EM演算法的用途
set.seed(1)
mu1 <- 180 #男生平均身高
mu2 <- 170 #女生平均身高
sd <- 6
height<- rnorm(600,mu1,sd=sd)
boy <- as.data.frame(height)
height<<- rnorm(400,mu2,sd=sd)
girl <- as.data.frame(height)
sex=rep(c("M","F"),c(600,400))
sex <- as.factor(sex)
df=data.frame(sex,height=c(boy$height,girl$height))
index <- sample(1:1000,1000,replace = F)#打散資料
df <- df[index,]
head(df)
## sex height
## 815 F 168.5879
## 923 F 172.0935
## 495 M 202.8617
## 15 M 186.7496
## 291 M 177.6593
## 274 M 195.8950
如果你知道誰是男生,誰是女生,那你當然可以用各自的xbar男生的母體平均身高跟女生的母體平均身高
library(plyr)
## Warning: package 'plyr' was built under R version 3.6.3
mu <- ddply(df, "sex", summarise, grp.mean=mean(height))
ggplot(df, aes(x=height, color=sex)) +
geom_density()
# Add mean lines
p<-ggplot(df, aes(x=height, color=sex)) +
geom_density()+
geom_vline(data=mu, aes(xintercept=grp.mean, color=sex),
linetype="dashed")
p
但是你不行,你的資料被混在一起,所以你只會看出以下這張圖 你唯一的資訊就是男生女生的身高都是常態分配 以及男生女生的身高標準差相等且等於6
而且資料完全被混在一起無法透過單純的觀察有兩個峰來猜測男生女生的平均身高
ggplot(df, aes(x=height)) +
geom_density()
print("綜合身高")
## [1] "綜合身高"
mu<- df$height %>% mean
#suppose boy=180 girl=150 as our initial value
mu
## [1] 175.9301
sd<- df$height %>% sd
print("男生的初始身高猜測值")
## [1] "男生的初始身高猜測值"
boy_intial<- mu+3*sd
boy_intial
## [1] 199.9763
print("女生的初始身高猜測值")
## [1] "女生的初始身高猜測值"
girl_intial<- mu-3*sd
girl_intial
## [1] 151.8839
這裡採用取巧方式去做,我們的Estep不去計算複雜的條件期望值,而是單純使用簡單的貝氏定理加上assign的方式去做
#abs(df$height-boy_intial)
#abs(df$height-girl_intial)
sex1<- ifelse(abs(df$height-boy_intial)< abs(df$height-girl_intial),"M","F")
boy_mu1 <- mean(df$height[which(sex1=="M")])
girl_mu1 <- mean(df$height[which(sex1=="F")])
print("第一輪的男生女生類EM算法預測平均身高")
## [1] "第一輪的男生女生類EM算法預測平均身高"
boy_mu1
## [1] 182.092
girl_mu1
## [1] 169.1469
設計成迴圈ㄓ
M <- 30
Sex <- matrix(0,nrow = M,ncol=length(df$height))
Boy_mu <- numeric(M)
Girl_mu <- numeric(M)
Boy_mu[1] <-boy_intial
Girl_mu[1] <-girl_intial
for(i in 2:M){
Sex[i,]<- ifelse(abs(df$height-Boy_mu[i-1])< abs(df$height-Girl_mu[i-1]),"M","F")
Boy_mu[i] <- mean(df$height[which(Sex[i,]=="M")])
Girl_mu[i] <- mean(df$height[which(Sex[i,]=="F")])
}
print("類EM演算法男生身高收斂結果")
## [1] "類EM演算法男生身高收斂結果"
Boy_mu
## [1] 199.9763 182.0920 181.9057 181.7225 181.6544 181.6085 181.5742 181.5627
## [9] 181.5627 181.5627 181.5627 181.5627 181.5627 181.5627 181.5627 181.5627
## [17] 181.5627 181.5627 181.5627 181.5627 181.5627 181.5627 181.5627 181.5627
## [25] 181.5627 181.5627 181.5627 181.5627 181.5627 181.5627
print("類EM演算法女生身高收斂結果")
## [1] "類EM演算法女生身高收斂結果"
Girl_mu
## [1] 151.8839 169.1469 168.9153 168.6766 168.5852 168.5246 168.4789 168.4636
## [9] 168.4636 168.4636 168.4636 168.4636 168.4636 168.4636 168.4636 168.4636
## [17] 168.4636 168.4636 168.4636 168.4636 168.4636 168.4636 168.4636 168.4636
## [25] 168.4636 168.4636 168.4636 168.4636 168.4636 168.4636
plot(x=seq(1:M),y=Boy_mu[1:M],type = "l",ylim = c(175,200))
plot(x=seq(1:M),y=Girl_mu[1:M],type = "l",ylim = c(150,170))