Generar distribución de Poisson y determianar probabildiades dadas sus medias iniciales
Una empresa electrónica observa que el número de componentes que fallan antes de cumplir 100 horas de funcionamiento es una variable aleatoria de Poisson. Si el número promedio de estos fallos es 8,
media <- 25 * 8 / 100
media
## [1] 2
prob.x <- round(dpois(0:9, lambda = media),4)
prob.x
## [1] 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361 0.0120 0.0034 0.0009 0.0002
prob.acum.x <- round(ppois(q = 0:9, lambda = media),4)
prob.acum.x
## [1] 0.1353 0.4060 0.6767 0.8571 0.9473 0.9834 0.9955 0.9989 0.9998 1.0000
tabla <- data.frame(1:10, 0:9, prob.x, prob.acum.x)
colnames(tabla) <- c("pos","x", "prob.x", "prob.acum.x")
tabla
## pos x prob.x prob.acum.x
## 1 1 0 0.1353 0.1353
## 2 2 1 0.2707 0.4060
## 3 3 2 0.2707 0.6767
## 4 4 3 0.1804 0.8571
## 5 5 4 0.0902 0.9473
## 6 6 5 0.0361 0.9834
## 7 7 6 0.0120 0.9955
## 8 8 7 0.0034 0.9989
## 9 9 8 0.0009 0.9998
## 10 10 9 0.0002 1.0000
i=2
tabla$prob.x[i]
## [1] 0.2707
O bien
dpois(x=1, media)
## [1] 0.2706706
\(1−f(x=2)\)
i=2
1 - tabla$prob.acum.x[i]
## [1] 0.594
O bien
1 - ppois(1, media)
## [1] 0.5939942
media <- 50 * 8 / 100
media
## [1] 4
prob.x <- round(dpois(0:9, lambda = media),4)
prob.x
## [1] 0.0183 0.0733 0.1465 0.1954 0.1954 0.1563 0.1042 0.0595 0.0298 0.0132
prob.acum.x <- round(ppois(q = 0:9, lambda = media),4)
prob.acum.x
## [1] 0.0183 0.0916 0.2381 0.4335 0.6288 0.7851 0.8893 0.9489 0.9786 0.9919
tabla <- data.frame(1:10, 0:9, prob.x, prob.acum.x)
colnames(tabla) <- c("pos","x", "prob.x", "prob.acum.x")
tabla
## pos x prob.x prob.acum.x
## 1 1 0 0.0183 0.0183
## 2 2 1 0.0733 0.0916
## 3 3 2 0.1465 0.2381
## 4 4 3 0.1954 0.4335
## 5 5 4 0.1954 0.6288
## 6 6 5 0.1563 0.7851
## 7 7 6 0.1042 0.8893
## 8 8 7 0.0595 0.9489
## 9 9 8 0.0298 0.9786
## 10 10 9 0.0132 0.9919
i=2
tabla$prob.x[i]
## [1] 0.0733
i=3
1 - tabla$prob.acum.x[i]
## [1] 0.7619
media <- 125 * 8 / 100
media
## [1] 10
Primero: realizar las probabilidades para cada valor de la variable discreta desde 0 hasta 10
prob.x <- round(dpois(0:9, lambda = media),4)
prob.x
## [1] 0.0000 0.0005 0.0023 0.0076 0.0189 0.0378 0.0631 0.0901 0.1126 0.1251
prob.acum.x <- round(ppois(q = 0:9, lambda = media),4)
prob.acum.x
## [1] 0.0000 0.0005 0.0028 0.0103 0.0293 0.0671 0.1301 0.2202 0.3328 0.4579
tabla <- data.frame(1:10, 0:9, prob.x, prob.acum.x)
colnames(tabla) <- c("pos","x", "prob.x", "prob.acum.x")
tabla
## pos x prob.x prob.acum.x
## 1 1 0 0.0000 0.0000
## 2 2 1 0.0005 0.0005
## 3 3 2 0.0023 0.0028
## 4 4 3 0.0076 0.0103
## 5 5 4 0.0189 0.0293
## 6 6 5 0.0378 0.0671
## 7 7 6 0.0631 0.1301
## 8 8 7 0.0901 0.2202
## 9 9 8 0.1126 0.3328
## 10 10 9 0.1251 0.4579
i=2
tabla$prob.x[i]
## [1] 5e-04
O bien
dpois(x=1, media)
## [1] 0.0004539993
i=3
1 - tabla$prob.acum.x[i]
## [1] 0.9972
\[f(x=5)−f(x=2)\]
media <- 125*8/100
media
## [1] 10
ppois(5,media) - ppois(2, media)
## [1] 0.06431657