2[order(longratings.39.bfi2$JID, longratings.39.bfi2$Rating.item),]
longratings.40.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1172:1201), variable.name = "Rating.item", value.name = "Rating")
longratings.40.bfi2 <- longratings.40.bfi2[order(longratings.40.bfi2$JID, longratings.40.bfi2$Rating.item),]
longratings.41.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1202:1231), variable.name = "Rating.item", value.name = "Rating")
longratings.41.bfi2 <- longratings.1.bfi2[order(longratings.41.bfi2$JID, longratings.41.bfi2$Rating.item),]
longratings.42.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1232:1261), variable.name = "Rating.item", value.name = "Rating")
longratings.42.bfi2 <- longratings.42.bfi2[order(longratings.42.bfi2$JID, longratings.42.bfi2$Rating.item),]
longratings.43.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1262:1291), variable.name = "Rating.item", value.name = "Rating")
longratings.43.bfi2 <- longratings.43.bfi2[order(longratings.43.bfi2$JID, longratings.43.bfi2$Rating.item),]
longratings.44.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1292:1321), variable.name = "Rating.item", value.name = "Rating")
longratings.44.bfi2 <- longratings.44.bfi2[order(longratings.44.bfi2$JID, longratings.44.bfi2$Rating.item),]
longratings.45.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1322:1351), variable.name = "Rating.item", value.name = "Rating")
longratings.45.bfi2 <- longratings.45.bfi2[order(longratings.45.bfi2$JID, longratings.45.bfi2$Rating.item),]
longratings.46.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1352:1381), variable.name = "Rating.item", value.name = "Rating")
longratings.46.bfi2 <- longratings.46.bfi2[order(longratings.46.bfi2$JID, longratings.46.bfi2$Rating.item),]
longratings.47.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1382:1411), variable.name = "Rating.item", value.name = "Rating")
longratings.47.bfi2 <- longratings.47.bfi2[order(longratings.47.bfi2$JID, longratings.47.bfi2$Rating.item),]
longratings.48.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1412:1441), variable.name = "Rating.item", value.name = "Rating")
longratings.48.bfi2 <- longratings.48.bfi2[order(longratings.48.bfi2$JID, longratings.48.bfi2$Rating.item),]
longratings.49.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1442:1471), variable.name = "Rating.item", value.name = "Rating")
longratings.49.bfi2 <- longratings.49.bfi2[order(longratings.49.bfi2$JID, longratings.49.bfi2$Rating.item),]
longratings.50.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1472:1501), variable.name = "Rating.item", value.name = "Rating")
longratings.50.bfi2 <- longratings.50.bfi2[order(longratings.50.bfi2$JID, longratings.50.bfi2$Rating.item),]
longratings.51.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1502:1531), variable.name = "Rating.item", value.name = "Rating")
longratings.51.bfi2 <- longratings.51.bfi2[order(longratings.51.bfi2$JID, longratings.51.bfi2$Rating.item),]
longratings.52.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1532:1561), variable.name = "Rating.item", value.name = "Rating")
longratings.52.bfi2 <- longratings.52.bfi2[order(longratings.52.bfi2$JID, longratings.52.bfi2$Rating.item),]
longratings.53.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1562:1591), variable.name = "Rating.item", value.name = "Rating")
longratings.53.bfi2 <- longratings.53.bfi2[order(longratings.53.bfi2$JID, longratings.53.bfi2$Rating.item),]
longratings.54.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1592:1621), variable.name = "Rating.item", value.name = "Rating")
longratings.54.bfi2 <- longratings.54.bfi2[order(longratings.54.bfi2$JID, longratings.54.bfi2$Rating.item),]
longratings.55.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1622:1651), variable.name = "Rating.item", value.name = "Rating")
longratings.55.bfi2 <- longratings.55.bfi2[order(longratings.55.bfi2$JID, longratings.55.bfi2$Rating.item),]
longratings.56.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1652:1681), variable.name = "Rating.item", value.name = "Rating")
longratings.56.bfi2 <- longratings.56.bfi2[order(longratings.56.bfi2$JID, longratings.56.bfi2$Rating.item),]
longratings.57.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1682:1711), variable.name = "Rating.item", value.name = "Rating")
longratings.57.bfi2 <- longratings.57.bfi2[order(longratings.57.bfi2$JID, longratings.57.bfi2$Rating.item),]
longratings.58.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1712:1741), variable.name = "Rating.item", value.name = "Rating")
longratings.58.bfi2 <- longratings.58.bfi2[order(longratings.58.bfi2$JID, longratings.58.bfi2$Rating.item),]
longratings.59.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1742:1771), variable.name = "Rating.item", value.name = "Rating")
longratings.59.bfi2 <- longratings.59.bfi2[order(longratings.59.bfi2$JID, longratings.59.bfi2$Rating.item),]
longratings.60.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1772:1801), variable.name = "Rating.item", value.name = "Rating")
longratings.60.bfi2 <- longratings.60.bfi2[order(longratings.60.bfi2$JID, longratings.60.bfi2$Rating.item),]
longratings.61.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1802:1831), variable.name = "Rating.item", value.name = "Rating")
longratings.61.bfi2 <- longratings.61.bfi2[order(longratings.61.bfi2$JID, longratings.61.bfi2$Rating.item),]
longratings.62.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1832:1861), variable.name = "Rating.item", value.name = "Rating")
longratings.62.bfi2 <- longratings.62.bfi2[order(longratings.62.bfi2$JID, longratings.62.bfi2$Rating.item),]
longratings.63.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1862:1891), variable.name = "Rating.item", value.name = "Rating")
longratings.63.bfi2 <- longratings.63.bfi2[order(longratings.63.bfi2$JID, longratings.63.bfi2$Rating.item),]
longratings.64.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1892:1921), variable.name = "Rating.item", value.name = "Rating")
longratings.64.bfi2 <- longratings.64.bfi2[order(longratings.64.bfi2$JID, longratings.64.bfi2$Rating.item),]
longratings.65.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1922:1951), variable.name = "Rating.item", value.name = "Rating")
longratings.65.bfi2 <- longratings.65.bfi2[order(longratings.65.bfi2$JID, longratings.65.bfi2$Rating.item),]
longratings.66.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1952:1981), variable.name = "Rating.item", value.name = "Rating")
longratings.66.bfi2 <- longratings.66.bfi2[order(longratings.66.bfi2$JID, longratings.66.bfi2$Rating.item),]
longratings.67.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(1982:2011), variable.name = "Rating.item", value.name = "Rating")
longratings.67.bfi2 <- longratings.67.bfi2[order(longratings.67.bfi2$JID, longratings.67.bfi2$Rating.item),]
longratings.68.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2012:2041), variable.name = "Rating.item", value.name = "Rating")
longratings.68.bfi2 <- longratings.68.bfi2[order(longratings.68.bfi2$JID, longratings.68.bfi2$Rating.item),]
longratings.69.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2042:2071), variable.name = "Rating.item", value.name = "Rating")
longratings.69.bfi2 <- longratings.69.bfi2[order(longratings.69.bfi2$JID, longratings.69.bfi2$Rating.item),]
longratings.70.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2072:2101), variable.name = "Rating.item", value.name = "Rating")
longratings.70.bfi2 <- longratings.70.bfi2[order(longratings.70.bfi2$JID, longratings.70.bfi2$Rating.item),]
longratings.71.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2102:2131), variable.name = "Rating.item", value.name = "Rating")
longratings.71.bfi2 <- longratings.71.bfi2[order(longratings.71.bfi2$JID, longratings.71.bfi2$Rating.item),]
longratings.72.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2132:2161), variable.name = "Rating.item", value.name = "Rating")
longratings.72.bfi2 <- longratings.72.bfi2[order(longratings.72.bfi2$JID, longratings.72.bfi2$Rating.item),]
longratings.73.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2162:2191), variable.name = "Rating.item", value.name = "Rating")
longratings.73.bfi2 <- longratings.73.bfi2[order(longratings.73.bfi2$JID, longratings.73.bfi2$Rating.item),]
longratings.74.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2192:2221), variable.name = "Rating.item", value.name = "Rating")
longratings.74.bfi2 <- longratings.74.bfi2[order(longratings.74.bfi2$JID, longratings.74.bfi2$Rating.item),]
longratings.75.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2222:2251), variable.name = "Rating.item", value.name = "Rating")
longratings.75.bfi2 <- longratings.75.bfi2[order(longratings.75.bfi2$JID, longratings.75.bfi2$Rating.item),]
longratings.76.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2252:2281), variable.name = "Rating.item", value.name = "Rating")
longratings.76.bfi2 <- longratings.76.bfi2[order(longratings.76.bfi2$JID, longratings.76.bfi2$Rating.item),]
longratings.77.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2282:2311), variable.name = "Rating.item", value.name = "Rating")
longratings.77.bfi2 <- longratings.77.bfi2[order(longratings.77.bfi2$JID, longratings.77.bfi2$Rating.item),]
longratings.78.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2312:2341), variable.name = "Rating.item", value.name = "Rating")
longratings.78.bfi2 <- longratings.78.bfi2[order(longratings.78.bfi2$JID, longratings.78.bfi2$Rating.item),]
longratings.79.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2342:2371), variable.name = "Rating.item", value.name = "Rating")
longratings.79.bfi2 <- longratings.79.bfi2[order(longratings.79.bfi2$JID, longratings.79.bfi2$Rating.item),]
longratings.80.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2372:2401), variable.name = "Rating.item", value.name = "Rating")
longratings.80.bfi2 <- longratings.80.bfi2[order(longratings.80.bfi2$JID, longratings.80.bfi2$Rating.item),]
longratings.81.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2402:2431), variable.name = "Rating.item", value.name = "Rating")
longratings.81.bfi2 <- longratings.81.bfi2[order(longratings.81.bfi2$JID, longratings.81.bfi2$Rating.item),]
longratings.82.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2432:2461), variable.name = "Rating.item", value.name = "Rating")
longratings.82.bfi2 <- longratings.82.bfi2[order(longratings.82.bfi2$JID, longratings.82.bfi2$Rating.item),]
longratings.83.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2462:2491), variable.name = "Rating.item", value.name = "Rating")
longratings.83.bfi2 <- longratings.83.bfi2[order(longratings.83.bfi2$JID, longratings.83.bfi2$Rating.item),]
longratings.84.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2492:2521), variable.name = "Rating.item", value.name = "Rating")
longratings.84.bfi2 <- longratings.84.bfi2[order(longratings.84.bfi2$JID, longratings.84.bfi2$Rating.item),]
longratings.85.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2522:2551), variable.name = "Rating.item", value.name = "Rating")
longratings.85.bfi2 <- longratings.85.bfi2[order(longratings.85.bfi2$JID, longratings.85.bfi2$Rating.item),]
longratings.86.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2552:2581), variable.name = "Rating.item", value.name = "Rating")
longratings.86.bfi2 <- longratings.86.bfi2[order(longratings.86.bfi2$JID, longratings.86.bfi2$Rating.item),]
longratings.87.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2582:2611), variable.name = "Rating.item", value.name = "Rating")
longratings.87.bfi2 <- longratings.87.bfi2[order(longratings.87.bfi2$JID, longratings.87.bfi2$Rating.item),]
longratings.88.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2612:2641), variable.name = "Rating.item", value.name = "Rating")
longratings.88.bfi2 <- longratings.88.bfi2[order(longratings.88.bfi2$JID, longratings.88.bfi2$Rating.item),]
longratings.89.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2462:2671), variable.name = "Rating.item", value.name = "Rating")
longratings.89.bfi2 <- longratings.89.bfi2[order(longratings.89.bfi2$JID, longratings.89.bfi2$Rating.item),]
longratings.90.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2672:2701), variable.name = "Rating.item", value.name = "Rating")
longratings.90.bfi2 <- longratings.90.bfi2[order(longratings.90.bfi2$JID, longratings.90.bfi2$Rating.item),]
longratings.91.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2702:2731), variable.name = "Rating.item", value.name = "Rating")
longratings.91.bfi2 <- longratings.91.bfi2[order(longratings.91.bfi2$JID, longratings.91.bfi2$Rating.item),]
longratings.92.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2732:2761), variable.name = "Rating.item", value.name = "Rating")
longratings.92.bfi2 <- longratings.92.bfi2[order(longratings.92.bfi2$JID, longratings.92.bfi2$Rating.item),]
longratings.93.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2762:2791), variable.name = "Rating.item", value.name = "Rating")
longratings.93.bfi2 <- longratings.93.bfi2[order(longratings.93.bfi2$JID, longratings.93.bfi2$Rating.item),]
longratings.94.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2792:2821), variable.name = "Rating.item", value.name = "Rating")
longratings.94.bfi2 <- longratings.94.bfi2[order(longratings.94.bfi2$JID, longratings.94.bfi2$Rating.item),]
longratings.95.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2822:2851), variable.name = "Rating.item", value.name = "Rating")
longratings.95.bfi2 <- longratings.95.bfi2[order(longratings.95.bfi2$JID, longratings.95.bfi2$Rating.item),]
longratings.96.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2852:2881), variable.name = "Rating.item", value.name = "Rating")
longratings.96.bfi2 <- longratings.96.bfi2[order(longratings.96.bfi2$JID, longratings.96.bfi2$Rating.item),]
longratings.97.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2882:2911), variable.name = "Rating.item", value.name = "Rating")
longratings.97.bfi2 <- longratings.97.bfi2[order(longratings.97.bfi2$JID, longratings.97.bfi2$Rating.item),]
longratings.98.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2912:2941), variable.name = "Rating.item", value.name = "Rating")
longratings.98.bfi2 <- longratings.98.bfi2[order(longratings.98.bfi2$JID, longratings.98.bfi2$Rating.item),]
longratings.99.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2942:2971), variable.name = "Rating.item", value.name = "Rating")
longratings.99.bfi2 <- longratings.99.bfi2[order(longratings.99.bfi2$JID, longratings.99.bfi2$Rating.item),]
longratings.100.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(2972:3001), variable.name = "Rating.item", value.name = "Rating")
longratings.100.bfi2 <- longratings.100.bfi2[order(longratings.100.bfi2$JID, longratings.100.bfi2$Rating.item),]
longratings.101.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3002:3031), variable.name = "Rating.item", value.name = "Rating")
longratings.101.bfi2 <- longratings.101.bfi2[order(longratings.101.bfi2$JID, longratings.101.bfi2$Rating.item),]
longratings.102.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3032:3061), variable.name = "Rating.item", value.name = "Rating")
longratings.102.bfi2 <- longratings.102.bfi2[order(longratings.102.bfi2$JID, longratings.102.bfi2$Rating.item),]
longratings.103.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3062:3091), variable.name = "Rating.item", value.name = "Rating")
longratings.103.bfi2 <- longratings.103.bfi2[order(longratings.103.bfi2$JID, longratings.103.bfi2$Rating.item),]
longratings.104.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3092:3121), variable.name = "Rating.item", value.name = "Rating")
longratings.104.bfi2 <- longratings.104.bfi2[order(longratings.104.bfi2$JID, longratings.104.bfi2$Rating.item),]
longratings.105.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3122:3151), variable.name = "Rating.item", value.name = "Rating")
longratings.105.bfi2 <- longratings.105.bfi2[order(longratings.105.bfi2$JID, longratings.105.bfi2$Rating.item),]
longratings.106.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3152:3181), variable.name = "Rating.item", value.name = "Rating")
longratings.106.bfi2 <- longratings.106.bfi2[order(longratings.106.bfi2$JID, longratings.106.bfi2$Rating.item),]
longratings.107.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3182:3211), variable.name = "Rating.item", value.name = "Rating")
longratings.107.bfi2 <- longratings.107.bfi2[order(longratings.107.bfi2$JID, longratings.107.bfi2$Rating.item),]
longratings.108.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3212:3241), variable.name = "Rating.item", value.name = "Rating")
longratings.108.bfi2 <- longratings.108.bfi2[order(longratings.108.bfi2$JID, longratings.108.bfi2$Rating.item),]
longratings.109.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3242:3271), variable.name = "Rating.item", value.name = "Rating")
longratings.109.bfi2 <- longratings.109.bfi2[order(longratings.109.bfi2$JID, longratings.109.bfi2$Rating.item),]
longratings.110.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3272:3301), variable.name = "Rating.item", value.name = "Rating")
longratings.110.bfi2 <- longratings.110.bfi2[order(longratings.110.bfi2$JID, longratings.110.bfi2$Rating.item),]
longratings.111.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3302:3331), variable.name = "Rating.item", value.name = "Rating")
longratings.111.bfi2 <- longratings.111.bfi2[order(longratings.111.bfi2$JID, longratings.111.bfi2$Rating.item),]
longratings.112.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3332:3361), variable.name = "Rating.item", value.name = "Rating")
longratings.112.bfi2 <- longratings.112.bfi2[order(longratings.112.bfi2$JID, longratings.112.bfi2$Rating.item),]
longratings.113.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3362:3391), variable.name = "Rating.item", value.name = "Rating")
longratings.113.bfi2 <- longratings.113.bfi2[order(longratings.113.bfi2$JID, longratings.113.bfi2$Rating.item),]
longratings.114.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3392:3421), variable.name = "Rating.item", value.name = "Rating")
longratings.114.bfi2 <- longratings.114.bfi2[order(longratings.114.bfi2$JID, longratings.114.bfi2$Rating.item),]
longratings.115.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3422:3451), variable.name = "Rating.item", value.name = "Rating")
longratings.115.bfi2 <- longratings.115.bfi2[order(longratings.115.bfi2$JID, longratings.115.bfi2$Rating.item),]
longratings.116.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3452:3481), variable.name = "Rating.item", value.name = "Rating")
longratings.116.bfi2 <- longratings.116.bfi2[order(longratings.116.bfi2$JID, longratings.116.bfi2$Rating.item),]
longratings.117.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3482:3511), variable.name = "Rating.item", value.name = "Rating")
longratings.117.bfi2 <- longratings.117.bfi2[order(longratings.117.bfi2$JID, longratings.117.bfi2$Rating.item),]
longratings.118.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3512:3541), variable.name = "Rating.item", value.name = "Rating")
longratings.118.bfi2 <- longratings.118.bfi2[order(longratings.118.bfi2$JID, longratings.118.bfi2$Rating.item),]
longratings.119.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3542:3571), variable.name = "Rating.item", value.name = "Rating")
longratings.119.bfi2 <- longratings.119.bfi2[order(longratings.119.bfi2$JID, longratings.119.bfi2$Rating.item),]
longratings.120.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3572:3601), variable.name = "Rating.item", value.name = "Rating")
longratings.120.bfi2 <- longratings.120.bfi2[order(longratings.120.bfi2$JID, longratings.120.bfi2$Rating.item),]
longratings.121.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3602:3631), variable.name = "Rating.item", value.name = "Rating")
longratings.121.bfi2 <- longratings.121.bfi2[order(longratings.121.bfi2$JID, longratings.121.bfi2$Rating.item),]
longratings.122.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3632:3661), variable.name = "Rating.item", value.name = "Rating")
longratings.122.bfi2 <- longratings.112.bfi2[order(longratings.112.bfi2$JID, longratings.122.bfi2$Rating.item),]
longratings.123.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3662:3691), variable.name = "Rating.item", value.name = "Rating")
longratings.123.bfi2 <- longratings.123.bfi2[order(longratings.123.bfi2$JID, longratings.123.bfi2$Rating.item),]
longratings.124.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3692:3721), variable.name = "Rating.item", value.name = "Rating")
longratings.124.bfi2 <- longratings.124.bfi2[order(longratings.124.bfi2$JID, longratings.124.bfi2$Rating.item),]
longratings.125.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3722:3751), variable.name = "Rating.item", value.name = "Rating")
longratings.125.bfi2 <- longratings.125.bfi2[order(longratings.125.bfi2$JID, longratings.125.bfi2$Rating.item),]
longratings.126.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3752:3781), variable.name = "Rating.item", value.name = "Rating")
longratings.126.bfi2 <- longratings.126.bfi2[order(longratings.126.bfi2$JID, longratings.126.bfi2$Rating.item),]
longratings.127.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3782:3811), variable.name = "Rating.item", value.name = "Rating")
longratings.127.bfi2 <- longratings.127.bfi2[order(longratings.127.bfi2$JID, longratings.127.bfi2$Rating.item),]
longratings.128.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3812:3841), variable.name = "Rating.item", value.name = "Rating")
longratings.128.bfi2 <- longratings.128.bfi2[order(longratings.128.bfi2$JID, longratings.128.bfi2$Rating.item),]
longratings.129.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3842:3871), variable.name = "Rating.item", value.name = "Rating")
longratings.129.bfi2 <- longratings.129.bfi2[order(longratings.129.bfi2$JID, longratings.129.bfi2$Rating.item),]
longratings.130.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3872:3901), variable.name = "Rating.item", value.name = "Rating")
longratings.130.bfi2 <- longratings.130.bfi2[order(longratings.130.bfi2$JID, longratings.130.bfi2$Rating.item),]
longratings.131.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3902:3931), variable.name = "Rating.item", value.name = "Rating")
longratings.131.bfi2 <- longratings.131.bfi2[order(longratings.131.bfi2$JID, longratings.131.bfi2$Rating.item),]
longratings.132.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3932:3961), variable.name = "Rating.item", value.name = "Rating")
longratings.132.bfi2 <- longratings.132.bfi2[order(longratings.132.bfi2$JID, longratings.132.bfi2$Rating.item),]
longratings.133.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3962:3991), variable.name = "Rating.item", value.name = "Rating")
longratings.133.bfi2 <- longratings.133.bfi2[order(longratings.133.bfi2$JID, longratings.133.bfi2$Rating.item),]
longratings.134.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(3992:4021), variable.name = "Rating.item", value.name = "Rating")
longratings.134.bfi2 <- longratings.134.bfi2[order(longratings.134.bfi2$JID, longratings.134.bfi2$Rating.item),]
longratings.135.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(4022:4051), variable.name = "Rating.item", value.name = "Rating")
longratings.135.bfi2 <- longratings.135.bfi2[order(longratings.135.bfi2$JID, longratings.135.bfi2$Rating.item),]
longratings.136.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(4052:4081), variable.name = "Rating.item", value.name = "Rating")
longratings.136.bfi2 <- longratings.136.bfi2[order(longratings.136.bfi2$JID, longratings.136.bfi2$Rating.item),]
longratings.137.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(4082:4111), variable.name = "Rating.item", value.name = "Rating")
longratings.137.bfi2 <- longratings.137.bfi2[order(longratings.137.bfi2$JID, longratings.137.bfi2$Rating.item),]
longratings.138.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(4112:4141), variable.name = "Rating.item", value.name = "Rating")
longratings.138.bfi2 <- longratings.138.bfi2[order(longratings.138.bfi2$JID, longratings.138.bfi2$Rating.item),]
longratings.139.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(4142:4171), variable.name = "Rating.item", value.name = "Rating")
longratings.139.bfi2 <- longratings.139.bfi2[order(longratings.139.bfi2$JID, longratings.139.bfi2$Rating.item),]
longratings.140.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(4172:4201), variable.name = "Rating.item", value.name = "Rating")
longratings.140.bfi2 <- longratings.140.bfi2[order(longratings.140.bfi2$JID, longratings.140.bfi2$Rating.item),]
longratings.141.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(4202:4231), variable.name = "Rating.item", value.name = "Rating")
longratings.141.bfi2 <- longratings.141.bfi2[order(longratings.141.bfi2$JID, longratings.141.bfi2$Rating.item),]
longratings.142.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(4232:4261), variable.name = "Rating.item", value.name = "Rating")
longratings.142.bfi2 <- longratings.142.bfi2[order(longratings.142.bfi2$JID, longratings.142.bfi2$Rating.item),]
longratings.143.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(4262:4291), variable.name = "Rating.item", value.name = "Rating")
longratings.143.bfi2 <- longratings.143.bfi2[order(longratings.143.bfi2$JID, longratings.143.bfi2$Rating.item),]
longratings.144.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(4292:4321), variable.name = "Rating.item", value.name = "Rating")
longratings.144.bfi2 <- longratings.144.bfi2[order(longratings.144.bfi2$JID, longratings.144.bfi2$Rating.item),]
longratings.145.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(4322:4351), variable.name = "Rating.item", value.name = "Rating")
longratings.145.bfi2 <- longratings.145.bfi2[order(longratings.145.bfi2$JID, longratings.145.bfi2$Rating.item),]
longratings.146.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(4352:4381), variable.name = "Rating.item", value.name = "Rating")
longratings.146.bfi2 <- longratings.146.bfi2[order(longratings.146.bfi2$JID, longratings.146.bfi2$Rating.item),]
longratings.147.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(4382:4411), variable.name = "Rating.item", value.name = "Rating")
longratings.147.bfi2 <- longratings.147.bfi2[order(longratings.147.bfi2$JID, longratings.147.bfi2$Rating.item),]
longratings.148.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(4412:4441), variable.name = "Rating.item", value.name = "Rating")
longratings.148.bfi2 <- longratings.148.bfi2[order(longratings.148.bfi2$JID, longratings.148.bfi2$Rating.item),]
longratings.149.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(4442:4471), variable.name = "Rating.item", value.name = "Rating")
longratings.149.bfi2 <- longratings.149.bfi2[order(longratings.149.bfi2$JID, longratings.149.bfi2$Rating.item),]
longratings.150.bfi2 <- melt(data, id.vars = c(1, 4502:4504), measure.vars = c(4472:4501), variable.name = "Rating.item", value.name = "Rating")
longratings.150.bfi2 <- longratings.150.bfi2[order(longratings.150.bfi2$JID, longratings.150.bfi2$Rating.item),]
SAM.1IG.bfi2 <- cbind(longratings.1.bfi2,longnorm.bfi2,longcrit.1.bfi2,IG.Cond)
SAM.2TW.bfi2 <- cbind(longratings.2.bfi2,longnorm.bfi2,longcrit.2.bfi2, TW.Cond)
SAM.3IG.bfi2 <- cbind(longratings.3.bfi2,longnorm.bfi2,longcrit.3.bfi2,IG.Cond)
SAM.4TW.bfi2 <- cbind(longratings.4.bfi2,longnorm.bfi2,longcrit.4.bfi2, TW.Cond)
SAM.5IG.bfi2 <- cbind(longratings.5.bfi2,longnorm.bfi2,longcrit.5.bfi2,IG.Cond)
SAM.6TW.bfi2 <- cbind(longratings.6.bfi2,longnorm.bfi2,longcrit.6.bfi2, TW.Cond)
SAM.7TW.bfi2 <- cbind(longratings.7.bfi2,longnorm.bfi2,longcrit.7.bfi2, TW.Cond)
SAM.8IG.bfi2 <- cbind(longratings.8.bfi2,longnorm.bfi2,longcrit.8.bfi2,IG.Cond)
SAM.9TW.bfi2 <- cbind(longratings.9.bfi2,longnorm.bfi2,longcrit.9.bfi2, TW.Cond)
SAM.10IG.bfi2 <- cbind(longratings.10.bfi2,longnorm.bfi2,longcrit.10.bfi2,IG.Cond)
SAM.11TW.bfi2 <- cbind(longratings.11.bfi2,longnorm.bfi2,longcrit.11.bfi2, TW.Cond)
SAM.12IG.bfi2 <- cbind(longratings.12.bfi2,longnorm.bfi2,longcrit.12.bfi2,IG.Cond)
SAM.13IG.bfi2 <- cbind(longratings.13.bfi2,longnorm.bfi2,longcrit.13.bfi2,IG.Cond)
SAM.14TW.bfi2 <- cbind(longratings.14.bfi2,longnorm.bfi2,longcrit.14.bfi2, TW.Cond)
SAM.15IG.bfi2 <- cbind(longratings.15.bfi2,longnorm.bfi2,longcrit.15.bfi2,IG.Cond)
SAM.16TW.bfi2 <- cbind(longratings.16.bfi2,longnorm.bfi2,longcrit.16.bfi2, TW.Cond)
SAM.17IG.bfi2 <- cbind(longratings.17.bfi2,longnorm.bfi2,longcrit.17.bfi2,IG.Cond)
SAM.18TW.bfi2 <- cbind(longratings.18.bfi2,longnorm.bfi2,longcrit.18.bfi2, TW.Cond)
SAM.19IG.bfi2 <- cbind(longratings.19.bfi2,longnorm.bfi2,longcrit.19.bfi2,IG.Cond)
SAM.20TW.bfi2 <- cbind(longratings.20.bfi2,longnorm.bfi2,longcrit.20.bfi2, TW.Cond)
SAM.21IG.bfi2 <- cbind(longratings.21.bfi2,longnorm.bfi2,longcrit.21.bfi2,IG.Cond)
SAM.22TW.bfi2 <- cbind(longratings.22.bfi2,longnorm.bfi2,longcrit.22.bfi2, TW.Cond)
SAM.23IG.bfi2 <- cbind(longratings.23.bfi2,longnorm.bfi2,longcrit.23.bfi2,IG.Cond)
SAM.24TW.bfi2 <- cbind(longratings.24.bfi2,longnorm.bfi2,longcrit.24.bfi2, TW.Cond)
SAM.25TW.bfi2 <- cbind(longratings.25.bfi2,longnorm.bfi2,longcrit.25.bfi2, TW.Cond)
SAM.26IG.bfi2 <- cbind(longratings.26.bfi2,longnorm.bfi2,longcrit.26.bfi2,IG.Cond)
SAM.27TW.bfi2 <- cbind(longratings.27.bfi2,longnorm.bfi2,longcrit.27.bfi2, TW.Cond)
SAM.28IG.bfi2 <- cbind(longratings.28.bfi2,longnorm.bfi2,longcrit.28.bfi2,IG.Cond)
SAM.29TW.bfi2 <- cbind(longratings.29.bfi2,longnorm.bfi2,longcrit.29.bfi2, TW.Cond)
SAM.30IG.bfi2 <- cbind(longratings.30.bfi2,longnorm.bfi2,longcrit.30.bfi2,IG.Cond)
SAM.31IG.bfi2 <- cbind(longratings.31.bfi2,longnorm.bfi2,longcrit.31.bfi2,IG.Cond)
SAM.32TW.bfi2 <- cbind(longratings.32.bfi2,longnorm.bfi2,longcrit.32.bfi2, TW.Cond)
SAM.33IG.bfi2 <- cbind(longratings.33.bfi2,longnorm.bfi2,longcrit.33.bfi2,IG.Cond)
SAM.34TW.bfi2 <- cbind(longratings.34.bfi2,longnorm.bfi2,longcrit.34.bfi2, TW.Cond)
SAM.35IG.bfi2 <- cbind(longratings.35.bfi2,longnorm.bfi2,longcrit.35.bfi2,IG.Cond)
SAM.36TW.bfi2 <- cbind(longratings.36.bfi2,longnorm.bfi2,longcrit.36.bfi2, TW.Cond)
SAM.37IG.bfi2 <- cbind(longratings.37.bfi2,longnorm.bfi2,longcrit.37.bfi2,IG.Cond)
SAM.38TW.bfi2 <- cbind(longratings.38.bfi2,longnorm.bfi2,longcrit.38.bfi2, TW.Cond)
SAM.39IG.bfi2 <- cbind(longratings.39.bfi2,longnorm.bfi2,longcrit.39.bfi2,IG.Cond)
SAM.40TW.bfi2 <- cbind(longratings.40.bfi2,longnorm.bfi2,longcrit.40.bfi2, TW.Cond)
SAM.41IG.bfi2 <- cbind(longratings.41.bfi2,longnorm.bfi2,longcrit.41.bfi2,IG.Cond)
SAM.42TW.bfi2 <- cbind(longratings.42.bfi2,longnorm.bfi2,longcrit.42.bfi2, TW.Cond)
SAM.43TW.bfi2 <- cbind(longratings.43.bfi2,longnorm.bfi2,longcrit.43.bfi2, TW.Cond)
SAM.44IG.bfi2 <- cbind(longratings.44.bfi2,longnorm.bfi2,longcrit.44.bfi2,IG.Cond)
SAM.45TW.bfi2 <- cbind(longratings.45.bfi2,longnorm.bfi2,longcrit.45.bfi2, TW.Cond)
SAM.46IG.bfi2 <- cbind(longratings.46.bfi2,longnorm.bfi2,longcrit.46.bfi2,IG.Cond)
SAM.47TW.bfi2 <- cbind(longratings.47.bfi2,longnorm.bfi2,longcrit.47.bfi2, TW.Cond)
SAM.48IG.bfi2 <- cbind(longratings.48.bfi2,longnorm.bfi2,longcrit.48.bfi2,IG.Cond)
SAM.49IG.bfi2 <- cbind(longratings.49.bfi2,longnorm.bfi2,longcrit.49.bfi2,IG.Cond)
SAM.50TW.bfi2 <- cbind(longratings.50.bfi2,longnorm.bfi2,longcrit.50.bfi2, TW.Cond)
SAM.51IG.bfi2 <- cbind(longratings.51.bfi2,longnorm.bfi2,longcrit.51.bfi2,IG.Cond)
SAM.52TW.bfi2 <- cbind(longratings.52.bfi2,longnorm.bfi2,longcrit.52.bfi2, TW.Cond)
SAM.53IG.bfi2 <- cbind(longratings.53.bfi2,longnorm.bfi2,longcrit.53.bfi2,IG.Cond)
SAM.54TW.bfi2 <- cbind(longratings.54.bfi2,longnorm.bfi2,longcrit.54.bfi2, TW.Cond)
SAM.55IG.bfi2 <- cbind(longratings.55.bfi2,longnorm.bfi2,longcrit.55.bfi2,IG.Cond)
SAM.56TW.bfi2 <- cbind(longratings.56.bfi2,longnorm.bfi2,longcrit.56.bfi2, TW.Cond)
SAM.57IG.bfi2 <- cbind(longratings.57.bfi2,longnorm.bfi2,longcrit.57.bfi2,IG.Cond)
SAM.58TW.bfi2 <- cbind(longratings.58.bfi2,longnorm.bfi2,longcrit.58.bfi2, TW.Cond)
SAM.59IG.bfi2 <- cbind(longratings.59.bfi2,longnorm.bfi2,longcrit.59.bfi2,IG.Cond)
SAM.60TW.bfi2 <- cbind(longratings.60.bfi2,longnorm.bfi2,longcrit.60.bfi2, TW.Cond)
SAM.61TW.bfi2 <- cbind(longratings.61.bfi2,longnorm.bfi2,longcrit.61.bfi2, TW.Cond)
SAM.62IG.bfi2 <- cbind(longratings.62.bfi2,longnorm.bfi2,longcrit.62.bfi2,IG.Cond)
SAM.63TW.bfi2 <- cbind(longratings.63.bfi2,longnorm.bfi2,longcrit.63.bfi2, TW.Cond)
SAM.64IG.bfi2 <- cbind(longratings.64.bfi2,longnorm.bfi2,longcrit.64.bfi2,IG.Cond)
SAM.65TW.bfi2 <- cbind(longratings.65.bfi2,longnorm.bfi2,longcrit.65.bfi2, TW.Cond)
SAM.66IG.bfi2 <- cbind(longratings.66.bfi2,longnorm.bfi2,longcrit.66.bfi2,IG.Cond)
SAM.67IG.bfi2 <- cbind(longratings.67.bfi2,longnorm.bfi2,longcrit.67.bfi2,IG.Cond)
SAM.68TW.bfi2 <- cbind(longratings.68.bfi2,longnorm.bfi2,longcrit.68.bfi2, TW.Cond)
SAM.69IG.bfi2 <- cbind(longratings.69.bfi2,longnorm.bfi2,longcrit.69.bfi2,IG.Cond)
SAM.70TW.bfi2 <- cbind(longratings.70.bfi2,longnorm.bfi2,longcrit.70.bfi2, TW.Cond)
SAM.71IG.bfi2 <- cbind(longratings.71.bfi2,longnorm.bfi2,longcrit.71.bfi2,IG.Cond)
SAM.72TW.bfi2 <- cbind(longratings.72.bfi2,longnorm.bfi2,longcrit.72.bfi2, TW.Cond)
SAM.73IG.bfi2 <- cbind(longratings.73.bfi2,longnorm.bfi2,longcrit.73.bfi2,IG.Cond)
SAM.74TW.bfi2 <- cbind(longratings.74.bfi2,longnorm.bfi2,longcrit.74.bfi2, TW.Cond)
SAM.75IG.bfi2 <- cbind(longratings.75.bfi2,longnorm.bfi2,longcrit.75.bfi2,IG.Cond)
SAM.76TW.bfi2 <- cbind(longratings.76.bfi2,longnorm.bfi2,longcrit.76.bfi2, TW.Cond)
SAM.77IG.bfi2 <- cbind(longratings.77.bfi2,longnorm.bfi2,longcrit.77.bfi2,IG.Cond)
SAM.78TW.bfi2 <- cbind(longratings.78.bfi2,longnorm.bfi2,longcrit.78.bfi2, TW.Cond)
SAM.79TW.bfi2 <- cbind(longratings.79.bfi2,longnorm.bfi2,longcrit.79.bfi2, TW.Cond)
SAM.80IG.bfi2 <- cbind(longratings.80.bfi2,longnorm.bfi2,longcrit.80.bfi2,IG.Cond)
SAM.81TW.bfi2 <- cbind(longratings.81.bfi2,longnorm.bfi2,longcrit.81.bfi2, TW.Cond)
SAM.82IG.bfi2 <- cbind(longratings.82.bfi2,longnorm.bfi2,longcrit.82.bfi2,IG.Cond)
SAM.83TW.bfi2 <- cbind(longratings.83.bfi2,longnorm.bfi2,longcrit.83.bfi2, TW.Cond)
SAM.84IG.bfi2 <- cbind(longratings.84.bfi2,longnorm.bfi2,longcrit.84.bfi2,IG.Cond)
SAM.85IG.bfi2 <- cbind(longratings.85.bfi2,longnorm.bfi2,longcrit.85.bfi2,IG.Cond)
SAM.86TW.bfi2 <- cbind(longratings.86.bfi2,longnorm.bfi2,longcrit.86.bfi2, TW.Cond)
SAM.87IG.bfi2 <- cbind(longratings.87.bfi2,longnorm.bfi2,longcrit.87.bfi2,IG.Cond)
SAM.88TW.bfi2 <- cbind(longratings.88.bfi2,longnorm.bfi2,longcrit.88.bfi2, TW.Cond)
SAM.89IG.bfi2 <- cbind(longratings.89.bfi2,longnorm.bfi2,longcrit.89.bfi2,IG.Cond)
SAM.90TW.bfi2 <- cbind(longratings.90.bfi2,longnorm.bfi2,longcrit.90.bfi2, TW.Cond)
SAM.91IG.bfi2 <- cbind(longratings.91.bfi2,longnorm.bfi2,longcrit.91.bfi2,IG.Cond)
SAM.92TW.bfi2 <- cbind(longratings.92.bfi2,longnorm.bfi2,longcrit.92.bfi2, TW.Cond)
SAM.93IG.bfi2 <- cbind(longratings.93.bfi2,longnorm.bfi2,longcrit.93.bfi2,IG.Cond)
SAM.94TW.bfi2 <- cbind(longratings.94.bfi2,longnorm.bfi2,longcrit.94.bfi2, TW.Cond)
SAM.95IG.bfi2 <- cbind(longratings.95.bfi2,longnorm.bfi2,longcrit.95.bfi2,IG.Cond)
SAM.96TW.bfi2 <- cbind(longratings.96.bfi2,longnorm.bfi2,longcrit.96.bfi2, TW.Cond)
SAM.97TW.bfi2 <- cbind(longratings.97.bfi2,longnorm.bfi2,longcrit.97.bfi2, TW.Cond)
SAM.98IG.bfi2 <- cbind(longratings.98.bfi2,longnorm.bfi2,longcrit.98.bfi2,IG.Cond)
SAM.99TW.bfi2 <- cbind(longratings.99.bfi2,longnorm.bfi2,longcrit.99.bfi2, TW.Cond)
SAM.100IG.bfi2 <- cbind(longratings.100.bfi2,longnorm.bfi2,longcrit.100.bfi2,IG.Cond)
SAM.101TW.bfi2 <- cbind(longratings.101.bfi2,longnorm.bfi2,longcrit.101.bfi2, TW.Cond)
SAM.102IG.bfi2 <- cbind(longratings.102.bfi2,longnorm.bfi2,longcrit.102.bfi2,IG.Cond)
SAM.103IG.bfi2 <- cbind(longratings.103.bfi2,longnorm.bfi2,longcrit.103.bfi2,IG.Cond)
SAM.104TW.bfi2 <- cbind(longratings.104.bfi2,longnorm.bfi2,longcrit.104.bfi2, TW.Cond)
SAM.105IG.bfi2 <- cbind(longratings.105.bfi2,longnorm.bfi2,longcrit.105.bfi2,IG.Cond)
SAM.106TW.bfi2 <- cbind(longratings.106.bfi2,longnorm.bfi2,longcrit.106.bfi2, TW.Cond)
SAM.107IG.bfi2 <- cbind(longratings.107.bfi2,longnorm.bfi2,longcrit.107.bfi2,IG.Cond)
SAM.108TW.bfi2 <- cbind(longratings.108.bfi2,longnorm.bfi2,longcrit.108.bfi2, TW.Cond)
SAM.109IG.bfi2 <- cbind(longratings.109.bfi2,longnorm.bfi2,longcrit.109.bfi2,IG.Cond)
SAM.110TW.bfi2 <- cbind(longratings.110.bfi2,longnorm.bfi2,longcrit.110.bfi2, TW.Cond)
SAM.111IG.bfi2 <- cbind(longratings.111.bfi2,longnorm.bfi2,longcrit.111.bfi2,IG.Cond)
SAM.112TW.bfi2 <- cbind(longratings.112.bfi2,longnorm.bfi2,longcrit.112.bfi2, TW.Cond)
SAM.113IG.bfi2 <- cbind(longratings.113.bfi2,longnorm.bfi2,longcrit.113.bfi2,IG.Cond)
SAM.114TW.bfi2 <- cbind(longratings.114.bfi2,longnorm.bfi2,longcrit.114.bfi2, TW.Cond)
SAM.115TW.bfi2 <- cbind(longratings.115.bfi2,longnorm.bfi2,longcrit.115.bfi2, TW.Cond)
SAM.116IG.bfi2 <- cbind(longratings.116.bfi2,longnorm.bfi2,longcrit.116.bfi2,IG.Cond)
SAM.117TW.bfi2 <- cbind(longratings.117.bfi2,longnorm.bfi2,longcrit.117.bfi2, TW.Cond)
SAM.118IG.bfi2 <- cbind(longratings.118.bfi2,longnorm.bfi2,longcrit.118.bfi2,IG.Cond)
SAM.119TW.bfi2 <- cbind(longratings.119.bfi2,longnorm.bfi2,longcrit.119.bfi2, TW.Cond)
SAM.120IG.bfi2 <- cbind(longratings.120.bfi2,longnorm.bfi2,longcrit.120.bfi2,IG.Cond)
SAM.121IG.bfi2 <- cbind(longratings.121.bfi2,longnorm.bfi2,longcrit.121.bfi2,IG.Cond)
SAM.122TW.bfi2 <- cbind(longratings.122.bfi2,longnorm.bfi2,longcrit.122.bfi2, TW.Cond)
SAM.123IG.bfi2 <- cbind(longratings.123.bfi2,longnorm.bfi2,longcrit.123.bfi2,IG.Cond)
SAM.124TW.bfi2 <- cbind(longratings.124.bfi2,longnorm.bfi2,longcrit.124.bfi2, TW.Cond)
SAM.125IG.bfi2 <- cbind(longratings.125.bfi2,longnorm.bfi2,longcrit.125.bfi2,IG.Cond)
SAM.126TW.bfi2 <- cbind(longratings.126.bfi2,longnorm.bfi2,longcrit.126.bfi2, TW.Cond)
SAM.127IG.bfi2 <- cbind(longratings.127.bfi2,longnorm.bfi2,longcrit.127.bfi2,IG.Cond)
SAM.128TW.bfi2 <- cbind(longratings.128.bfi2,longnorm.bfi2,longcrit.128.bfi2, TW.Cond)
SAM.129IG.bfi2 <- cbind(longratings.129.bfi2,longnorm.bfi2,longcrit.129.bfi2,IG.Cond)
SAM.130TW.bfi2 <- cbind(longratings.130.bfi2,longnorm.bfi2,longcrit.130.bfi2, TW.Cond)
SAM.131IG.bfi2 <- cbind(longratings.131.bfi2,longnorm.bfi2,longcrit.131.bfi2,IG.Cond)
SAM.132TW.bfi2 <- cbind(longratings.132.bfi2,longnorm.bfi2,longcrit.132.bfi2, TW.Cond)
SAM.133TW.bfi2 <- cbind(longratings.133.bfi2,longnorm.bfi2,longcrit.133.bfi2, TW.Cond)
SAM.134IG.bfi2 <- cbind(longratings.134.bfi2,longnorm.bfi2,longcrit.134.bfi2,IG.Cond)
SAM.135TW.bfi2 <- cbind(longratings.135.bfi2,longnorm.bfi2,longcrit.135.bfi2, TW.Cond)
SAM.136IG.bfi2 <- cbind(longratings.136.bfi2,longnorm.bfi2,longcrit.136.bfi2,IG.Cond)
SAM.137TW.bfi2 <- cbind(longratings.137.bfi2,longnorm.bfi2,longcrit.137.bfi2, TW.Cond)
SAM.138IG.bfi2 <- cbind(longratings.138.bfi2,longnorm.bfi2,longcrit.138.bfi2,IG.Cond)
SAM.139IG.bfi2 <- cbind(longratings.139.bfi2,longnorm.bfi2,longcrit.139.bfi2,IG.Cond)
SAM.140TW.bfi2 <- cbind(longratings.140.bfi2,longnorm.bfi2,longcrit.140.bfi2, TW.Cond)
SAM.141IG.bfi2 <- cbind(longratings.141.bfi2,longnorm.bfi2,longcrit.141.bfi2,IG.Cond)
SAM.142TW.bfi2 <- cbind(longratings.142.bfi2,longnorm.bfi2,longcrit.142.bfi2, TW.Cond)
SAM.143IG.bfi2 <- cbind(longratings.143.bfi2,longnorm.bfi2,longcrit.143.bfi2,IG.Cond)
SAM.144TW.bfi2 <- cbind(longratings.144.bfi2,longnorm.bfi2,longcrit.144.bfi2, TW.Cond)
SAM.145IG.bfi2 <- cbind(longratings.145.bfi2,longnorm.bfi2,longcrit.145.bfi2,IG.Cond)
SAM.146TW.bfi2 <- cbind(longratings.146.bfi2,longnorm.bfi2,longcrit.146.bfi2, TW.Cond)
SAM.147IG.bfi2 <- cbind(longratings.147.bfi2,longnorm.bfi2,longcrit.147.bfi2,IG.Cond)
SAM.148TW.bfi2 <- cbind(longratings.148.bfi2,longnorm.bfi2,longcrit.148.bfi2, TW.Cond)
SAM.149IG.bfi2 <- cbind(longratings.149.bfi2,longnorm.bfi2,longcrit.149.bfi2,IG.Cond)
SAM.150TW.bfi2 <- cbind(longratings.150.bfi2,longnorm.bfi2,longcrit.150.bfi2, TW.Cond)
SAM.bfi<- rbind(SAM.1IG.bfi2,SAM.2TW.bfi2,SAM.3IG.bfi2,SAM.4TW.bfi2,
SAM.5IG.bfi2,
SAM.6TW.bfi2,
SAM.7TW.bfi2,
SAM.8IG.bfi2,
SAM.9TW.bfi2,
SAM.10IG.bfi2,
SAM.11TW.bfi2,
SAM.12IG.bfi2,
SAM.13IG.bfi2,
SAM.14TW.bfi2,
SAM.15IG.bfi2,
SAM.16TW.bfi2,
SAM.17IG.bfi2,
SAM.18TW.bfi2,
SAM.19IG.bfi2,
SAM.20TW.bfi2,
SAM.21IG.bfi2,
SAM.22TW.bfi2,
SAM.23IG.bfi2,
SAM.24TW.bfi2,
SAM.25TW.bfi2,
SAM.26IG.bfi2,
SAM.27TW.bfi2,
SAM.28IG.bfi2,
SAM.29TW.bfi2,
SAM.30IG.bfi2,
SAM.31IG.bfi2,
SAM.32TW.bfi2,
SAM.33IG.bfi2,
SAM.34TW.bfi2,
SAM.35IG.bfi2,
SAM.36TW.bfi2,
SAM.37IG.bfi2,
SAM.38TW.bfi2,
SAM.39IG.bfi2,
SAM.40TW.bfi2,
SAM.41IG.bfi2,
SAM.42TW.bfi2,
SAM.43TW.bfi2,
SAM.44IG.bfi2,
SAM.45TW.bfi2,
SAM.46IG.bfi2,
SAM.47TW.bfi2,
SAM.48IG.bfi2,
SAM.49IG.bfi2,
SAM.50TW.bfi2,
SAM.51IG.bfi2,
SAM.52TW.bfi2,
SAM.53IG.bfi2,
SAM.54TW.bfi2,
SAM.55IG.bfi2,
SAM.56TW.bfi2,
SAM.57IG.bfi2,
SAM.58TW.bfi2,
SAM.59IG.bfi2,
SAM.60TW.bfi2,
SAM.61TW.bfi2,
SAM.62IG.bfi2,
SAM.63TW.bfi2,
SAM.64IG.bfi2,
SAM.65TW.bfi2,
SAM.66IG.bfi2,
SAM.67IG.bfi2,
SAM.68TW.bfi2,
SAM.69IG.bfi2,
SAM.70TW.bfi2,
SAM.71IG.bfi2,
SAM.72TW.bfi2,
SAM.73IG.bfi2,
SAM.74TW.bfi2,
SAM.75IG.bfi2,
SAM.76TW.bfi2,
SAM.77IG.bfi2,
SAM.78TW.bfi2,
SAM.79TW.bfi2,
SAM.80IG.bfi2,
SAM.81TW.bfi2,
SAM.82IG.bfi2,
SAM.83TW.bfi2,
SAM.84IG.bfi2,
SAM.85IG.bfi2,
SAM.86TW.bfi2,
SAM.87IG.bfi2,
SAM.88TW.bfi2,
SAM.89IG.bfi2,
SAM.90TW.bfi2,
SAM.91IG.bfi2,
SAM.92TW.bfi2,
SAM.93IG.bfi2,
SAM.94TW.bfi2,
SAM.95IG.bfi2,
SAM.96TW.bfi2,
SAM.97TW.bfi2,
SAM.98IG.bfi2,
SAM.99TW.bfi2,
SAM.100IG.bfi2,
SAM.101TW.bfi2,
SAM.102IG.bfi2,
SAM.103IG.bfi2,
SAM.104TW.bfi2,
SAM.105IG.bfi2,
SAM.106TW.bfi2,
SAM.107IG.bfi2,
SAM.108TW.bfi2,
SAM.109IG.bfi2,
SAM.110TW.bfi2,
SAM.111IG.bfi2,
SAM.112TW.bfi2,
SAM.113IG.bfi2,
SAM.114TW.bfi2,
SAM.115TW.bfi2,
SAM.116IG.bfi2,
SAM.117TW.bfi2,
SAM.118IG.bfi2,
SAM.119TW.bfi2,
SAM.120IG.bfi2,
SAM.121IG.bfi2,
SAM.122TW.bfi2,
SAM.123IG.bfi2,
SAM.124TW.bfi2,
SAM.125IG.bfi2,
SAM.126TW.bfi2,
SAM.127IG.bfi2,
SAM.128TW.bfi2,
SAM.129IG.bfi2,
SAM.130TW.bfi2,
SAM.131IG.bfi2,
SAM.132TW.bfi2,
SAM.133TW.bfi2,
SAM.134IG.bfi2,
SAM.135TW.bfi2,
SAM.136IG.bfi2,
SAM.137TW.bfi2,
SAM.138IG.bfi2,
SAM.139IG.bfi2,
SAM.140TW.bfi2,
SAM.141IG.bfi2,
SAM.142TW.bfi2,
SAM.143IG.bfi2,
SAM.144TW.bfi2,
SAM.145IG.bfi2,
SAM.146TW.bfi2,
SAM.147IG.bfi2,
SAM.148TW.bfi2,
SAM.149IG.bfi2,
SAM.150TW.bfi2)
SAM.bfi.IG <- rbind(SAM.1IG.bfi2, SAM.3IG.bfi2,
SAM.5IG.bfi2,
SAM.8IG.bfi2,
SAM.10IG.bfi2,
SAM.12IG.bfi2,
SAM.13IG.bfi2,
SAM.15IG.bfi2,
SAM.17IG.bfi2,
SAM.19IG.bfi2,
SAM.21IG.bfi2,
SAM.23IG.bfi2,
SAM.26IG.bfi2,
SAM.28IG.bfi2,
SAM.30IG.bfi2,
SAM.31IG.bfi2,
SAM.33IG.bfi2,
SAM.35IG.bfi2,
SAM.37IG.bfi2,
SAM.39IG.bfi2,
SAM.41IG.bfi2,
SAM.44IG.bfi2,
SAM.46IG.bfi2,
SAM.48IG.bfi2,
SAM.49IG.bfi2,
SAM.51IG.bfi2,
SAM.53IG.bfi2,
SAM.55IG.bfi2,
SAM.57IG.bfi2,
SAM.59IG.bfi2,
SAM.62IG.bfi2,
SAM.64IG.bfi2,
SAM.66IG.bfi2,
SAM.67IG.bfi2,
SAM.69IG.bfi2,
SAM.71IG.bfi2,
SAM.73IG.bfi2,
SAM.75IG.bfi2,
SAM.77IG.bfi2,
SAM.80IG.bfi2,
SAM.82IG.bfi2,
SAM.84IG.bfi2,
SAM.85IG.bfi2,
SAM.87IG.bfi2,
SAM.89IG.bfi2,
SAM.91IG.bfi2,
SAM.93IG.bfi2,
SAM.95IG.bfi2,
SAM.98IG.bfi2,
SAM.100IG.bfi2,
SAM.102IG.bfi2,
SAM.103IG.bfi2,
SAM.105IG.bfi2,
SAM.107IG.bfi2,
SAM.109IG.bfi2,
SAM.111IG.bfi2,
SAM.113IG.bfi2,
SAM.116IG.bfi2,
SAM.118IG.bfi2,
SAM.120IG.bfi2,
SAM.121IG.bfi2,
SAM.123IG.bfi2,
SAM.125IG.bfi2,
SAM.127IG.bfi2,
SAM.129IG.bfi2,
SAM.131IG.bfi2,
SAM.134IG.bfi2,
SAM.136IG.bfi2,
SAM.138IG.bfi2,
SAM.139IG.bfi2,
SAM.141IG.bfi2,
SAM.143IG.bfi2,
SAM.145IG.bfi2,
SAM.147IG.bfi2,
SAM.149IG.bfi2)
SAM.bfi.TW <- rbind(SAM.2TW.bfi2, SAM.4TW.bfi2,
SAM.6TW.bfi2,
SAM.7TW.bfi2,
SAM.9TW.bfi2,
SAM.11TW.bfi2,
SAM.14TW.bfi2,
SAM.16TW.bfi2,
SAM.18TW.bfi2,
SAM.20TW.bfi2,
SAM.22TW.bfi2,
SAM.24TW.bfi2,
SAM.25TW.bfi2,
SAM.27TW.bfi2,
SAM.29TW.bfi2,
SAM.32TW.bfi2,
SAM.34TW.bfi2,
SAM.36TW.bfi2,
SAM.38TW.bfi2,
SAM.40TW.bfi2,
SAM.42TW.bfi2,
SAM.43TW.bfi2,
SAM.45TW.bfi2,
SAM.47TW.bfi2,
SAM.50TW.bfi2,
SAM.52TW.bfi2,
SAM.54TW.bfi2,
SAM.56TW.bfi2,
SAM.58TW.bfi2,
SAM.60TW.bfi2,
SAM.61TW.bfi2,
SAM.63TW.bfi2,
SAM.65TW.bfi2,
SAM.68TW.bfi2,
SAM.70TW.bfi2,
SAM.72TW.bfi2,
SAM.74TW.bfi2,
SAM.76TW.bfi2,
SAM.78TW.bfi2,
SAM.79TW.bfi2,
SAM.81TW.bfi2,
SAM.83TW.bfi2,
SAM.86TW.bfi2,
SAM.88TW.bfi2,
SAM.90TW.bfi2,
SAM.92TW.bfi2,
SAM.94TW.bfi2,
SAM.96TW.bfi2,
SAM.97TW.bfi2,
SAM.99TW.bfi2,
SAM.101TW.bfi2,
SAM.104TW.bfi2,
SAM.106TW.bfi2,
SAM.108TW.bfi2,
SAM.110TW.bfi2,
SAM.112TW.bfi2,
SAM.114TW.bfi2,
SAM.115TW.bfi2,
SAM.117TW.bfi2,
SAM.119TW.bfi2,
SAM.122TW.bfi2,
SAM.124TW.bfi2,
SAM.126TW.bfi2,
SAM.128TW.bfi2,
SAM.130TW.bfi2,
SAM.132TW.bfi2,
SAM.133TW.bfi2,
SAM.135TW.bfi2,
SAM.137TW.bfi2,
SAM.140TW.bfi2,
SAM.142TW.bfi2,
SAM.144TW.bfi2,
SAM.146TW.bfi2,
SAM.148TW.bfi2,
SAM.150TW.bfi2)
# Subtract the Normative profile from the predictors and then mean center predictors for each personality measure
#Full model
SAM.bfi$Norm.MC <- SAM.bfi$Norm - mean(SAM.bfi$Norm, na.rm=TRUE)
SAM.bfi$SRminusNorm <- SAM.bfi$Sr - SAM.bfi$Norm
SAM.bfi$SR.MC <- SAM.bfi$SRminusNorm - (mean(SAM.bfi$SRminusNorm, na.rm=TRUE))
#Instagram model
SAM.bfi.IG$Norm.MC <- SAM.bfi.IG$Norm - mean(SAM.bfi.IG$Norm, na.rm=TRUE)
SAM.bfi.IG$SRminusNorm <- SAM.bfi.IG$Sr - SAM.bfi.IG$Norm
SAM.bfi.IG$SR.MC <- SAM.bfi.IG$SRminusNorm - (mean(SAM.bfi.IG$SRminusNorm, na.rm=TRUE))
#Twitter model
SAM.bfi.TW$Norm.MC <- SAM.bfi.TW$Norm - mean(SAM.bfi.TW$Norm, na.rm=TRUE)
SAM.bfi.TW$SRminusNorm <- SAM.bfi.TW$Sr - SAM.bfi.TW$Norm
SAM.bfi.TW$SR.MC <- SAM.bfi.TW$SRminusNorm - (mean(SAM.bfi.TW$SRminusNorm, na.rm=TRUE))
#full model
summary(bfi2.full <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.bfi, control = lmerControl(optimizer ='bobyqa')))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.bfi
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 146505.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.5010 -0.7378 0.0294 0.7374 3.6340
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.0985048 0.31385
## SR.MC 0.0096161 0.09806 -0.42
## Norm.MC 0.1205096 0.34714 -0.33 0.77
## TID (Intercept) 0.0008005 0.02829
## SR.MC 0.0162651 0.12753 0.66
## Norm.MC 0.0661125 0.25712 0.75 0.63
## Residual 1.1032336 1.05035
## Number of obs: 49186, groups: JID, 277; TID, 150
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.21857 0.01968 282.85806 163.521 <2e-16 ***
## SR.MC 0.12430 0.01273 212.84883 9.767 <2e-16 ***
## Norm.MC 0.39519 0.03067 321.90241 12.885 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC -0.125
## Norm.MC -0.154 0.613
#instagram
summary(bfi2.IG <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.bfi.IG, control = lmerControl(optimizer ='bobyqa')))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.bfi.IG
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 76405.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2867 -0.7007 0.0301 0.7250 3.2314
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.0994883 0.31542
## SR.MC 0.0143931 0.11997 -0.39
## Norm.MC 0.1557260 0.39462 -0.38 0.85
## TID (Intercept) 0.0006115 0.02473
## SR.MC 0.0134800 0.11610 0.29
## Norm.MC 0.0312600 0.17681 0.46 0.39
## Residual 1.0846753 1.04148
## Number of obs: 25678, groups: JID, 272; TID, 75
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.22921 0.02054 263.11360 157.20 <2e-16 ***
## SR.MC 0.16557 0.01642 97.82407 10.09 <2e-16 ***
## Norm.MC 0.52357 0.03333 182.44454 15.71 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC -0.132
## Norm.MC -0.216 0.494
#twitter
summary(bfi2.TW <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.bfi.TW, control = lmerControl(optimizer ='bobyqa')))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.bfi.TW
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 70355.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.1753 -0.7546 0.0183 0.7459 3.3081
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.096303 0.31033
## SR.MC 0.012250 0.11068 -0.32
## Norm.MC 0.137508 0.37082 -0.19 0.71
## TID (Intercept) 0.001404 0.03747
## SR.MC 0.013593 0.11659 0.59
## Norm.MC 0.048579 0.22041 0.78 0.63
## Residual 1.098907 1.04829
## Number of obs: 23508, groups: JID, 271; TID, 75
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.21080 0.02060 263.61053 155.839 < 2e-16 ***
## SR.MC 0.08557 0.01623 95.18750 5.273 8.39e-07 ***
## Norm.MC 0.26845 0.03573 142.84646 7.513 5.77e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC -0.017
## Norm.MC 0.006 0.579
#comparing Instagram and Twitter
SAM.bfi$ConTW <-0
SAM.bfi$ConTW [SAM.bfi$ConType==-1]<-1
summary(bfi2.comparison <- lmer(Rating ~ 1 + SR.MC*ConTW + Norm.MC*ConTW +(1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.bfi, control = lmerControl(optimizer ='bobyqa')))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## Rating ~ 1 + SR.MC * ConTW + Norm.MC * ConTW + (1 + SR.MC + Norm.MC |
## JID) + (1 + SR.MC + Norm.MC | TID)
## Data: SAM.bfi
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 146482.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.4745 -0.7380 0.0281 0.7385 3.6159
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.0985418 0.31391
## SR.MC 0.0096572 0.09827 -0.42
## Norm.MC 0.1212652 0.34823 -0.33 0.77
## TID (Intercept) 0.0007333 0.02708
## SR.MC 0.0145087 0.12045 0.60
## Norm.MC 0.0467786 0.21628 0.70 0.56
## Residual 1.1032267 1.05035
## Number of obs: 49186, groups: JID, 277; TID, 150
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.22793 0.02037 312.21779 158.483 < 2e-16 ***
## SR.MC 0.16571 0.01629 182.66087 10.171 < 2e-16 ***
## ConTW -0.01886 0.01077 124.70538 -1.751 0.082365 .
## Norm.MC 0.52827 0.03444 277.34740 15.338 < 2e-16 ***
## SR.MC:ConTW -0.08261 0.02145 140.11820 -3.852 0.000178 ***
## ConTW:Norm.MC -0.26532 0.03855 131.39862 -6.883 2.17e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC ConTW Nrm.MC SR.MC:
## SR.MC -0.067
## ConTW -0.259 -0.141
## Norm.MC -0.108 0.541 -0.143
## SR.MC:ConTW -0.056 -0.658 0.219 -0.281
## CnTW:Nrm.MC -0.068 -0.331 0.258 -0.560 0.502
#RQ5
#Judge familiarity with SNS, Twitter, and Instagram
summary(BFI.sns <- lmer(Rating ~ 1 +SR.MC*SNSFreq + Norm.MC*SNSFreq + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.bfi, control = lmerControl(optimizer ='optimx', optCtrl=list(method='nlminb'))))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC * SNSFreq + Norm.MC * SNSFreq + (1 + SR.MC +
## Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID)
## Data: SAM.bfi
## Control:
## lmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## REML criterion at convergence: 138528.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.4779 -0.7357 0.0340 0.7342 3.6120
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.1051195 0.32422
## SR.MC 0.0095531 0.09774 -0.47
## Norm.MC 0.1182230 0.34384 -0.37 0.75
## TID (Intercept) 0.0008571 0.02928
## SR.MC 0.0161454 0.12706 0.66
## Norm.MC 0.0636822 0.25235 0.79 0.64
## Residual 1.1169650 1.05687
## Number of obs: 46313, groups: JID, 253; TID, 150
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.239366 0.129039 251.031578 25.104 < 2e-16 ***
## SR.MC 0.019419 0.047714 257.637530 0.407 0.684349
## SNSFreq -0.001761 0.023017 250.766649 -0.077 0.939070
## Norm.MC -0.095244 0.146276 262.922019 -0.651 0.515534
## SR.MC:SNSFreq 0.018810 0.008314 235.697767 2.262 0.024579 *
## SNSFreq:Norm.MC 0.088688 0.025850 253.576948 3.431 0.000702 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC SNSFrq Nrm.MC SR.MC:
## SR.MC -0.351
## SNSFreq -0.986 0.349
## Norm.MC -0.316 0.624 0.313
## SR.MC:SNSFr 0.357 -0.963 -0.362 -0.611
## SNSFrq:N.MC 0.316 -0.603 -0.321 -0.977 0.626
summary(BFI.sns.TW <- lmer(Rating ~ 1 +SR.MC*TwitFreq + Norm.MC*TwitFreq + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.bfi.TW, control = lmerControl(optimizer ='optimx', optCtrl=list(method='nlminb'))))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## Rating ~ 1 + SR.MC * TwitFreq + Norm.MC * TwitFreq + (1 + SR.MC +
## Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID)
## Data: SAM.bfi.TW
## Control:
## lmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## REML criterion at convergence: 66533.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.1704 -0.7505 0.0220 0.7392 3.2895
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.097352 0.31201
## SR.MC 0.012260 0.11073 -0.32
## Norm.MC 0.140014 0.37418 -0.23 0.73
## TID (Intercept) 0.001489 0.03859
## SR.MC 0.013852 0.11769 0.57
## Norm.MC 0.043616 0.20884 0.77 0.66
## Residual 1.112831 1.05491
## Number of obs: 22135, groups: JID, 252; TID, 75
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.095801 0.043237 252.998492 71.600 < 2e-16 ***
## SR.MC 0.116062 0.023562 229.914220 4.926 1.61e-06 ***
## TwitFreq 0.034011 0.010561 247.188281 3.221 0.001451 **
## Norm.MC 0.198134 0.059416 280.804837 3.335 0.000969 ***
## SR.MC:TwitFreq -0.008739 0.004701 221.721240 -1.859 0.064351 .
## TwitFreq:Norm.MC 0.019381 0.013328 241.460487 1.454 0.147218
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC TwtFrq Nrm.MC SR.MC:
## SR.MC -0.144
## TwitFreq -0.868 0.156
## Norm.MC -0.140 0.566 0.151
## SR.MC:TwtFr 0.192 -0.710 -0.221 -0.442
## TwtFrq:N.MC 0.164 -0.394 -0.190 -0.799 0.553
summary(BFI.sns.IG <- lmer(Rating ~ 1 +SR.MC*IGFreq + Norm.MC*IGFreq + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.bfi.IG, control = lmerControl(optimizer ='optimx', optCtrl=list(method='nlminb'))))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC * IGFreq + Norm.MC * IGFreq + (1 + SR.MC +
## Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID)
## Data: SAM.bfi.IG
## Control:
## lmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## REML criterion at convergence: 75842.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2851 -0.6989 0.0304 0.7259 3.2465
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.0964805 0.3106
## SR.MC 0.0143459 0.1198 -0.40
## Norm.MC 0.1575721 0.3970 -0.42 0.86
## TID (Intercept) 0.0007451 0.0273
## SR.MC 0.0134669 0.1160 0.28
## Norm.MC 0.0330664 0.1818 0.52 0.41
## Residual 1.0832605 1.0408
## Number of obs: 25498, groups: JID, 267; TID, 75
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.076956 0.055113 266.434898 55.830 < 2e-16 ***
## SR.MC 0.196449 0.028981 291.752474 6.779 6.72e-11 ***
## IGFreq 0.035053 0.011443 264.741010 3.063 0.00242 **
## Norm.MC 0.468142 0.076229 290.969446 6.141 2.68e-09 ***
## SR.MC:IGFreq -0.006463 0.005342 246.501562 -1.210 0.22749
## IGFreq:Norm.MC 0.013338 0.015264 259.160247 0.874 0.38303
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC IGFreq Nrm.MC SR.MC:
## SR.MC -0.253
## IGFreq -0.928 0.242
## Norm.MC -0.329 0.621 0.314
## SR.MC:IGFrq 0.272 -0.824 -0.293 -0.599
## IGFrq:Nr.MC 0.325 -0.551 -0.350 -0.895 0.669
#Openness across SNS
bfi.Open1 <- subset (SAM.bfi, Norm.item == "BFI25", select=c(JID: SR.MC))
bfi.Open2 <- subset (SAM.bfi, Norm.item == "BFI210", select=c(JID: SR.MC))
bfi.Open3 <- subset (SAM.bfi, Norm.item == "BFI215", select=c(JID: SR.MC))
bfi.Open4 <- subset (SAM.bfi, Norm.item == "BFI220", select=c(JID: SR.MC))
bfi.Open5 <- subset (SAM.bfi, Norm.item == "BFI225", select=c(JID: SR.MC))
bfi.Open6 <- subset (SAM.bfi, Norm.item == "BFI230", select=c(JID: SR.MC))
SAM.Open <- rbind( bfi.Open1, bfi.Open2, bfi.Open3, bfi.Open4, bfi.Open5, bfi.Open6)
summary(bfi.Open <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.Open, control = lmerControl(optimizer ='bobyqa')))
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.Open
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 28008.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2507 -0.6513 0.0042 0.6697 4.0525
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.1411935 0.37576
## SR.MC 0.0144448 0.12019 -0.19
## Norm.MC 0.2420353 0.49197 -0.19 -0.02
## TID (Intercept) 0.0007772 0.02788
## SR.MC 0.0078635 0.08868 0.47
## Norm.MC 0.1101500 0.33189 0.93 0.11
## Residual 0.8814993 0.93888
## Number of obs: 9780, groups: JID, 277; TID, 149
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.15679 0.02491 283.69990 126.729 < 2e-16 ***
## SR.MC 0.04263 0.01571 110.28462 2.713 0.00774 **
## Norm.MC 0.39156 0.04234 319.37319 9.247 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC -0.038
## Norm.MC -0.059 0.017
## convergence code: 0
## boundary (singular) fit: see ?isSingular
#conscientiousness across SNS
bfi.Cons1 <- subset (SAM.bfi, Norm.item == "BFI23", select=c(JID:SR.MC))
bfi.Cons2 <- subset (SAM.bfi, Norm.item == "BFI28", select=c(JID:SR.MC))
bfi.Cons3 <- subset (SAM.bfi, Norm.item == "BFI213", select=c(JID:SR.MC))
bfi.Cons4 <- subset (SAM.bfi, Norm.item == "BFI218", select=c(JID:SR.MC))
bfi.Cons5 <- subset (SAM.bfi, Norm.item == "BFI223", select=c(JID:SR.MC))
bfi.Cons6 <- subset (SAM.bfi, Norm.item == "BFI228", select=c(JID:SR.MC))
SAM.Cons <- rbind(bfi.Cons1, bfi.Cons2, bfi.Cons3, bfi.Cons4, bfi.Cons5, bfi.Cons6)
summary(bfi.Cons <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.Cons, control = lmerControl(optimizer ='bobyqa')))
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.Cons
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 23481.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.0947 -0.6815 0.0200 0.7168 3.2853
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.121565 0.34866
## SR.MC 0.007243 0.08511 -0.26
## Norm.MC 0.300463 0.54815 -0.59 -0.10
## TID (Intercept) 0.006890 0.08301
## SR.MC 0.023742 0.15408 -0.15
## Norm.MC 0.216680 0.46549 -1.00 0.12
## Residual 0.901129 0.94928
## Number of obs: 8150, groups: JID, 277; TID, 149
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.13182 0.02498 304.77447 125.368 < 2e-16 ***
## SR.MC 0.02499 0.01796 136.67944 1.392 0.166
## Norm.MC 0.36476 0.05435 265.91165 6.711 1.16e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC -0.096
## Norm.MC -0.527 0.041
## convergence code: 0
## boundary (singular) fit: see ?isSingular
#Agreeableness across SNS
bfi.Agr1 <- subset (SAM.bfi, Norm.item == "BFI22", select=c(JID:SR.MC))
bfi.Agr2 <- subset (SAM.bfi, Norm.item == "BFI27", select=c(JID:SR.MC))
bfi.Agr3 <- subset (SAM.bfi, Norm.item == "BFI212", select=c(JID:SR.MC))
bfi.Agr4 <- subset (SAM.bfi, Norm.item == "BFI217", select=c(JID:SR.MC))
bfi.Agr5 <- subset (SAM.bfi, Norm.item == "BFI222", select=c(JID:SR.MC))
bfi.Agr6 <- subset (SAM.bfi, Norm.item == "BFI227", select=c(JID:SR.MC))
SAM.Agr<- rbind(bfi.Agr1, bfi.Agr2, bfi.Agr3, bfi.Agr4, bfi.Agr5, bfi.Agr6)
summary(bfi.Agr <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.Agr, control = lmerControl(optimizer ='bobyqa')))
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.Agr
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 28639.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3176 -0.6341 0.0718 0.6870 2.6562
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.103048 0.32101
## SR.MC 0.054789 0.23407 -0.40
## Norm.MC 0.090176 0.30029 -0.45 1.00
## TID (Intercept) 0.005488 0.07408
## SR.MC 0.063753 0.25249 0.00
## Norm.MC 0.087572 0.29593 -0.14 0.96
## Residual 0.960605 0.98010
## Number of obs: 9801, groups: JID, 277; TID, 150
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.25016 0.02300 282.11275 141.306 <2e-16 ***
## SR.MC 0.24338 0.02662 223.22640 9.141 <2e-16 ***
## Norm.MC 0.33213 0.03340 207.80032 9.944 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC -0.203
## Norm.MC -0.255 0.912
## convergence code: 0
## boundary (singular) fit: see ?isSingular
#WExtraversion across SNS
bfi.Ext1 <- subset (SAM.bfi, Norm.item == "BFI21", select=c(JID:SR.MC))
bfi.Ext2 <- subset (SAM.bfi, Norm.item == "BFI26", select=c(JID:SR.MC))
bfi.Ext3 <- subset (SAM.bfi, Norm.item == "BFI211", select=c(JID:SR.MC))
bfi.Ext4 <- subset (SAM.bfi, Norm.item == "BFI216", select=c(JID:SR.MC))
bfi.Ext5 <- subset (SAM.bfi, Norm.item == "BFI221", select=c(JID:SR.MC))
bfi.Ext6 <- subset (SAM.bfi, Norm.item == "BFI226", select=c(JID:SR.MC))
SAM.Ext <- rbind(bfi.Ext1, bfi.Ext2, bfi.Ext3, bfi.Ext4, bfi.Ext5, bfi.Ext6)
summary(bfi.Ext <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.Ext, control = lmerControl(optimizer ='optimx', optCtrl=list(method='nlminb'))))
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.Ext
## Control:
## lmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## REML criterion at convergence: 29940.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.1936 -0.6629 0.0898 0.7004 3.4509
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.098008 0.31306
## SR.MC 0.012146 0.11021 -0.37
## Norm.MC 0.701828 0.83775 -0.17 0.13
## TID (Intercept) 0.002753 0.05247
## SR.MC 0.039169 0.19791 0.36
## Norm.MC 0.552719 0.74345 0.90 -0.07
## Residual 1.002720 1.00136
## Number of obs: 10046, groups: JID, 277; TID, 150
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.30115 0.02239 297.96916 147.408 <2e-16 ***
## SR.MC 0.02144 0.02141 140.19968 1.001 0.318
## Norm.MC 1.05016 0.08511 262.99052 12.339 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC -0.048
## Norm.MC 0.077 -0.027
## convergence code: 0
## boundary (singular) fit: see ?isSingular
#Neuroticism across SNS
bfi.Neur1 <- subset (SAM.bfi, Norm.item == "BFI24", select=c(JID:SR.MC))
bfi.Neur2 <- subset (SAM.bfi, Norm.item == "BFI29", select=c(JID:SR.MC))
bfi.Neur3 <- subset (SAM.bfi, Norm.item == "BFI214", select=c(JID:SR.MC))
bfi.Neur4 <- subset (SAM.bfi, Norm.item == "BFI219", select=c(JID:SR.MC))
bfi.Neur5 <- subset (SAM.bfi, Norm.item == "BFI224", select=c(JID:SR.MC))
bfi.Neur6 <- subset (SAM.bfi, Norm.item == "BFI229", select=c(JID:SR.MC))
SAM.Neur <- rbind (bfi.Neur1, bfi.Neur2, bfi.Neur3, bfi.Neur4, bfi.Neur5, bfi.Neur6)
summary(bfi.Neur <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.Neur, control = lmerControl(optimizer ='optimx', optCtrl=list(method='nlminb'))))
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.Neur
## Control:
## lmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## REML criterion at convergence: 29225.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.11699 -0.69011 0.04925 0.72817 2.79569
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.083082 0.28824
## SR.MC 0.012628 0.11237 -0.22
## Norm.MC 0.440724 0.66387 -0.10 -0.16
## TID (Intercept) 0.002309 0.04805
## SR.MC 0.046479 0.21559 0.25
## Norm.MC 0.237171 0.48700 1.00 0.27
## Residual 1.041722 1.02065
## Number of obs: 9779, groups: JID, 277; TID, 149
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.25692 0.02103 285.47968 154.877 < 2e-16 ***
## SR.MC 0.06228 0.02180 159.13167 2.857 0.00485 **
## Norm.MC 0.63500 0.06787 235.89120 9.356 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC -0.029
## Norm.MC 0.108 0.092
## convergence code: 0
## boundary (singular) fit: see ?isSingular
#Openness IG
bfi.IG.Open1 <- subset (SAM.bfi.IG, Norm.item == "BFI25", select=c(JID: SR.MC))
bfi.IG.Open2 <- subset (SAM.bfi.IG, Norm.item == "BFI210", select=c(JID: SR.MC))
bfi.IG.Open3 <- subset (SAM.bfi.IG, Norm.item == "BFI215", select=c(JID: SR.MC))
bfi.IG.Open4 <- subset (SAM.bfi.IG, Norm.item == "BFI220", select=c(JID: SR.MC))
bfi.IG.Open5 <- subset (SAM.bfi.IG, Norm.item == "BFI225", select=c(JID: SR.MC))
bfi.IG.Open6 <- subset (SAM.bfi.IG, Norm.item == "BFI230", select=c(JID: SR.MC))
SAM.IG.Open <- rbind( bfi.IG.Open1, bfi.IG.Open2, bfi.IG.Open3, bfi.IG.Open4, bfi.IG.Open5, bfi.IG.Open6)
summary(bfi..IG.Open <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.IG.Open, control = lmerControl(optimizer ='bobyqa')))
## boundary (singular) fit: see ?isSingular
## Warning: Model failed to converge with 1 negative eigenvalue: -4.7e+01
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.IG.Open
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 14555.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2564 -0.6196 0.0001 0.6403 3.4357
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.1294783 0.35983
## SR.MC 0.0161381 0.12704 -0.13
## Norm.MC 0.2927129 0.54103 -0.22 -0.18
## TID (Intercept) 0.0001986 0.01409
## SR.MC 0.0090862 0.09532 1.00
## Norm.MC 0.0688728 0.26244 0.49 0.49
## Residual 0.8452638 0.91938
## Number of obs: 5076, groups: JID, 272; TID, 74
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.17003 0.02584 277.49118 122.661 <2e-16 ***
## SR.MC 0.04949 0.02092 54.91687 2.366 0.0216 *
## Norm.MC 0.53470 0.04841 165.82825 11.046 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC 0.015
## Norm.MC -0.097 0.116
## convergence code: 0
## boundary (singular) fit: see ?isSingular
#conscientiousness IG
bfi.IG.Cons1 <- subset (SAM.bfi.IG, Norm.item == "BFI23", select=c(JID:SR.MC))
bfi.IG.Cons2 <- subset (SAM.bfi.IG, Norm.item == "BFI28", select=c(JID:SR.MC))
bfi.IG.Cons3 <- subset (SAM.bfi.IG, Norm.item == "BFI213", select=c(JID:SR.MC))
bfi.IG.Cons4 <- subset (SAM.bfi.IG, Norm.item == "BFI218", select=c(JID:SR.MC))
bfi.IG.Cons5 <- subset (SAM.bfi.IG, Norm.item == "BFI223", select=c(JID:SR.MC))
bfi.IG.Cons6 <- subset (SAM.bfi.IG, Norm.item == "BFI228", select=c(JID:SR.MC))
SAM.IG.Cons <- rbind(bfi.IG.Cons1, bfi.IG.Cons2, bfi.IG.Cons3, bfi.IG.Cons4, bfi.IG.Cons5, bfi.IG.Cons6)
summary(bfi.IG.Cons <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.IG.Cons, control = lmerControl(optimizer ='Nelder_Mead')))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge: degenerate Hessian with 2
## negative eigenvalues
## Warning: Model failed to converge with 2 negative eigenvalues: -1.1e+02
## -1.5e+02
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.IG.Cons
## Control: lmerControl(optimizer = "Nelder_Mead")
##
## REML criterion at convergence: 12335.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.0055 -0.6608 0.0065 0.6944 3.2070
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.1359171 0.36867
## SR.MC 0.0013809 0.03716 -0.92
## Norm.MC 0.3733308 0.61101 -0.74 0.55
## TID (Intercept) 0.0008479 0.02912
## SR.MC 0.0238417 0.15441 1.00
## Norm.MC 0.0949100 0.30807 -0.28 -0.30
## Residual 0.9194715 0.95889
## Number of obs: 4230, groups: JID, 272; TID, 74
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.10226 0.02779 267.28269 111.634 < 2e-16 ***
## SR.MC 0.06889 0.02403 55.26030 2.867 0.00586 **
## Norm.MC 0.56671 0.05867 148.16426 9.659 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC 0.036
## Norm.MC -0.449 -0.103
## convergence code: 0
## unable to evaluate scaled gradient
## Model failed to converge: degenerate Hessian with 2 negative eigenvalues
#Agreeableness IG
bfi.IG.Agr1 <- subset (SAM.bfi.IG, Norm.item == "BFI22", select=c(JID:SR.MC))
bfi.IG.Agr2 <- subset (SAM.bfi.IG, Norm.item == "BFI27", select=c(JID:SR.MC))
bfi.IG.Agr3 <- subset (SAM.bfi.IG, Norm.item == "BFI212", select=c(JID:SR.MC))
bfi.IG.Agr4 <- subset (SAM.bfi.IG, Norm.item == "BFI217", select=c(JID:SR.MC))
bfi.IG.Agr5 <- subset (SAM.bfi.IG, Norm.item == "BFI222", select=c(JID:SR.MC))
bfi.IG.Agr6 <- subset (SAM.bfi.IG, Norm.item == "BFI227", select=c(JID:SR.MC))
SAM.IG.Agr<- rbind(bfi.IG.Agr1, bfi.IG.Agr2, bfi.IG.Agr3, bfi.IG.Agr4, bfi.IG.Agr5, bfi.IG.Agr6)
summary(bfi.IG.Agr <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.IG.Agr, control = lmerControl(optimizer ='bobyqa')))
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.IG.Agr
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 14841.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.1639 -0.5842 0.0630 0.6654 2.8278
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.09574 0.3094
## SR.MC 0.07697 0.2774 -0.41
## Norm.MC 0.11228 0.3351 -0.43 1.00
## TID (Intercept) 0.01384 0.1177
## SR.MC 0.05336 0.2310 -0.33
## Norm.MC 0.06402 0.2530 -0.51 0.90
## Residual 0.91113 0.9545
## Number of obs: 5098, groups: JID, 272; TID, 75
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.23248 0.02762 138.86205 117.01 <2e-16 ***
## SR.MC 0.35542 0.03418 80.16376 10.40 <2e-16 ***
## Norm.MC 0.47369 0.04064 77.21501 11.65 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC -0.305
## Norm.MC -0.368 0.862
## convergence code: 0
## boundary (singular) fit: see ?isSingular
#Extraversion IG
bfi.IG.Ext1 <- subset (SAM.bfi.IG, Norm.item == "BFI21", select=c(JID:SR.MC))
bfi.IG.Ext2 <- subset (SAM.bfi.IG, Norm.item == "BFI26", select=c(JID:SR.MC))
bfi.IG.Ext3 <- subset (SAM.bfi.IG, Norm.item == "BFI211", select=c(JID:SR.MC))
bfi.IG.Ext4 <- subset (SAM.bfi.IG, Norm.item == "BFI216", select=c(JID:SR.MC))
bfi.IG.Ext5 <- subset (SAM.bfi.IG, Norm.item == "BFI221", select=c(JID:SR.MC))
bfi.IG.Ext6 <- subset (SAM.bfi.IG, Norm.item == "BFI226", select=c(JID:SR.MC))
SAM.IG.Ext <- rbind(bfi.IG.Ext1, bfi.IG.Ext2, bfi.IG.Ext3, bfi.IG.Ext4, bfi.IG.Ext5, bfi.IG.Ext6)
summary(bfi.IG.Ext <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.IG.Ext, control = lmerControl(optimizer ='optimx', optCtrl=list(method='nlminb'))))
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.IG.Ext
## Control:
## lmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## REML criterion at convergence: 15950.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.91381 -0.66546 0.08594 0.70859 2.75724
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.0891086 0.29851
## SR.MC 0.0101651 0.10082 -0.39
## Norm.MC 0.8674568 0.93137 -0.18 0.23
## TID (Intercept) 0.0008615 0.02935
## SR.MC 0.0276354 0.16624 -0.21
## Norm.MC 0.5047538 0.71046 0.98 -0.03
## Residual 0.9801133 0.99001
## Number of obs: 5352, groups: JID, 272; TID, 75
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.34290 0.02404 277.20971 139.034 <2e-16 ***
## SR.MC 0.05922 0.02678 71.56336 2.212 0.0302 *
## Norm.MC 1.18155 0.10861 117.47248 10.879 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC -0.136
## Norm.MC 0.084 -0.008
## convergence code: 0
## boundary (singular) fit: see ?isSingular
#Neuroticism IG
bfi.IG.Neur1 <- subset (SAM.bfi.IG, Norm.item == "BFI24", select=c(JID:SR.MC))
bfi.IG.Neur2 <- subset (SAM.bfi.IG, Norm.item == "BFI29", select=c(JID:SR.MC))
bfi.IG.Neur3 <- subset (SAM.bfi.IG, Norm.item == "BFI214", select=c(JID:SR.MC))
bfi.IG.Neur4 <- subset (SAM.bfi.IG, Norm.item == "BFI219", select=c(JID:SR.MC))
bfi.IG.Neur5 <- subset (SAM.bfi.IG, Norm.item == "BFI224", select=c(JID:SR.MC))
bfi.IG.Neur6 <- subset (SAM.bfi.IG, Norm.item == "BFI229", select=c(JID:SR.MC))
SAM.IG.Neur <- rbind (bfi.IG.Neur1, bfi.IG.Neur2, bfi.IG.Neur3, bfi.IG.Neur4, bfi.IG.Neur5, bfi.IG.Neur6)
summary(bfi.IG.Neur <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.IG.Neur, control = lmerControl(optimizer ='Nelder_Mead')))
## Warning in (function (fn, par, lower = rep.int(-Inf, n), upper =
## rep.int(Inf, : failure to converge in 10000 evaluations
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge: degenerate Hessian with 1
## negative eigenvalues
## Warning: Model failed to converge with 1 negative eigenvalue: -2.2e+01
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.IG.Neur
## Control: lmerControl(optimizer = "Nelder_Mead")
##
## REML criterion at convergence: 15270.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.1640 -0.6371 0.0568 0.7021 2.7476
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.0858705 0.29304
## SR.MC 0.0182622 0.13514 -0.14
## Norm.MC 0.8291717 0.91059 -0.17 -0.26
## TID (Intercept) 0.0004053 0.02013
## SR.MC 0.1360773 0.36889 -0.59
## Norm.MC 1.8187436 1.34861 0.22 0.66
## Residual 0.9912974 0.99564
## Number of obs: 5076, groups: JID, 272; TID, 74
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.25855 0.02347 244.52450 138.837 < 2e-16 ***
## SR.MC 0.05317 0.04660 18.01142 1.141 0.269
## Norm.MC 0.75403 0.17468 598.65064 4.317 1.85e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC -0.086
## Norm.MC 0.013 0.516
## convergence code: 0
## unable to evaluate scaled gradient
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
## failure to converge in 10000 evaluations
#Openness Twitter
bfi.TW.Open1 <- subset (SAM.bfi.TW, Norm.item == "BFI25", select=c(JID: SR.MC))
bfi.TW.Open2 <- subset (SAM.bfi.TW, Norm.item == "BFI210", select=c(JID: SR.MC))
bfi.TW.Open3 <- subset (SAM.bfi.TW, Norm.item == "BFI215", select=c(JID: SR.MC))
bfi.TW.Open4 <- subset (SAM.bfi.TW, Norm.item == "BFI220", select=c(JID: SR.MC))
bfi.TW.Open5 <- subset (SAM.bfi.TW, Norm.item == "BFI225", select=c(JID: SR.MC))
bfi.TW.Open6 <- subset (SAM.bfi.TW, Norm.item == "BFI230", select=c(JID: SR.MC))
SAM.TW.Open <- rbind( bfi.TW.Open1, bfi.TW.Open2, bfi.TW.Open3, bfi.TW.Open4, bfi.TW.Open5, bfi.TW.Open6)
summary(bfi.TW.Open <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.TW.Open, control = lmerControl(optimizer ='optimx', optCtrl=list(method='nlminb'))))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.TW.Open
## Control:
## lmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## REML criterion at convergence: 13668.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.8590 -0.6540 -0.0118 0.6689 3.7666
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.137519 0.37084
## SR.MC 0.023548 0.15345 -0.14
## Norm.MC 0.300259 0.54796 -0.08 0.01
## TID (Intercept) 0.000791 0.02812
## SR.MC 0.007695 0.08772 0.63
## Norm.MC 0.086991 0.29494 0.76 -0.04
## Residual 0.860977 0.92789
## Number of obs: 4704, groups: JID, 271; TID, 75
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.14655 0.02686 271.07782 117.127 < 2e-16 ***
## SR.MC 0.03748 0.02205 47.05651 1.700 0.0958 .
## Norm.MC 0.24210 0.05106 151.33360 4.741 4.86e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC 0.017
## Norm.MC 0.027 -0.026
#conscientiousness Twitter
bfi.TW.Cons1 <- subset (SAM.bfi.TW, Norm.item == "BFI23", select=c(JID:SR.MC))
bfi.TW.Cons2 <- subset (SAM.bfi.TW, Norm.item == "BFI28", select=c(JID:SR.MC))
bfi.TW.Cons3 <- subset (SAM.bfi.TW, Norm.item == "BFI213", select=c(JID:SR.MC))
bfi.TW.Cons4 <- subset (SAM.bfi.TW, Norm.item == "BFI218", select=c(JID:SR.MC))
bfi.TW.Cons5 <- subset (SAM.bfi.TW, Norm.item == "BFI223", select=c(JID:SR.MC))
bfi.TW.Cons6 <- subset (SAM.bfi.TW, Norm.item == "BFI228", select=c(JID:SR.MC))
SAM.TW.Cons <- rbind(bfi.TW.Cons1, bfi.TW.Cons2, bfi.TW.Cons3, bfi.TW.Cons4, bfi.TW.Cons5, bfi.TW.Cons6)
summary(bfi.TW.Cons <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.TW.Cons, control = lmerControl(optimizer ='optimx', optCtrl=list(method='nlminb'))))
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.TW.Cons
## Control:
## lmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## REML criterion at convergence: 11285.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.12118 -0.66176 0.01637 0.71914 2.68729
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.102574 0.32027
## SR.MC 0.017055 0.13060 0.07
## Norm.MC 0.368180 0.60678 -0.57 -0.27
## TID (Intercept) 0.009608 0.09802
## SR.MC 0.022335 0.14945 -0.30
## Norm.MC 0.215351 0.46406 -0.97 0.06
## Residual 0.852984 0.92357
## Number of obs: 3920, groups: JID, 271; TID, 75
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.16174 0.02780 196.36022 113.737 <2e-16 ***
## SR.MC -0.00655 0.02523 79.16540 -0.260 0.796
## Norm.MC 0.17000 0.07080 109.93290 2.401 0.018 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC -0.087
## Norm.MC -0.557 -0.023
## convergence code: 0
## boundary (singular) fit: see ?isSingular
#Agreeableness Twitter
bfi.TW.Agr1 <- subset (SAM.bfi.TW, Norm.item == "BFI22", select=c(JID:SR.MC))
bfi.TW.Agr2 <- subset (SAM.bfi.TW, Norm.item == "BFI27", select=c(JID:SR.MC))
bfi.TW.Agr3 <- subset (SAM.bfi.TW, Norm.item == "BFI212", select=c(JID:SR.MC))
bfi.TW.Agr4 <- subset (SAM.bfi.TW, Norm.item == "BFI217", select=c(JID:SR.MC))
bfi.TW.Agr5 <- subset (SAM.bfi.TW, Norm.item == "BFI222", select=c(JID:SR.MC))
bfi.TW.Agr6 <- subset (SAM.bfi.TW, Norm.item == "BFI227", select=c(JID:SR.MC))
SAM.TW.Agr<- rbind(bfi.TW.Agr1, bfi.TW.Agr2, bfi.TW.Agr3, bfi.TW.Agr4, bfi.TW.Agr5, bfi.TW.Agr6)
summary(bfi.TW.Agr <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.TW.Agr, control = lmerControl(optimizer ='bobyqa')))
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.TW.Agr
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 13874.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.89403 -0.66155 0.06191 0.68255 2.76096
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.088173 0.29694
## SR.MC 0.069883 0.26435 -0.31
## Norm.MC 0.117285 0.34247 -0.38 1.00
## TID (Intercept) 0.004181 0.06466
## SR.MC 0.039991 0.19998 0.97
## Norm.MC 0.053326 0.23092 0.92 0.98
## Residual 0.962107 0.98087
## Number of obs: 4703, groups: JID, 271; TID, 75
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.26115 0.02472 206.29309 131.913 < 2e-16 ***
## SR.MC 0.14438 0.03071 107.27067 4.702 7.71e-06 ***
## Norm.MC 0.20180 0.03929 95.03118 5.136 1.49e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC 0.072
## Norm.MC 0.012 0.895
## convergence code: 0
## boundary (singular) fit: see ?isSingular
#Extraversion on Twitter
bfi.TW.Ext1 <- subset (SAM.bfi.TW, Norm.item == "BFI21", select=c(JID:SR.MC))
bfi.TW.Ext2 <- subset (SAM.bfi.TW, Norm.item == "BFI26", select=c(JID:SR.MC))
bfi.TW.Ext3 <- subset (SAM.bfi.TW, Norm.item == "BFI211", select=c(JID:SR.MC))
bfi.TW.Ext4 <- subset (SAM.bfi.TW, Norm.item == "BFI216", select=c(JID:SR.MC))
bfi.TW.Ext5 <- subset (SAM.bfi.TW, Norm.item == "BFI221", select=c(JID:SR.MC))
bfi.TW.Ext6 <- subset (SAM.bfi.TW, Norm.item == "BFI226", select=c(JID:SR.MC))
SAM.TW.Ext <- rbind(bfi.TW.Ext1, bfi.TW.Ext2, bfi.TW.Ext3, bfi.TW.Ext4, bfi.TW.Ext5, bfi.TW.Ext6)
summary(bfi.TW.Ext <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.TW.Ext, control = lmerControl(optimizer ='optimx', optCtrl=list(method='nlminb'))))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.TW.Ext
## Control:
## lmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## REML criterion at convergence: 14145
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.9147 -0.6606 0.1092 0.6805 3.1788
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.085581 0.29254
## SR.MC 0.030027 0.17328 -0.28
## Norm.MC 0.815356 0.90297 -0.09 -0.08
## TID (Intercept) 0.005925 0.07697
## SR.MC 0.053895 0.23215 0.37
## Norm.MC 0.548996 0.74094 0.59 -0.22
## Residual 0.972861 0.98634
## Number of obs: 4694, groups: JID, 271; TID, 75
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.25773 0.02545 142.24240 127.995 < 2e-16 ***
## SR.MC -0.02138 0.03369 66.61186 -0.635 0.528
## Norm.MC 0.88648 0.11115 104.39246 7.976 2.04e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC 0.062
## Norm.MC 0.188 -0.160
#Neuroticism on Twitter
bfi.TW.Neur1 <- subset (SAM.bfi.TW, Norm.item == "BFI24", select=c(JID:SR.MC))
bfi.TW.Neur2 <- subset (SAM.bfi.TW, Norm.item == "BFI29", select=c(JID:SR.MC))
bfi.TW.Neur3 <- subset (SAM.bfi.TW, Norm.item == "BFI214", select=c(JID:SR.MC))
bfi.TW.Neur4 <- subset (SAM.bfi.TW, Norm.item == "BFI219", select=c(JID:SR.MC))
bfi.TW.Neur5 <- subset (SAM.bfi.TW, Norm.item == "BFI224", select=c(JID:SR.MC))
bfi.TW.Neur6 <- subset (SAM.bfi.TW, Norm.item == "BFI229", select=c(JID:SR.MC))
SAM.TW.Neur <- rbind (bfi.TW.Neur1, bfi.TW.Neur2, bfi.TW.Neur3, bfi.TW.Neur4, bfi.TW.Neur5, bfi.TW.Neur6)
summary(bfi.TW.Neur <- lmer(Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) + (1 + SR.MC + Norm.MC | TID), data = SAM.TW.Neur, control = lmerControl(optimizer ='optimx', optCtrl=list(method='nlminb'))))
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rating ~ 1 + SR.MC + Norm.MC + (1 + SR.MC + Norm.MC | JID) +
## (1 + SR.MC + Norm.MC | TID)
## Data: SAM.TW.Neur
## Control:
## lmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## REML criterion at convergence: 14216
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.76267 -0.71180 0.04948 0.71779 2.53470
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## JID (Intercept) 0.082410 0.28707
## SR.MC 0.020084 0.14172 -0.18
## Norm.MC 0.529431 0.72762 0.09 -0.25
## TID (Intercept) 0.003451 0.05875
## SR.MC 0.044168 0.21016 0.55
## Norm.MC 0.225394 0.47476 0.96 0.31
## Residual 1.044769 1.02214
## Number of obs: 4703, groups: JID, 271; TID, 75
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.25721 0.02464 222.19906 132.169 < 2e-16 ***
## SR.MC 0.06294 0.02999 78.67716 2.099 0.039 *
## Norm.MC 0.48579 0.08801 111.07009 5.519 2.25e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SR.MC
## SR.MC 0.080
## Norm.MC 0.255 0.135
## convergence code: 0
## boundary (singular) fit: see ?isSingular