O log ratio das novas mortes é calculado como o log da diferença entre as mortes no dia X e as mortes no dia (X-1).

\[log ratio = log(\frac{a_x}{a_{x-1}}) = log(a_x) - log(a_{x-1})\]

Para entender melhor, vou simular alguns dados. Vou colocar uma curva sigmoide para representar o total acumulado de mortes num surto que passou por um crescimento exponencial, e então estacionou, terminando o surto.

Vou usar a seguinte fórmula para a curva sigmoide:

\[ f(x) = \frac{1}{1+e^{-x}}\]

Quando computamos a diferença entre o acumulado entre o dia X e o dia X-1, obtemos a curva de mortes diárias:

Agora, quando computamos a diferença entre o log do acumulado entre o dia X e o dia X-1, obtemos o log ratio dessa relação, apresentado na figura a seguir.

O log ratio traz uma informação referente à aceleração do crescimento exponencial. Num surto comum, conforme o simulado neste exercício, essa curva apresenta uma forma sigmoide, semelhante à curva de mortes acumuladas, mas de forma espelhada, tendendo a zero.

O log_ratio informa implicitamente duas informações interessantes: o tempo de duplicação do número de mortes e o percentual de aumento no número de mortes.

\[Duplicação = \frac{log(2)}{logratio}\] \[Percentual = 100(e^{logratio}-1)\]

LS0tDQp0aXRsZTogIk8gbG9nIHJhdGlvIGFwbGljYWRvIGVtIHN1cnRvcyBlcGlkw6ptaWNvcyINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCk8gbG9nIHJhdGlvIGRhcyBub3ZhcyBtb3J0ZXMgw6kgY2FsY3VsYWRvIGNvbW8gbyBsb2cgZGEgZGlmZXJlbsOnYSBlbnRyZSBhcyBtb3J0ZXMgbm8gZGlhIFggZSBhcyBtb3J0ZXMgbm8gZGlhIChYLTEpLg0KDQokJGxvZyByYXRpbyA9IGxvZyhcZnJhY3thX3h9e2Ffe3gtMX19KSA9IGxvZyhhX3gpIC0gbG9nKGFfe3gtMX0pJCQNCg0KUGFyYSBlbnRlbmRlciBtZWxob3IsIHZvdSBzaW11bGFyIGFsZ3VucyBkYWRvcy4gVm91IGNvbG9jYXIgdW1hIGN1cnZhIHNpZ21vaWRlIHBhcmEgcmVwcmVzZW50YXIgbyB0b3RhbCBhY3VtdWxhZG8gZGUgbW9ydGVzIG51bSBzdXJ0byBxdWUgcGFzc291IHBvciB1bSBjcmVzY2ltZW50byBleHBvbmVuY2lhbCwgZSBlbnTDo28gZXN0YWNpb25vdSwgdGVybWluYW5kbyBvIHN1cnRvLg0KDQpWb3UgdXNhciBhIHNlZ3VpbnRlIGbDs3JtdWxhIHBhcmEgYSBjdXJ2YSBzaWdtb2lkZToNCg0KJCQgZih4KSA9IFxmcmFjezF9ezErZV57LXh9fSQkDQoNCmBgYHtyIGVjaG89RkFMU0V9DQpjdW11bGF0aXZlX2RlYXRocyA8LSByb3VuZCgxMDAwMDAqeChzZXEoLTgsOCwgMC4xKSkpDQpwbG90KGN1bXVsYXRpdmVfZGVhdGhzKQ0KYGBgDQoNClF1YW5kbyBjb21wdXRhbW9zIGEgZGlmZXJlbsOnYSBlbnRyZSBvIGFjdW11bGFkbyBlbnRyZSBvIGRpYSBYIGUgbyBkaWEgWC0xLCBvYnRlbW9zIGEgY3VydmEgZGUgbW9ydGVzIGRpw6FyaWFzOg0KDQpgYGB7ciBlY2hvPUZBTFNFfQ0KbmV3X2RlYXRocyA8LSBjdW11bGF0aXZlX2RlYXRocyAtIGMoMCwgY3VtdWxhdGl2ZV9kZWF0aHNbLWxlbmd0aChjdW11bGF0aXZlX2RlYXRocyldKQ0KcGxvdChuZXdfZGVhdGhzKQ0KYGBgDQpBZ29yYSwgcXVhbmRvIGNvbXB1dGFtb3MgYSBkaWZlcmVuw6dhIGVudHJlIG8gKipsb2cqKiBkbyBhY3VtdWxhZG8gZW50cmUgbyBkaWEgWCBlIG8gZGlhIFgtMSwgb2J0ZW1vcyBvICoqbG9nIHJhdGlvKiogZGVzc2EgcmVsYcOnw6NvLCBhcHJlc2VudGFkbyBuYSBmaWd1cmEgYSBzZWd1aXIuDQoNCmBgYHtyIGVjaG89RkFMU0V9DQpsb2dfcmF0aW8gPC0gbG9nKGN1bXVsYXRpdmVfZGVhdGhzKSAtIGxvZyhjKDAsIGN1bXVsYXRpdmVfZGVhdGhzWy1sZW5ndGgoY3VtdWxhdGl2ZV9kZWF0aHMpXSkpDQpwbG90KGxvZ19yYXRpbykNCmBgYA0KTyBsb2cgcmF0aW8gdHJheiB1bWEgaW5mb3JtYcOnw6NvIHJlZmVyZW50ZSDDoCBhY2VsZXJhw6fDo28gZG8gY3Jlc2NpbWVudG8gZXhwb25lbmNpYWwuIE51bSBzdXJ0byBjb211bSwgY29uZm9ybWUgbyBzaW11bGFkbyBuZXN0ZSBleGVyY8OtY2lvLCBlc3NhIGN1cnZhIGFwcmVzZW50YSB1bWEgZm9ybWEgc2lnbW9pZGUsIHNlbWVsaGFudGUgw6AgY3VydmEgZGUgbW9ydGVzIGFjdW11bGFkYXMsIG1hcyBkZSBmb3JtYSBlc3BlbGhhZGEsIHRlbmRlbmRvIGEgemVyby4NCg0KTyBsb2dfcmF0aW8gaW5mb3JtYSBpbXBsaWNpdGFtZW50ZSBkdWFzIGluZm9ybWHDp8O1ZXMgaW50ZXJlc3NhbnRlczogbyB0ZW1wbyBkZSBkdXBsaWNhw6fDo28gZG8gbsO6bWVybyBkZSBtb3J0ZXMgZSBvIHBlcmNlbnR1YWwgZGUgYXVtZW50byBubyBuw7ptZXJvIGRlIG1vcnRlcy4NCg0KJCREdXBsaWNhw6fDo28gPSBcZnJhY3tsb2coMil9e2xvZ3JhdGlvfSQkDQokJFBlcmNlbnR1YWwgPSAxMDAoZV57bG9ncmF0aW99LTEpJCQNCg0KYGBge3IgZWNobz1GQUxTRX0NCnBsb3QobG9nX3JhdGlvLCB5YXh0PSJuIiwgeWxhYiA9ICJUZW1wbyBkZSBkdXBsaWNhw6fDo28gKGRpYXMpIikNCmF4aXMoc2lkZT0yLCBhdD1zZXEoMC4wMSwgMC4xLCAwLjAyKSwgbGFiZWxzID0gRkFMU0UpDQp0ZXh0KHk9c2VxKDAuMDEsIDAuMSwgMC4wMiksICBwYXIoInVzciIpWzFdLCANCiAgICAgbGFiZWxzID0gcm91bmQobG9nKDIpL3NlcSgwLjAxLDAuMSwgMC4wMikpLCBwb3MgPSAyLCB4cGQgPSBUUlVFKQ0KDQpgYGANCg0KYGBge3IgZWNobz1GQUxTRX0NCnBsb3QobG9nX3JhdGlvLCB5YXh0PSJuIiwgeWxhYiA9ICJBdW1lbnRvIGRpw6FyaW8gbmFzIG1vcnRlcyAoJSkiKQ0KYXhpcyhzaWRlPTIsIGF0PXNlcSgwLjAxLCAwLjEsIDAuMDIpLCBsYWJlbHMgPSBGQUxTRSkNCnRleHQoeT1zZXEoMC4wMSwgMC4xLCAwLjAyKSwgIHBhcigidXNyIilbMV0sIA0KICAgICBsYWJlbHMgPSByb3VuZCgxMDAqKGV4cChzZXEoMC4wMSwwLjEsIDAuMDIpKS0xKSksIHBvcyA9IDIsIHhwZCA9IFRSVUUpDQpgYGANCg0K