R//12.7551
options(scipen = 99999999)
#Creando Matriz
Mat_R<-matrix(data = c(1,0.96,
0.96,1),nrow = 2,ncol = 2,byrow = TRUE)
#sacando inversa de R
inv_R<-solve(Mat_R)
#obteniendo VIF
vif2<-diag(inv_R)
print(vif2)
## [1] 12.7551 12.7551
R//jaque-Bera
R//0.4926459
Estadistico<-40
m<-5
n<-60
det_R<- exp(Estadistico/-((n-1)-((2*m+5)/6)))
print(det_R)
## [1] 0.4926459
R//0.6
VIF<-2.5
R<-(VIF-1)/VIF
print(R)
## [1] 0.6
R//0.1374
Mat_residuos<-matrix(data = c(10, 15, -10, -15, 4, -4
),nrow = 1,ncol = 6,byrow = TRUE)
library(nortest)
lillie.test(Mat_residuos)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: Mat_residuos
## D = 0.1374, p-value = 0.9763
R// 18.79
m2<-5
gl<-m*(m-1)/2
VC<-qchisq(0.043,gl,lower.tail = FALSE)
print(VC)
## [1] 18.79093
R// 0.51072
print(Mat_residuos)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 10 15 -10 -15 4 -4
# Ejecutando Prueba
library(normtest)
jb.norm.test(Mat_residuos)
##
## Jarque-Bera test for normality
##
## data: Mat_residuos
## JB = 0.51072, p-value = 0.588
R//20
Tol<-0.05
VIF2<-1/Tol
print(VIF2)
## [1] 20
R// Por P-value da 0.8323
print(Mat_residuos)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 10 15 -10 -15 4 -4
#Ejecutando Prueba SW
shapiro.test(Mat_residuos)
##
## Shapiro-Wilk normality test
##
## data: Mat_residuos
## W = 0.96164, p-value = 0.8323
R// 0.4
VIF3<-2.5
Tol2<-1/VIF3
print(Tol2)
## [1] 0.4
options(scipen = 999999)
load("C:/Users/osiel/Desktop/PARCIAL 2/LAWSCH85.Rdata")
#creando Modelo
options(scipen = 9999)
Regresion<-lm(lsalary~LSAT+GPA+llibvol+lcost+rank, data = LAWSCH85)
#Usando Summary
summary(Regresion)
##
## Call:
## lm(formula = lsalary ~ LSAT + GPA + llibvol + lcost + rank, data = LAWSCH85)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.301356 -0.084982 -0.004359 0.077935 0.288614
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.3432260 0.5325192 15.667 < 0.0000000000000002 ***
## LSAT 0.0046965 0.0040105 1.171 0.24372
## GPA 0.2475239 0.0900370 2.749 0.00683 **
## llibvol 0.0949932 0.0332543 2.857 0.00499 **
## lcost 0.0375538 0.0321061 1.170 0.24427
## rank -0.0033246 0.0003485 -9.541 < 0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1124 on 130 degrees of freedom
## (20 observations deleted due to missingness)
## Multiple R-squared: 0.8417, Adjusted R-squared: 0.8356
## F-statistic: 138.2 on 5 and 130 DF, p-value: < 0.00000000000000022
library(stargazer)
stargazer(Regresion,title = "Sueldo medio Inicial", type ="html", digits = 6)
| Dependent variable: | |
| lsalary | |
| LSAT | 0.004696 |
| (0.004010) | |
| GPA | 0.247524*** |
| (0.090037) | |
| llibvol | 0.094993*** |
| (0.033254) | |
| lcost | 0.037554 |
| (0.032106) | |
| rank | -0.003325*** |
| (0.000348) | |
| Constant | 8.343226*** |
| (0.532519) | |
| Observations | 136 |
| R2 | 0.841685 |
| Adjusted R2 | 0.835596 |
| Residual Std. Error | 0.112412 (df = 130) |
| F Statistic | 138.229800*** (df = 5; 130) |
| Note: | p<0.1; p<0.05; p<0.01 |
library(fitdistrplus)
ajuste_normal1<-fitdist(data = Regresion$residuals,distr = "norm")
plot(ajuste_normal1)
library(normtest)
jb.norm.test(Regresion$residuals)
##
## Jarque-Bera test for normality
##
## data: Regresion$residuals
## JB = 0.36511, p-value = 0.8165
# Interpretacion: la Ho:los residuos tienen una asimetria igual a cero y una curtosis cercana a 3 No se rechaza; los residuos tienen una distribucion normal, el estadistico JB no es mayor al V.C y el Pvalue No es menos o igual al nivel de significacion.
library(nortest)
lillie.test(Regresion$residuals)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: Regresion$residuals
## D = 0.054571, p-value = 0.4123
# Interpretacion: la Ho: los residuos tienen una media igual a cero y una varianza constante No se rechaza; los residuos tienen una distribucion normal; el estadistico D no es mayor o igual al V.C y el Pvalue No es menos o igual al nivel de significacion.
shapiro.test(Regresion$residuals)
##
## Shapiro-Wilk normality test
##
## data: Regresion$residuals
## W = 0.99282, p-value = 0.7235
# obteniendo Wn
mues1<-156
W1<- 0.99282
u1<-(0.0038915*(log(mues1))^3 - 0.083751*(log(mues1))^2 - 0.31082*(log(mues1)) - 1.5861)
print(u1)
## [1] -4.7903
desv1<-exp(0.0030302*(log(mues1))^2 - 0.082676*(log(mues1)) - 0.4803)
print(desv1)
## [1] 0.4401989
Wn1<-(log(1-W1)-u1)/desv1
print(Wn1)
## [1] -0.3320221
# Interpretacion: la Ho: los residuos tienen una media igual a cero y una varianza constante No se rechaza; los residuos tienen una distribucion normal; el estadistico Wn no es mayor o igual al V.C y el Pvalue No es menos o igual al nivel de significacion.
#construyendo matriz X
Xmat<-model.matrix(Regresion)
print(Xmat)
## (Intercept) LSAT GPA llibvol lcost rank
## 1 1 155 3.15 5.375278 9.028818 128
## 2 1 160 3.50 5.545177 8.850804 104
## 3 1 155 3.25 6.049734 9.703206 34
## 4 1 157 3.20 5.796058 9.773721 49
## 5 1 162 3.38 5.805135 9.030017 95
## 6 1 161 3.40 5.739793 9.030017 98
## 7 1 155 3.16 5.393628 8.702843 124
## 8 1 152 3.12 5.438079 8.697179 157
## 9 1 155 3.12 5.438079 8.473241 145
## 10 1 160 3.66 5.056246 8.946375 91
## 11 1 165 3.55 5.768321 9.782449 50
## 12 1 163 3.42 6.152733 9.690294 23
## 13 1 162 3.60 5.799093 8.748305 78
## 14 1 167 3.70 6.396930 9.340228 5
## 16 1 163 3.55 6.295266 9.431723 19
## 17 1 165 3.57 6.152733 9.409355 13
## 18 1 156 3.20 5.337538 9.661416 115
## 19 1 156 3.20 4.990433 9.371609 171
## 20 1 154 3.25 5.370638 9.467073 131
## 21 1 160 3.30 5.863631 9.713840 72
## 22 1 158 3.30 5.720312 9.721966 55
## 23 1 168 3.75 6.318968 9.872616 4
## 24 1 162 3.37 5.826000 9.329722 90
## 26 1 164 3.31 5.634789 9.436440 65
## 27 1 168 3.60 6.599871 9.929058 7
## 29 1 163 3.55 5.991465 9.862665 10
## 31 1 156 3.10 5.347107 9.536040 137
## 32 1 155 3.20 5.337538 9.501815 141
## 33 1 158 3.20 5.616771 9.630431 47
## 34 1 158 3.27 5.743003 9.554994 82
## 36 1 155 3.30 5.247024 9.433484 76
## 38 1 155 3.23 5.480639 9.530973 88
## 39 1 169 3.70 6.109248 9.853036 9
## 41 1 163 3.40 5.560682 9.750919 43
## 43 1 158 3.30 5.846439 9.341369 81
## 44 1 163 3.30 6.016157 9.792556 22
## 45 1 154 3.00 5.225747 9.400961 142
## 47 1 163 3.51 5.998937 9.778491 31
## 48 1 166 3.52 6.590301 9.851931 18
## 49 1 163 3.40 6.122493 8.884748 46
## 51 1 158 3.14 5.298317 9.585621 79
## 52 1 154 3.16 5.283204 9.486076 74
## 53 1 168 3.75 7.464510 9.818148 1
## 54 1 160 3.42 5.442418 8.964439 139
## 55 1 158 3.25 5.978886 9.725556 28
## 56 1 159 3.30 5.991465 8.895630 48
## 57 1 152 2.85 5.480639 9.172119 116
## 58 1 152 3.25 4.983607 8.826147 132
## 59 1 161 3.40 6.385194 9.443196 38
## 60 1 160 3.49 6.234411 9.423999 30
## 61 1 159 3.30 6.016157 9.357725 109
## 62 1 140 3.15 5.081404 8.885303 172
## 63 1 159 3.49 6.588926 9.229162 17
## 64 1 158 3.20 5.634789 9.487972 113
## 65 1 159 3.43 5.783825 8.853094 62
## 66 1 160 3.30 5.796058 9.183791 92
## 67 1 161 3.20 5.783825 9.539644 123
## 68 1 156 3.35 6.291569 8.353968 83
## 69 1 157 3.20 5.463832 9.173573 93
## 70 1 160 3.24 5.652489 9.543235 73
## 71 1 161 3.35 5.831882 9.717399 36
## 72 1 152 3.10 5.438079 9.593082 155
## 74 1 157 3.20 5.393628 9.441452 40
## 75 1 160 3.35 5.783825 9.491375 57
## 76 1 157 3.24 5.652489 9.623377 37
## 77 1 154 3.20 5.505332 8.923191 140
## 78 1 157 3.10 5.529429 9.532424 105
## 79 1 155 3.20 5.971262 9.759040 107
## 80 1 168 3.67 6.620073 9.882009 2
## 81 1 163 3.56 6.684612 9.468774 20
## 82 1 153 3.30 5.560682 8.743213 54
## 83 1 153 3.00 5.393628 9.259130 85
## 84 1 154 3.28 5.501258 9.403685 96
## 85 1 155 3.20 4.820282 9.136909 122
## 86 1 156 3.40 5.717028 9.071078 97
## 87 1 152 3.07 5.488938 9.319195 114
## 88 1 158 3.20 5.857933 9.020873 125
## 89 1 154 3.00 5.932245 9.721366 86
## 91 1 152 3.22 5.521461 8.818038 163
## 92 1 159 3.23 5.105946 9.732699 110
## 93 1 157 3.00 5.298317 8.781402 160
## 95 1 162 3.60 6.322565 9.807528 14
## 96 1 161 3.45 5.828946 9.705036 35
## 97 1 156 3.00 5.416101 9.738613 136
## 98 1 161 3.50 6.380123 9.409191 33
## 99 1 154 3.28 5.568345 9.126741 80
## 100 1 151 3.03 5.375278 9.291921 134
## 101 1 160 3.50 5.673323 9.447782 53
## 102 1 159 3.30 5.634789 9.699533 162
## 103 1 165 3.70 6.291569 9.891769 8
## 104 1 146 3.38 5.351858 7.872074 165
## 105 1 159 3.30 5.707110 9.532424 129
## 106 1 161 3.23 5.375278 9.549665 148
## 107 1 157 3.22 6.109248 9.272188 64
## 108 1 161 3.39 5.973810 9.273597 60
## 109 1 158 3.20 6.013715 9.648595 70
## 110 1 156 3.30 5.991465 9.511926 68
## 112 1 160 3.25 5.768321 9.709903 52
## 113 1 159 3.17 5.501258 9.667766 56
## 114 1 159 3.32 5.347107 9.651173 61
## 115 1 155 3.16 5.755742 9.672186 87
## 116 1 157 3.20 5.786897 9.263502 118
## 117 1 156 3.24 5.049856 8.840725 153
## 118 1 155 3.00 5.669881 9.441452 168
## 119 1 164 3.50 5.799093 9.765948 26
## 120 1 156 3.30 5.710427 9.125436 106
## 121 1 159 3.18 6.086775 9.762615 42
## 122 1 157 3.15 5.828946 9.695232 75
## 123 1 167 3.78 6.025866 9.808408 6
## 125 1 158 3.30 5.703783 9.570808 108
## 126 1 155 3.20 5.765191 9.761232 51
## 127 1 157 3.30 6.084499 9.495520 45
## 129 1 163 3.50 6.745236 9.064157 12
## 131 1 157 3.10 5.560682 8.386629 101
## 133 1 157 3.10 5.560682 9.237955 154
## 134 1 152 2.80 5.736572 9.579833 174
## 135 1 155 3.00 5.560682 9.072801 100
## 136 1 161 3.55 5.575949 9.051228 29
## 137 1 155 3.30 5.370638 9.525881 69
## 138 1 164 3.62 5.796058 9.784141 16
## 139 1 159 3.20 5.164786 9.623377 152
## 140 1 160 3.41 6.040255 9.656307 63
## 141 1 164 3.60 6.551080 9.660014 15
## 142 1 162 3.31 5.521461 9.560997 111
## 143 1 154 3.27 5.525453 8.853665 102
## 144 1 163 3.63 6.109248 9.210340 25
## 145 1 163 3.47 5.693732 9.517825 16
## 146 1 160 3.20 6.165418 9.784141 41
## 147 1 158 3.35 6.028278 8.809863 67
## 148 1 153 3.08 5.707110 9.373734 135
## 149 1 155 3.00 5.438079 9.677841 156
## 150 1 154 3.10 6.175867 9.560997 138
## 151 1 157 3.20 5.497168 9.457200 66
## 152 1 162 3.34 5.703783 9.512665 17
## 154 1 157 3.40 5.159055 8.908694 143
## 155 1 171 3.82 6.745236 9.892426 3
## attr(,"assign")
## [1] 0 1 2 3 4 5
#Construyendo sigma matriz
XXmat<-t(Xmat)%*%Xmat
print(XXmat)
## (Intercept) LSAT GPA llibvol lcost rank
## (Intercept) 136.0000 21557.00 450.110 783.3715 1277.008 10847.00
## LSAT 21557.0000 3419799.00 71440.370 124336.7471 202521.842 1697437.00
## GPA 450.1100 71440.37 1494.950 2599.2641 4228.169 34980.46
## llibvol 783.3715 124336.75 2599.264 4536.4063 7362.770 60522.09
## lcost 1277.0080 202521.84 4228.169 7362.7705 12010.096 100735.74
## rank 10847.0000 1697437.00 34980.460 60522.0934 100735.740 1190245.00
#Sigma matriz de Normalizacion
Sn<-diag(1/sqrt(diag(XXmat)))
print(Sn)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.08574929 0.000000000 0.00000000 0.00000000 0.000000000 0.0000000000
## [2,] 0.00000000 0.000540754 0.00000000 0.00000000 0.000000000 0.0000000000
## [3,] 0.00000000 0.000000000 0.02586346 0.00000000 0.000000000 0.0000000000
## [4,] 0.00000000 0.000000000 0.00000000 0.01484718 0.000000000 0.0000000000
## [5,] 0.00000000 0.000000000 0.00000000 0.00000000 0.009124872 0.0000000000
## [6,] 0.00000000 0.000000000 0.00000000 0.00000000 0.000000000 0.0009166041
#XXmat_norm
XXmat_norm<-(Sn%*%XXmat)%*%Sn
print(XXmat_norm)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1.0000000 0.9995823 0.9982420 0.9973380 0.9991966 0.8525542
## [2,] 0.9995823 1.0000000 0.9991485 0.9982590 0.9993057 0.8413471
## [3,] 0.9982420 0.9991485 1.0000000 0.9981161 0.9978511 0.8292662
## [4,] 0.9973380 0.9982590 0.9981161 1.0000000 0.9974980 0.8236445
## [5,] 0.9991966 0.9993057 0.9978511 0.9974980 1.0000000 0.8425432
## [6,] 0.8525542 0.8413471 0.8292662 0.8236445 0.8425432 1.0000000
# Autovalores
lambas<-eigen(XXmat_norm, symmetric = TRUE)$values
print(lambas)
## [1] 5.7351306262 0.2604004371 0.0020823558 0.0018442636 0.0003778106
## [6] 0.0001645068
#indice de condicion
K<-sqrt(max(lambas)/min(lambas))
print(K)
## [1] 186.7153
#interpretacion: el indice de condicion es mayor a 30, la multicolinealidad es severa y es considerado como un gran problema
library(mctest)
source(file = "C:/Users/Osiel/Desktop/correccion_eigprop.R")
my_eigprop(mod = Regresion)
##
## Call:
## my_eigprop(mod = Regresion)
##
## Eigenvalues CI (Intercept) LSAT GPA llibvol lcost rank
## 1 5.7351 1.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0021
## 2 0.2604 4.6930 0.0000 0.0000 0.0002 0.0004 0.0001 0.2884
## 3 0.0021 52.4800 0.0058 0.0030 0.0007 0.8411 0.1155 0.1357
## 4 0.0018 55.7648 0.0002 0.0010 0.3355 0.1095 0.1756 0.0161
## 5 0.0004 123.2068 0.4254 0.0588 0.4407 0.0423 0.6610 0.4700
## 6 0.0002 186.7153 0.5686 0.9371 0.2229 0.0066 0.0478 0.0877
##
## ===============================
## Row 6==> LSAT, proportion 0.937119 >= 0.50
## Row 3==> llibvol, proportion 0.841136 >= 0.50
## Row 5==> lcost, proportion 0.661004 >= 0.50
#interpretacion: el indice de condicion es mayor a 30, la colinealidad es severa y es considerado como un gran problema
library(fastGraph)
m_R1<-ncol(Xmat[,-1])
n_R1<-nrow(Xmat)
# Determinante de Matriz de Correlacion
determinante_R<-det(cor(Xmat[,-1]))
print(determinante_R)
## [1] 0.05208986
#estadistico de prueba
Chi_FG<--(n_R1-1-(2*m_R1+5)/6)*log(determinante_R)
print(Chi_FG)
## [1] 391.509
#Calculando Valor Critico
gl<-m_R1*(m_R1-1)/2
#por cola derecha
VC_FG1<- qchisq(0.05,gl,lower.tail = FALSE)
print(VC_FG1)
## [1] 18.30704
#por cola izquierda
qchisq(0.95,gl)
## [1] 18.30704
#el p-value ¿por area a la derecha?
pchisq(Chi_FG,gl,lower.tail = FALSE)
## [1] 0.000000000000000000000000000000000000000000000000000000000000000000000000000006031929
#Graficando
shadeDist(xshade = Chi_FG,ddist = "dchisq",parm1 = gl,lower.tail = FALSE,sub=paste("VC:",VC,"FG:",Chi_FG))
#iNTERPRETACION: la Ho se rechaza porque el estadistica de prueba es mayor que el valor critico, hay evidencia de colinealidad
library(mctest)
mctest(Regresion)
##
## Call:
## omcdiag(mod = mod, Inter = TRUE, detr = detr, red = red, conf = conf,
## theil = theil, cn = cn)
##
##
## Overall Multicollinearity Diagnostics
##
## MC Results detection
## Determinant |X'X|: 0.0521 0
## Farrar Chi-Square: 391.5090 1
## Red Indicator: 0.5819 1
## Sum of Lambda Inverse: 13.8127 0
## Theil's Method: -0.3680 0
## Condition Number: 181.9505 1
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
#iNTERPRETACION: la Ho se rechaza porque el estadistica de prueba es mayor que el valor critico, hay evidencia de colinealidad
VIF_R1<-diag(solve(cor(Xmat[,-1])))
print(VIF_R1)
## LSAT GPA llibvol lcost rank
## 3.635214 3.369004 2.110802 1.573583 3.124106
# Interpretacion: las variables que mas colinealidad presentan son LSAT, GPA, RANK.
library(mctest)
mc.plot(Regresion, vif = 2)
# Interpretacion: las variables que mas colinealidad presentan son LSAT, GPA, RANK.
options(scipen = 999999)
library(readxl)
ventas_empresa <- read_excel("C:/Users/osiel/Desktop/PARCIAL 2/ventas_empresa.xlsx")
#creando Modelo
options(scipen = 9999)
Regresion2<-lm(V~C+P+M, data = ventas_empresa)
#Usando Summary
summary(Regresion2)
##
## Call:
## lm(formula = V ~ C + P + M, data = ventas_empresa)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.279 -6.966 1.555 6.721 14.719
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 107.4435 18.0575 5.950 0.00000808 ***
## C 0.9226 0.2227 4.142 0.000505 ***
## P 0.9502 0.1558 6.097 0.00000586 ***
## M 1.2978 0.4307 3.013 0.006872 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.506 on 20 degrees of freedom
## Multiple R-squared: 0.9798, Adjusted R-squared: 0.9768
## F-statistic: 323.6 on 3 and 20 DF, p-value: < 0.00000000000000022
library(stargazer)
stargazer(Regresion2,title = "Nivel de Ventas", type ="html", digits = 6)
| Dependent variable: | |
| V | |
| C | 0.922567*** |
| (0.222733) | |
| P | 0.950177*** |
| (0.155845) | |
| M | 1.297786*** |
| (0.430729) | |
| Constant | 107.443500*** |
| (18.057490) | |
| Observations | 24 |
| R2 | 0.979817 |
| Adjusted R2 | 0.976789 |
| Residual Std. Error | 9.505570 (df = 20) |
| F Statistic | 323.641500*** (df = 3; 20) |
| Note: | p<0.1; p<0.05; p<0.01 |
library(fitdistrplus)
ajuste_normal2<-fitdist(data = Regresion2$residuals,distr = "norm")
plot(ajuste_normal2)
#interpretacion: A primera vista los residuos de manera general se observa que tienen una distribucion normal
library(normtest)
jb.norm.test(Regresion2$residuals)
##
## Jarque-Bera test for normality
##
## data: Regresion2$residuals
## JB = 1.4004, p-value = 0.264
# Interpretacion: la Ho:los residuos tienen una asimetria igual a cero y una curtosis cercana a 3 No se rechaza; los residuos tienen una distribucion normal, el estadistico JB=1.4004 no es mayor al V.C=5.9915 y el Pvalue No es menor o igual al nivel de significancia del 5%.
library(nortest)
lillie.test(Regresion2$residuals)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: Regresion2$residuals
## D = 0.13659, p-value = 0.2935
# Interpretacion: la Ho: los residuos tienen una media igual a cero y una varianza constante No se rechaza; los residuos tienen una distribucion normal; el estadistico D=0.1365 no es mayor o igual al V.C=0.1726 y el Pvalue=0.2935 No es menor o igual al nivel de significancia de 5%.
shapiro.test(Regresion2$residuals)
##
## Shapiro-Wilk normality test
##
## data: Regresion2$residuals
## W = 0.95315, p-value = 0.3166
# obteniendo Wn
mues2<-24
W2<- 0.95315
u2<-(0.0038915*(log(mues2))^3 - 0.083751*(log(mues2))^2 - 0.31082*(log(mues2)) - 1.5861)
print(u2)
## [1] -3.294879
desv2<-exp(0.0030302*(log(mues2))^2 - 0.082676*(log(mues2)) - 0.4803)
print(desv2)
## [1] 0.4904442
Wn2<-(log(1-W2)-u2)/desv2
print(Wn2)
## [1] 0.4772707
# Interpretacion: la Ho: los residuos tienen una media igual a cero y una varianza constante No se rechaza; los residuos tienen una distribucion normal; el estadistico Wn=0.4772 no es mayor o igual al V.C=1.6448 y el Pvalue=0.2935 No es menor o igual al nivel de significancia del 5%.
#construyendo matriz X
Xmat2<-model.matrix(Regresion2)
print(Xmat2)
## (Intercept) C P M
## 1 1 197 173 110
## 2 1 208 152 107
## 3 1 181 150 99
## 4 1 194 150 102
## 5 1 192 163 109
## 6 1 196 179 114
## 7 1 203 169 113
## 8 1 200 166 113
## 9 1 198 159 115
## 10 1 221 206 119
## 11 1 218 181 120
## 12 1 213 192 123
## 13 1 207 191 122
## 14 1 228 217 131
## 15 1 249 190 133
## 16 1 225 221 135
## 17 1 237 189 133
## 18 1 236 192 128
## 19 1 231 193 134
## 20 1 260 233 135
## 21 1 254 196 139
## 22 1 239 199 138
## 23 1 248 202 146
## 24 1 273 240 153
## attr(,"assign")
## [1] 0 1 2 3
#Construyendo sigma matriz
XXmat2<-t(Xmat2)%*%Xmat2
print(XXmat2)
## (Intercept) C P M
## (Intercept) 24 5308 4503 2971
## C 5308 1187852 1007473 664534
## P 4503 1007473 859157 564389
## M 2971 664534 564389 372387
#Sigma matriz de Normalizacion
Sn2<-diag(1/sqrt(diag(XXmat2)))
print(Sn2)
## [,1] [,2] [,3] [,4]
## [1,] 0.2041241 0.000000000 0.000000000 0.000000000
## [2,] 0.0000000 0.000917527 0.000000000 0.000000000
## [3,] 0.0000000 0.000000000 0.001078857 0.000000000
## [4,] 0.0000000 0.000000000 0.000000000 0.001638712
#XXmat_norm
XXmat_norm2<-(Sn2%*%XXmat2)%*%Sn2
print(XXmat_norm2)
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.9941322 0.9916538 0.9938018
## [2,] 0.9941322 1.0000000 0.9972774 0.9991686
## [3,] 0.9916538 0.9972774 1.0000000 0.9978035
## [4,] 0.9938018 0.9991686 0.9978035 1.0000000
# Autovalores
lambas2<-eigen(XXmat_norm2, symmetric = TRUE)$values
print(lambas2)
## [1] 3.9869237681 0.0095007154 0.0027882470 0.0007872695
#indice de condicion
K2<-sqrt(max(lambas2)/min(lambas2))
print(K2)
## [1] 71.16349
#interpretacion: el indice de condicion es mayor a 30, la multicolinealidad es severa y es considerado como un gran problema
library(mctest)
source(file = "C:/Users/Osiel/Desktop/correccion_eigprop.R")
my_eigprop(mod = Regresion2)
##
## Call:
## my_eigprop(mod = Regresion2)
##
## Eigenvalues CI (Intercept) C P M
## 1 3.9869 1.0000 0.0007 0.0001 0.0003 0.0001
## 2 0.0095 20.4852 0.8776 0.0049 0.0877 0.0075
## 3 0.0028 37.8141 0.1183 0.1594 0.8478 0.0636
## 4 0.0008 71.1635 0.0034 0.8356 0.0642 0.9288
##
## ===============================
## Row 4==> C, proportion 0.835554 >= 0.50
## Row 3==> P, proportion 0.847805 >= 0.50
## Row 4==> M, proportion 0.928751 >= 0.50
#interpretacion: el indice de condicion es mayor a 30, la colinealidad es severa y es considerado como un gran problema
library(fastGraph)
m_R2<-ncol(Xmat2[,-1])
n_R2<-nrow(Xmat2)
# Determinante de Matriz de Correlacion
determinante_R2<-det(cor(Xmat2[,-1]))
print(determinante_R2)
## [1] 0.03459107
#estadistico de prueba
Chi_FG2<--(n_R2-1-(2*m_R2+5)/6)*log(determinante_R2)
print(Chi_FG2)
## [1] 71.20805
#Calculando Valor Critico
gl2<-m_R2*(m_R2-1)/2
#por cola derecha
VC_FG2<- qchisq(0.05,gl2,lower.tail = FALSE)
print(VC_FG2)
## [1] 7.814728
#por cola izquierda
qchisq(0.95,gl2)
## [1] 7.814728
#el p-value ¿por area a la derecha?
pchisq(Chi_FG2,gl2,lower.tail = FALSE)
## [1] 0.000000000000002352605
#Graficando
shadeDist(xshade = Chi_FG2,ddist = "dchisq",parm1 = gl2,lower.tail = FALSE,sub=paste("VC:",VC_FG2,"FG:",Chi_FG2))
#iNTERPRETACION: la Ho se rechaza porque el estadistico FG=71.2080 es mayor que el valor critico=7.8147, hay evidencia de colinealidad.
library(mctest)
mctest(Regresion2)
##
## Call:
## omcdiag(mod = mod, Inter = TRUE, detr = detr, red = red, conf = conf,
## theil = theil, cn = cn)
##
##
## Overall Multicollinearity Diagnostics
##
## MC Results detection
## Determinant |X'X|: 0.0346 0
## Farrar Chi-Square: 71.2080 1
## Red Indicator: 0.8711 1
## Sum of Lambda Inverse: 20.9196 1
## Theil's Method: 0.5430 1
## Condition Number: 105.2299 1
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
#iNTERPRETACION: la Ho se rechaza porque el estadistica de prueba es mayor que el valor critico, hay evidencia de colinealidad
VIF_R2<-diag(solve(cor(Xmat2[,-1])))
print(VIF_R2)
## C P M
## 7.631451 3.838911 9.449210
# Interpretacion: las variables que mas colinealidad presentan son C, P, M. Estas superan el VIF de 2 y deben de ser modificadas para solucionar eso.
library(mctest)
mc.plot(Regresion2, vif = 2)
# Interpretacion: las variables que mas colinealidad presentan son C, P, M. Estas superan el VIF de 2 y deben de ser modificadas para solucionar eso.
options(scipen = 999999)
load("C:/Users/osiel/Desktop/PARCIAL 2/wage2.RData")
#creando Modelo
options(scipen = 9999)
Regresion3<-lm(educ~sibs+meduc+feduc, data = wage2)
#Usando Summary
summary(Regresion3)
##
## Call:
## lm(formula = educ ~ sibs + meduc + feduc, data = wage2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0906 -1.5957 -0.3677 1.6138 5.6103
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.36426 0.35850 28.910 < 0.0000000000000002 ***
## sibs -0.09364 0.03447 -2.716 0.00676 **
## meduc 0.13079 0.03269 4.001 0.0000696319512857 ***
## feduc 0.21000 0.02747 7.644 0.0000000000000679 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.987 on 718 degrees of freedom
## (213 observations deleted due to missingness)
## Multiple R-squared: 0.2141, Adjusted R-squared: 0.2108
## F-statistic: 65.2 on 3 and 718 DF, p-value: < 0.00000000000000022
library(stargazer)
stargazer(Regresion3,title = "Años de Escolaridad", type ="html", digits = 6)
| Dependent variable: | |
| educ | |
| sibs | -0.093636*** |
| (0.034471) | |
| meduc | 0.130787*** |
| (0.032689) | |
| feduc | 0.210004*** |
| (0.027475) | |
| Constant | 10.364260*** |
| (0.358500) | |
| Observations | 722 |
| R2 | 0.214094 |
| Adjusted R2 | 0.210810 |
| Residual Std. Error | 1.987052 (df = 718) |
| F Statistic | 65.198250*** (df = 3; 718) |
| Note: | p<0.1; p<0.05; p<0.01 |
library(fitdistrplus)
ajuste_normal3<-fitdist(data = Regresion3$residuals,distr = "norm")
plot(ajuste_normal3)
#interpretacion: A primera vista los residuos de manera general se observa que no tienen del todo una distribucion normal.
library(normtest)
jb.norm.test(Regresion3$residuals)
##
## Jarque-Bera test for normality
##
## data: Regresion3$residuals
## JB = 35.655, p-value < 0.00000000000000022
# Interpretacion: la Ho:los residuos tienen una asimetria igual a cero y una curtosis cercana a 3 se rechaza; los residuos no tienen una distribucion normal, el estadistico JB=35.655 es mayor al V.C=5.9915 y el Pvalue es menor al nivel de significancia del 5%.
library(nortest)
lillie.test(Regresion3$residuals)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: Regresion3$residuals
## D = 0.089992, p-value = 0.000000000000003394
# Interpretacion: la Ho: los residuos tienen una media igual a cero y una varianza constante se rechaza; los residuos no tienen una distribucion normal; el estadistico D=0.0899 es mayor al V.C=0.0286 y el Pvalue es menor o igual al nivel de significancia de 5%.
shapiro.test(Regresion3$residuals)
##
## Shapiro-Wilk normality test
##
## data: Regresion3$residuals
## W = 0.96692, p-value = 0.00000000001058
# obteniendo Wn
mues3<-935
W3<- 0.96692
u3<-(0.0038915*(log(mues3))^3 - 0.083751*(log(mues3))^2 - 0.31082*(log(mues3)) - 1.5861)
print(u3)
## [1] -6.385615
desv3<-exp(0.0030302*(log(mues3))^2 - 0.082676*(log(mues3)) - 0.4803)
print(desv3)
## [1] 0.4049237
Wn3<-(log(1-W3)-u3)/desv3
print(Wn3)
## [1] 7.351479
# Interpretacion: la Ho: los residuos tienen una media igual a cero y una varianza constante se rechaza; los residuos no tienen una distribucion normal; el estadistico Wn=7.351479 es mayor al V.C=1.6448 y el Pvalue es menor al nivel de significancia del 5%.
#construyendo matriz X
Xmat3<-model.matrix(Regresion3)
print(Xmat3)
## (Intercept) sibs meduc feduc
## 1 1 1 8 8
## 2 1 1 14 14
## 3 1 1 14 14
## 4 1 4 12 12
## 5 1 10 6 11
## 7 1 1 8 8
## 9 1 2 14 5
## 10 1 1 12 11
## 11 1 1 13 14
## 13 1 2 12 12
## 14 1 3 10 10
## 15 1 1 12 12
## 16 1 1 6 8
## 17 1 3 12 10
## 18 1 2 10 8
## 22 1 2 12 12
## 23 1 5 10 10
## 24 1 2 12 12
## 25 1 0 11 11
## 26 1 3 16 16
## 27 1 2 12 8
## 28 1 0 8 8
## 29 1 3 13 12
## 30 1 2 16 16
## 32 1 1 12 12
## 33 1 1 12 12
## 34 1 2 18 18
## 35 1 1 17 14
## 37 1 1 12 8
## 38 1 0 15 12
## 39 1 1 13 12
## 40 1 1 12 12
## 41 1 3 8 7
## 42 1 1 12 8
## 44 1 3 10 9
## 45 1 1 14 15
## 47 1 3 12 12
## 48 1 1 12 12
## 50 1 2 12 10
## 51 1 1 12 12
## 52 1 2 12 12
## 53 1 7 12 9
## 54 1 1 12 11
## 56 1 1 11 8
## 57 1 2 17 16
## 58 1 4 12 10
## 59 1 3 12 14
## 60 1 1 6 8
## 61 1 1 12 12
## 62 1 3 12 8
## 63 1 2 12 8
## 66 1 8 9 11
## 67 1 2 12 9
## 70 1 2 12 18
## 71 1 1 8 8
## 72 1 2 12 16
## 73 1 1 12 16
## 74 1 1 11 11
## 75 1 3 12 9
## 76 1 2 12 6
## 78 1 1 12 12
## 79 1 3 14 12
## 80 1 1 7 7
## 81 1 2 12 10
## 83 1 4 8 8
## 84 1 3 12 16
## 85 1 4 14 10
## 88 1 1 12 8
## 89 1 4 16 16
## 90 1 2 12 13
## 91 1 3 16 16
## 92 1 1 16 17
## 93 1 7 8 8
## 94 1 1 12 14
## 95 1 4 12 14
## 96 1 3 10 9
## 98 1 3 9 12
## 99 1 3 9 12
## 100 1 3 9 12
## 101 1 1 8 8
## 102 1 5 9 10
## 103 1 5 8 10
## 104 1 4 9 8
## 106 1 1 9 12
## 107 1 1 8 8
## 108 1 5 12 12
## 109 1 2 12 12
## 110 1 1 10 8
## 111 1 6 10 12
## 114 1 1 12 12
## 115 1 3 12 9
## 116 1 0 12 12
## 117 1 6 8 7
## 118 1 1 12 11
## 119 1 3 12 10
## 121 1 0 12 9
## 122 1 1 12 8
## 123 1 3 9 8
## 124 1 4 12 12
## 125 1 3 12 10
## 126 1 3 12 10
## 127 1 1 16 15
## 128 1 3 16 18
## 129 1 1 12 12
## 130 1 0 12 12
## 131 1 3 9 8
## 132 1 3 10 9
## 133 1 3 12 12
## 134 1 4 12 12
## 135 1 1 12 8
## 136 1 4 7 6
## 138 1 3 2 5
## 139 1 14 14 11
## 140 1 1 6 9
## 141 1 2 7 10
## 142 1 0 8 6
## 143 1 1 12 12
## 144 1 1 12 8
## 145 1 2 8 8
## 147 1 4 16 16
## 148 1 0 8 12
## 149 1 2 12 12
## 150 1 2 13 12
## 151 1 3 12 8
## 152 1 6 9 11
## 153 1 2 12 12
## 154 1 1 12 10
## 155 1 6 11 4
## 157 1 2 12 12
## 159 1 2 12 12
## 160 1 2 12 12
## 162 1 6 14 12
## 163 1 0 12 10
## 164 1 4 10 10
## 165 1 1 8 12
## 166 1 3 12 16
## 167 1 1 12 12
## 169 1 2 11 6
## 170 1 1 12 11
## 173 1 1 11 10
## 174 1 3 10 10
## 175 1 4 12 9
## 176 1 2 7 7
## 177 1 3 11 5
## 179 1 4 7 12
## 180 1 2 12 8
## 181 1 2 12 12
## 182 1 1 8 8
## 183 1 4 11 8
## 184 1 2 8 10
## 185 1 4 10 10
## 186 1 1 9 9
## 187 1 3 8 12
## 188 1 2 9 11
## 189 1 1 12 8
## 190 1 2 12 12
## 192 1 3 12 8
## 193 1 1 12 12
## 194 1 5 8 10
## 195 1 6 9 12
## 196 1 4 12 11
## 198 1 0 11 12
## 199 1 0 11 11
## 201 1 1 16 8
## 202 1 2 10 8
## 203 1 1 10 12
## 205 1 0 12 6
## 207 1 1 12 11
## 208 1 1 12 11
## 209 1 1 12 12
## 210 1 2 8 8
## 211 1 3 12 10
## 212 1 1 13 12
## 213 1 1 13 12
## 214 1 3 12 12
## 215 1 3 12 12
## 216 1 1 8 12
## 217 1 4 16 16
## 218 1 5 8 4
## 219 1 4 16 12
## 220 1 5 10 12
## 221 1 2 10 12
## 224 1 1 12 14
## 225 1 1 12 14
## 228 1 2 11 12
## 231 1 1 12 12
## 233 1 7 10 10
## 234 1 1 11 9
## 235 1 5 8 8
## 236 1 1 11 9
## 238 1 10 12 14
## 239 1 1 12 8
## 240 1 6 16 18
## 241 1 3 14 18
## 242 1 2 12 17
## 246 1 2 12 7
## 247 1 4 8 6
## 248 1 3 12 6
## 250 1 6 14 12
## 251 1 4 12 12
## 252 1 2 12 12
## 254 1 0 12 11
## 255 1 2 8 12
## 256 1 2 8 7
## 257 1 0 9 8
## 258 1 3 8 5
## 262 1 3 12 8
## 264 1 0 12 12
## 265 1 3 12 12
## 266 1 2 9 5
## 268 1 1 12 12
## 269 1 2 8 6
## 270 1 1 12 6
## 271 1 3 16 16
## 272 1 1 10 14
## 274 1 2 12 12
## 275 1 1 10 16
## 276 1 2 11 9
## 277 1 1 8 12
## 278 1 6 10 12
## 279 1 2 12 9
## 280 1 4 12 10
## 281 1 4 8 5
## 282 1 3 11 8
## 283 1 4 16 16
## 286 1 3 16 14
## 287 1 5 12 12
## 288 1 1 8 10
## 289 1 5 8 9
## 290 1 2 5 11
## 291 1 2 5 11
## 292 1 1 17 13
## 293 1 3 8 8
## 294 1 13 11 11
## 296 1 4 11 13
## 299 1 8 11 8
## 300 1 2 12 13
## 302 1 1 11 12
## 303 1 2 12 8
## 304 1 2 12 15
## 305 1 0 16 18
## 306 1 3 12 12
## 308 1 3 8 8
## 309 1 3 12 12
## 310 1 1 16 16
## 311 1 3 12 12
## 312 1 2 14 12
## 313 1 2 12 12
## 315 1 2 12 12
## 316 1 3 12 10
## 318 1 1 8 10
## 320 1 3 10 11
## 322 1 5 12 12
## 324 1 2 14 12
## 325 1 2 14 12
## 326 1 6 8 8
## 328 1 3 13 12
## 329 1 2 12 12
## 330 1 2 13 12
## 332 1 3 5 8
## 333 1 0 16 4
## 334 1 0 12 12
## 335 1 2 12 10
## 337 1 3 9 8
## 338 1 4 11 9
## 339 1 1 12 12
## 340 1 1 11 14
## 341 1 1 12 10
## 342 1 3 10 8
## 344 1 3 12 12
## 345 1 6 8 10
## 346 1 2 11 12
## 347 1 3 8 8
## 348 1 3 8 8
## 349 1 0 8 8
## 350 1 2 13 16
## 351 1 2 12 12
## 353 1 1 12 11
## 354 1 2 16 12
## 355 1 2 12 14
## 356 1 3 12 8
## 357 1 2 8 7
## 358 1 2 8 8
## 359 1 3 12 10
## 361 1 6 14 12
## 362 1 4 12 8
## 363 1 3 8 6
## 365 1 6 9 6
## 366 1 4 8 8
## 367 1 3 8 8
## 369 1 7 10 8
## 370 1 4 8 8
## 371 1 2 12 6
## 372 1 5 11 7
## 373 1 2 12 12
## 374 1 3 16 12
## 375 1 3 12 12
## 376 1 1 12 10
## 377 1 2 12 14
## 378 1 2 15 12
## 379 1 0 12 12
## 380 1 1 12 12
## 381 1 2 13 8
## 382 1 3 8 6
## 383 1 3 8 12
## 384 1 5 6 12
## 386 1 3 12 12
## 387 1 2 12 12
## 388 1 1 8 8
## 389 1 4 15 8
## 391 1 1 12 16
## 392 1 4 8 5
## 394 1 3 11 11
## 396 1 1 12 11
## 397 1 1 11 8
## 398 1 6 8 9
## 399 1 3 12 12
## 401 1 5 2 8
## 402 1 3 12 11
## 403 1 1 12 12
## 404 1 1 12 12
## 405 1 4 12 8
## 407 1 1 12 10
## 409 1 3 12 15
## 410 1 2 16 16
## 411 1 2 12 12
## 413 1 2 12 10
## 415 1 2 12 16
## 416 1 2 12 10
## 418 1 2 12 9
## 419 1 2 12 13
## 420 1 3 9 12
## 421 1 3 10 10
## 422 1 3 10 10
## 423 1 2 12 12
## 424 1 3 10 8
## 426 1 9 9 10
## 427 1 6 8 8
## 428 1 5 6 6
## 429 1 5 6 6
## 431 1 0 12 8
## 432 1 4 12 12
## 433 1 1 12 7
## 434 1 3 12 8
## 435 1 3 12 13
## 436 1 3 12 12
## 437 1 3 12 12
## 438 1 1 12 12
## 440 1 0 12 8
## 441 1 6 12 6
## 442 1 1 10 5
## 444 1 3 11 10
## 446 1 5 10 11
## 447 1 8 12 11
## 448 1 0 13 16
## 449 1 2 14 8
## 450 1 1 7 6
## 451 1 2 12 8
## 452 1 4 12 7
## 453 1 1 9 7
## 454 1 10 4 6
## 455 1 6 6 5
## 456 1 12 8 4
## 457 1 4 11 5
## 458 1 3 12 11
## 459 1 0 12 12
## 460 1 4 10 13
## 461 1 7 12 8
## 464 1 5 12 4
## 465 1 5 8 9
## 466 1 6 7 5
## 467 1 3 8 8
## 468 1 0 12 11
## 469 1 7 7 4
## 470 1 2 9 10
## 471 1 1 12 12
## 472 1 4 11 12
## 473 1 1 12 9
## 474 1 1 8 14
## 475 1 3 12 10
## 476 1 2 12 10
## 477 1 5 10 8
## 478 1 2 11 10
## 479 1 2 13 16
## 480 1 3 12 16
## 481 1 0 14 10
## 482 1 4 8 11
## 483 1 3 8 8
## 484 1 3 12 11
## 485 1 2 12 14
## 487 1 2 12 18
## 488 1 2 8 8
## 489 1 3 8 12
## 490 1 1 12 12
## 491 1 1 12 8
## 492 1 4 8 8
## 494 1 6 9 8
## 496 1 3 12 10
## 497 1 2 12 10
## 499 1 2 11 13
## 500 1 2 9 12
## 501 1 2 9 12
## 502 1 2 8 7
## 504 1 2 12 12
## 505 1 7 12 8
## 506 1 3 12 8
## 507 1 3 12 10
## 509 1 1 11 12
## 510 1 6 8 8
## 512 1 10 12 6
## 513 1 1 16 14
## 514 1 3 12 5
## 516 1 2 12 7
## 517 1 1 12 6
## 521 1 3 16 17
## 522 1 2 11 12
## 524 1 3 12 12
## 525 1 8 9 12
## 526 1 1 6 6
## 527 1 2 12 10
## 528 1 1 12 16
## 529 1 2 6 2
## 530 1 2 8 12
## 532 1 5 12 6
## 535 1 2 12 5
## 536 1 3 8 12
## 537 1 3 8 2
## 538 1 1 12 12
## 540 1 1 12 14
## 543 1 3 8 7
## 544 1 13 6 6
## 546 1 1 12 16
## 547 1 6 8 8
## 549 1 2 12 7
## 550 1 2 12 7
## 551 1 5 14 12
## 552 1 1 7 9
## 553 1 4 8 12
## 557 1 1 12 12
## 558 1 3 12 12
## 559 1 1 12 12
## 560 1 1 12 17
## 561 1 2 8 8
## 562 1 6 8 3
## 563 1 1 18 18
## 564 1 6 11 12
## 565 1 1 12 10
## 567 1 8 11 10
## 568 1 5 12 12
## 569 1 1 8 8
## 570 1 2 9 9
## 571 1 5 9 4
## 574 1 8 9 10
## 575 1 11 6 9
## 576 1 2 12 12
## 577 1 3 15 15
## 578 1 0 12 16
## 581 1 4 11 2
## 583 1 2 12 7
## 586 1 2 13 16
## 589 1 9 8 3
## 592 1 2 8 8
## 593 1 11 16 16
## 594 1 2 12 12
## 595 1 2 11 12
## 596 1 4 3 3
## 597 1 1 11 11
## 598 1 0 12 7
## 600 1 1 16 12
## 601 1 3 16 13
## 602 1 2 12 10
## 603 1 0 12 12
## 604 1 2 12 16
## 605 1 1 16 16
## 608 1 1 12 10
## 610 1 0 12 12
## 611 1 1 12 5
## 612 1 0 11 8
## 616 1 3 8 5
## 618 1 3 12 8
## 619 1 1 10 7
## 620 1 3 7 6
## 621 1 1 12 14
## 622 1 2 12 12
## 625 1 1 12 10
## 626 1 1 12 4
## 627 1 1 12 18
## 630 1 0 6 9
## 631 1 1 10 10
## 632 1 1 7 8
## 633 1 7 7 6
## 634 1 3 9 5
## 635 1 1 12 16
## 636 1 0 11 5
## 637 1 0 6 8
## 638 1 0 12 12
## 640 1 1 12 12
## 642 1 2 12 11
## 643 1 6 7 7
## 644 1 1 12 8
## 645 1 2 12 16
## 646 1 5 17 18
## 647 1 3 8 4
## 649 1 4 10 11
## 650 1 3 17 12
## 651 1 2 12 12
## 655 1 2 16 14
## 656 1 3 13 16
## 657 1 2 12 12
## 659 1 5 11 10
## 660 1 10 9 3
## 661 1 7 1 4
## 662 1 9 3 4
## 663 1 9 3 4
## 665 1 2 12 12
## 666 1 6 6 2
## 667 1 2 12 12
## 669 1 2 12 12
## 671 1 2 8 3
## 672 1 3 6 10
## 674 1 7 12 12
## 675 1 4 8 6
## 676 1 4 8 6
## 680 1 4 17 18
## 681 1 1 8 7
## 682 1 2 9 12
## 684 1 5 10 8
## 685 1 14 0 10
## 686 1 2 16 14
## 687 1 1 4 14
## 689 1 3 8 8
## 690 1 5 8 4
## 691 1 3 5 4
## 692 1 2 12 12
## 693 1 2 12 12
## 694 1 4 8 8
## 696 1 2 16 12
## 698 1 3 12 12
## 699 1 2 12 12
## 702 1 5 11 12
## 703 1 2 12 12
## 704 1 1 7 7
## 705 1 2 12 12
## 706 1 3 12 16
## 708 1 2 16 16
## 709 1 5 12 12
## 710 1 2 10 10
## 711 1 2 12 12
## 712 1 2 8 8
## 713 1 5 12 12
## 714 1 4 0 2
## 715 1 3 8 8
## 716 1 0 12 8
## 718 1 1 13 13
## 719 1 0 12 10
## 720 1 3 12 10
## 721 1 3 12 10
## 722 1 0 12 14
## 723 1 2 12 12
## 724 1 1 6 7
## 725 1 5 14 17
## 726 1 1 16 12
## 727 1 4 12 8
## 728 1 2 12 12
## 729 1 1 8 12
## 730 1 3 12 7
## 731 1 7 12 12
## 732 1 7 12 12
## 733 1 7 12 12
## 735 1 0 8 8
## 736 1 4 12 12
## 737 1 1 12 8
## 738 1 1 12 12
## 739 1 7 12 12
## 740 1 2 11 6
## 741 1 1 12 13
## 742 1 4 12 12
## 744 1 3 14 17
## 745 1 4 12 10
## 748 1 1 12 12
## 749 1 2 8 14
## 751 1 2 12 12
## 752 1 1 12 8
## 754 1 5 11 12
## 755 1 3 12 12
## 756 1 4 11 11
## 757 1 1 12 12
## 758 1 2 12 12
## 759 1 1 18 15
## 760 1 1 13 13
## 762 1 2 12 16
## 764 1 4 11 8
## 765 1 1 12 10
## 766 1 1 12 12
## 767 1 6 8 10
## 768 1 1 12 12
## 769 1 3 9 8
## 770 1 1 10 8
## 771 1 5 12 11
## 773 1 2 12 9
## 774 1 4 12 8
## 775 1 9 6 2
## 776 1 2 8 8
## 777 1 3 16 12
## 778 1 3 16 12
## 780 1 3 12 18
## 782 1 4 6 8
## 783 1 1 8 2
## 784 1 5 10 11
## 785 1 5 16 12
## 786 1 1 16 16
## 787 1 0 15 9
## 788 1 7 7 8
## 791 1 3 7 6
## 792 1 1 12 12
## 793 1 4 13 13
## 794 1 3 10 12
## 796 1 2 12 12
## 797 1 3 10 12
## 798 1 3 10 12
## 799 1 3 14 9
## 800 1 3 12 8
## 801 1 0 8 8
## 802 1 7 12 12
## 805 1 5 8 12
## 806 1 4 14 14
## 807 1 3 12 12
## 808 1 2 12 12
## 809 1 2 12 7
## 810 1 4 10 3
## 813 1 8 6 0
## 815 1 6 6 7
## 816 1 5 12 8
## 818 1 6 12 13
## 819 1 2 10 6
## 820 1 6 2 8
## 821 1 3 12 4
## 822 1 5 12 8
## 823 1 2 16 9
## 826 1 1 12 12
## 827 1 1 16 13
## 828 1 1 9 12
## 829 1 1 12 9
## 830 1 1 14 12
## 831 1 1 12 9
## 833 1 1 10 12
## 834 1 1 10 12
## 835 1 7 8 9
## 836 1 1 10 10
## 837 1 3 13 14
## 838 1 0 14 12
## 839 1 7 2 10
## 840 1 9 3 4
## 841 1 9 2 8
## 843 1 0 9 10
## 845 1 4 9 10
## 846 1 3 10 6
## 847 1 0 5 6
## 850 1 0 5 5
## 851 1 4 3 7
## 852 1 4 3 7
## 853 1 5 8 18
## 854 1 2 7 5
## 855 1 1 8 12
## 856 1 5 8 6
## 857 1 1 0 5
## 858 1 1 12 12
## 860 1 3 14 10
## 861 1 1 8 7
## 862 1 1 15 15
## 863 1 4 12 12
## 864 1 1 12 9
## 865 1 7 3 2
## 866 1 2 8 8
## 868 1 6 5 5
## 869 1 1 12 11
## 870 1 1 12 12
## 872 1 0 12 10
## 873 1 1 9 12
## 874 1 7 10 11
## 878 1 3 9 9
## 879 1 1 12 9
## 880 1 2 10 6
## 881 1 7 10 6
## 882 1 7 10 6
## 883 1 9 10 7
## 884 1 10 4 10
## 886 1 3 12 10
## 887 1 5 12 10
## 888 1 7 9 8
## 889 1 4 12 18
## 890 1 4 12 18
## 891 1 1 10 13
## 892 1 4 7 7
## 893 1 7 7 4
## 894 1 6 7 3
## 895 1 4 8 3
## 896 1 2 7 7
## 898 1 4 12 7
## 899 1 2 11 12
## 900 1 1 14 12
## 901 1 1 14 18
## 902 1 5 12 9
## 903 1 4 10 10
## 907 1 5 12 9
## 909 1 2 11 9
## 911 1 2 12 7
## 912 1 1 12 14
## 913 1 3 10 12
## 914 1 0 12 12
## 916 1 2 12 12
## 917 1 2 8 8
## 918 1 8 10 6
## 920 1 5 12 13
## 921 1 1 13 16
## 923 1 1 12 12
## 924 1 2 12 8
## 925 1 2 8 8
## 926 1 7 7 8
## 929 1 3 7 7
## 930 1 3 16 16
## 932 1 7 8 6
## attr(,"assign")
## [1] 0 1 2 3
#Construyendo sigma matriz
XXmat3<-t(Xmat3)%*%Xmat3
print(XXmat3)
## (Intercept) sibs meduc feduc
## (Intercept) 722 2064 7802 7404
## sibs 2064 9552 20967 19949
## meduc 7802 20967 90078 83895
## feduc 7404 19949 83895 83806
#Sigma matriz de Normalizacion
Sn3<-diag(1/sqrt(diag(XXmat3)))
print(Sn3)
## [,1] [,2] [,3] [,4]
## [1,] 0.03721615 0.00000000 0.00000000 0.000000000
## [2,] 0.00000000 0.01023182 0.00000000 0.000000000
## [3,] 0.00000000 0.00000000 0.00333189 0.000000000
## [4,] 0.00000000 0.00000000 0.00000000 0.003454319
#XXmat_norm
XXmat_norm3<-(Sn3%*%XXmat3)%*%Sn3
print(XXmat_norm3)
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.7859482 0.9674488 0.9518319
## [2,] 0.7859482 1.0000000 0.7147921 0.7050768
## [3,] 0.9674488 0.7147921 1.0000000 0.9655820
## [4,] 0.9518319 0.7050768 0.9655820 1.0000000
# Autovalores
lambas3<-eigen(XXmat_norm3, symmetric = TRUE)$values
print(lambas3)
## [1] 3.55762739 0.37556335 0.04172605 0.02508320
#indice de condicion
K3<-sqrt(max(lambas3)/min(lambas3))
print(K3)
## [1] 11.90937
#interpretacion: el indice de condicion es igual a 11.90 es menor a 20, la multicolinealidad es leve y no es consderada como un problema.
library(mctest)
source(file = "C:/Users/Osiel/Desktop/correccion_eigprop.R")
my_eigprop(mod = Regresion3)
##
## Call:
## my_eigprop(mod = Regresion3)
##
## Eigenvalues CI (Intercept) sibs meduc feduc
## 1 3.5576 1.0000 0.0033 0.0194 0.0031 0.0046
## 2 0.3756 3.0778 0.0015 0.7200 0.0107 0.0184
## 3 0.0417 9.2337 0.3235 0.1056 0.0813 0.8786
## 4 0.0251 11.9094 0.6717 0.1549 0.9049 0.0984
##
## ===============================
## Row 2==> sibs, proportion 0.720032 >= 0.50
## Row 4==> meduc, proportion 0.904919 >= 0.50
## Row 3==> feduc, proportion 0.878599 >= 0.50
#interpretacion: el indice de condicion es igual a 11.90, es menos a 20, la colinealidad leve y no se considera un problema.
library(fastGraph)
m_R3<-ncol(Xmat3[,-1])
n_R3<-nrow(Xmat3)
# Determinante de Matriz de Correlacion
determinante_R3<-det(cor(Xmat3[,-1]))
print(determinante_R3)
## [1] 0.6075382
#estadistico de prueba
Chi_FG3<--(n_R3-1-(2*m_R3+5)/6)*log(determinante_R3)
print(Chi_FG3)
## [1] 358.3897
#Calculando Valor Critico
gl3<-m_R3*(m_R3-1)/2
#por cola derecha
VC_FG3<- qchisq(0.05,gl3,lower.tail = FALSE)
print(VC_FG3)
## [1] 7.814728
#por cola izquierda
qchisq(0.95,gl3)
## [1] 7.814728
#el p-value ¿por area a la derecha?
pchisq(Chi_FG3, gl3, lower.tail = FALSE)
## [1] 0.0000000000000000000000000000000000000000000000000000000000000000000000000000227501
#Graficando
shadeDist(xshade = Chi_FG3,ddist = "dchisq",parm1 = gl3,lower.tail = FALSE,sub=paste("VC:",VC_FG3,"FG:",Chi_FG3))
#iNTERPRETACION: la Ho se rechaza porque el estadistico FG=359.38 es mayor que el valor critico=7.8147, hay evidencia de colinealidad en los residuos del modelo.
library(mctest)
mctest(Regresion3)
##
## Call:
## omcdiag(mod = mod, Inter = TRUE, detr = detr, red = red, conf = conf,
## theil = theil, cn = cn)
##
##
## Overall Multicollinearity Diagnostics
##
## MC Results detection
## Determinant |X'X|: 0.6075 0
## Farrar Chi-Square: 358.3897 1
## Red Indicator: 0.3952 0
## Sum of Lambda Inverse: 4.1666 0
## Theil's Method: 0.3575 0
## Condition Number: 11.2768 0
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
#iNTERPRETACION: la Ho se rechaza porque el estadistica de prueba es mayor que el valor critico, hay evidencia de colinealidad
VIF_R3<-diag(solve(cor(Xmat3[,-1])))
print(VIF_R3)
## sibs meduc feduc
## 1.098950 1.561254 1.506359
# Interpretacion: las variables no superan el VIF de 2, la colinealidad en este caso es leve.
library(mctest)
mc.plot(Regresion3, vif = 2)
# Interpretacion: las variables tienen una leve colinealidad que puede no ser considerada un problema.