load packages
library(tidyverse)
library(readxl)
library(here)
library(janitor)
read in sample data
test <- read_excel(here("data", "SampleParticipant.xlsx")) %>%
clean_names()
Create separate dataframes (df) for covariates and just vid data (droppiung time first, last, clicks)
covariates <- test %>%
select(1:80, starts_with("mfss"))
vid_data <- test %>%
select(1, ends_with(c("_care", "_fair","_loy","_auth","_sanc"))) %>%
select(- starts_with("time_first_"), - starts_with("time_last_"), - starts_with("time_clicks_"))
make separate df for each video and make long
#care
care <- vid_data %>%
select(1, ends_with("_care")) %>%
mutate_all(as.numeric) %>%
pivot_longer(names_to = c("question", "video"), names_sep = "_", values_to = "score", 3:26) %>%
rename(time_submit = time_submit_care)
## Warning in mask$eval_all_mutate(dots[[i]]): NAs introduced by coercion
#fair
fair<- vid_data %>%
select(1, ends_with("_fair")) %>%
mutate_all(as.numeric) %>%
pivot_longer(names_to = c("question", "video"), names_sep = "_", values_to = "score", 3:26) %>%
rename(time_submit = time_submit_fair)
#loy
loy <- vid_data %>%
select(1, ends_with("_loy")) %>%
mutate_all(as.numeric) %>%
pivot_longer(names_to = c("question", "video"), names_sep = "_", values_to = "score", 3:26) %>%
rename(time_submit = time_submit_loy)
#auth
auth <- vid_data %>%
select(1, ends_with("_auth")) %>%
mutate_all(as.numeric) %>%
pivot_longer(names_to = c("question", "video"), names_sep = "_", values_to = "score", 3:26) %>%
rename(time_submit = time_submit_auth)
#sanc
sanc <- vid_data %>%
select(1, ends_with("_sanc")) %>%
mutate_all(as.numeric) %>%
pivot_longer(names_to = c("question", "video"), names_sep = "_", values_to = "score", 3:26) %>%
rename(time_submit = time_submit_sanc)
Bind data back together with rbind
long_vid_data <- rbind(care, fair, loy, auth, sanc)
Use Filter to only keep time values < 300
lessthan300 <- long_vid_data %>%
filter(time_submit < 300)