Datos recopilados de una finca en el municipio de Sotará, departamento del Cauca, en la cual se tomaron 394 datos de variables climatológicas de Humedad y Temperatura.
require(raster)
require(ggplot2)
require(geoR)
require(fBasics)
require(moments)
require(e1071)
require(rasterVis)
require(raster)
## Datos de entrada
setwd("D:/Desktop/ESPECIALIZACION GEOMATICA CLASES/TRATAMIENTO DE DATOS ESPACIALES/INFORME FINAL/FINAL VARIABLES")
load("D:/Desktop/ESPECIALIZACION GEOMATICA CLASES/TRATAMIENTO DE DATOS ESPACIALES/INFORME FINAL/FINAL VARIABLES/datos_geo.RData")
datos<- read.table("variables.txt",header=T,dec=".")
zona=shapefile("D:/Desktop/ESPECIALIZACION GEOMATICA CLASES/TRATAMIENTO DE DATOS ESPACIALES/INFORME FINAL/FINAL VARIABLES/zona/area.shp")
MCO <- "+proj=tmerc +lat_0=4.596200416666666 +lon_0=-77.07750791666666 +k=1 +x_0=1000000 +y_0=1000000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"
zona_MCO <- spTransform(zona,CRS(MCO))
datos.borde=read.table("area_estudio.txt" ,header=T, dec = ".")
Realizamos un Análisis exploratorio de las variables de estudio, Temperatura y Humedad Relativa en el cual se logre identificar el comportamiento (tendencia central, variabilidad)
Estadisticos<- basicStats(datos_geo[,1:2]);Estadisticos[-c(9:12),]
## Temperature Relative_Humidity
## nobs 394.000000 394.000000
## NAs 0.000000 0.000000
## Minimum 16.000000 28.500000
## Maximum 34.600000 91.400000
## 1. Quartile 19.225000 41.650000
## 3. Quartile 26.475000 68.975000
## Mean 22.620305 58.085025
## Median 21.300000 63.250000
## Variance 18.389612 196.400513
## Stdev 4.288311 14.014297
## Skewness 0.506769 -0.459847
## Kurtosis -0.877192 -1.154754
Contamos con un registro de 394 datos donde la temperatura mÃnima es 16 y una humedad de 28,50 si hacemos una comparación con los datos máximos donde la temperatura es 34,6 y la humedad es de 91,40, podemos afirmar que a mayor temperatura mayor humedad… tenemos una mediana de 21,30. el 1er Cuartil de 19,22 en temperatura y 41,65 de humedad, el 2do cuartil coincide con la mediana y el 3er cuartil con una temperatura de 26,47 en temperatura y 68,97 en humedad.
Stdes<-Estadisticos[14,]
prom<-Estadisticos[7,]
cv<- (Stdes/prom)*100;row.names(cv)<- "coeficiente de variacion";cv
## Temperature Relative_Humidity
## coeficiente de variacion 18.95779 24.12721
Se presenta una mayor dispersión en los datos de la variable temperatura en comparación con la humedad.
##Distribucion de frecuencias
length(datos_geo[,1])
## [1] 394
min(datos_geo[,1])
## [1] 16
max(datos_geo[,1])
## [1] 34.6
fi=table(cut(datos_geo[,1],seq(16,36,4),right=T))
hi=table(cut(datos_geo[,1],seq(16,36,4),right=T))/length(datos_geo[,1])
Fi=cumsum(fi)
Hi=cumsum(hi)
cbind(fi,hi,Fi,Hi)
## fi hi Fi Hi
## (16,20] 157 0.39847716 157 0.3984772
## (20,24] 95 0.24111675 252 0.6395939
## (24,28] 85 0.21573604 337 0.8553299
## (28,32] 51 0.12944162 388 0.9847716
## (32,36] 5 0.01269036 393 0.9974619
frec_tem=cbind(fi,hi,Fi,Hi)
Conteo de datos 394 Frecuencia Min 16 Frecuencia Max 34.6 La mayor concentración de datos en la temperatura se encuentra en el rango de 16 a 20 grados centÃgrados con un 39,8% de la información
##Humedad relativa
length(datos_geo[,2])
## [1] 394
min(datos_geo[,2])
## [1] 28.5
max(datos_geo[,2])
## [1] 91.4
fi=table(cut(datos_geo[,2],seq(28,92,9),right=T))
hi=table(cut(datos_geo[,2],seq(28,92,9),right=T))/length(datos_geo[,2])
Fi=cumsum(fi)
Hi=cumsum(hi)
cbind(fi,hi,Fi,Hi)
## fi hi Fi Hi
## (28,37] 35 0.088832487 35 0.08883249
## (37,46] 79 0.200507614 114 0.28934010
## (46,55] 21 0.053299492 135 0.34263959
## (55,64] 78 0.197969543 213 0.54060914
## (64,73] 139 0.352791878 352 0.89340102
## (73,82] 38 0.096446701 390 0.98984772
## (82,91] 3 0.007614213 393 0.99746193
frec_hum=cbind(fi,hi,Fi,Hi)
Conteo de datos 394 Humedad Min 28.5 Humedad Max 91.4 La mayor concentración de datos en la humedad se encuentra en el rango de 64 a 73% con un 35% de la información
##Medidas de asociacion y Diagrama de dispersion
cov(datos_geo[,1],datos_geo[,2])
## [1] -54.90084
cor(datos_geo[,1],datos_geo[,2])
## [1] -0.913527
plot(datos_geo[,1],datos_geo[,2],xlab="Temperatura ºC",ylab="Humedad %")
La humedad y temperatura presentan una correlación lineal inversa, es decir a mayor temperatura la humedad disminuye en el área de estudio, visualmente lo podemos observar en el diagrama de dispersión.
##Visualizacion de las variables de estudio boxplot - histograma
par(mfrow=c(2,2))
boxplot(datos_geo[,1],col="grey",main="Temperatura ºC",cex.axis=1.2)
boxplot(datos_geo[,2],col="grey",main="Humedad Relativa % ",cex.axis=1.2)
hist(datos_geo[,1],col="grey",main="Temperatura ºC",cex.axis= 1.2, xlab="ºC",ylab="Frecuencia")
hist(datos_geo[,2],col="grey", main="Humedad Relativa % ",cex.axis=1.2,xlab="%",ylab="Frecuencia")
En el boxplot se observa que las variables de estudio presentan distribuciones con diferencias notables en cuanto su mediana y lÃmite superior e inferior. Ambas distribuciones no presentan valores atÃpicos y en los histogramas se observa que la temperatura presenta la mayor concentración de datos en valores bajos y la humedad presenta la mayor concentración de valores en los rangos más altos.
#Mapa Temperatura
g1=ggplot(datos_geo) +geom_polygon(data=zona,aes(x=long,y=lat),color="white",fill="grey80")+geom_point(data=datos_geo, aes(x=Longitude,y=Latitude,size =Temperature,
color=Temperature))+theme_bw()+scale_color_gradient(low="blue3",high="red")
g1 +ggtitle("Figura 1. Mapa de Puntos de los Sitios Medidos y Temperatura Registrada")
Las temperaturas más altas se encuentran ubicadas al sur occidente de la finca.
##Mapa Humedad
g1=ggplot() + geom_polygon(data=zona,aes(x=long,y=lat),color="white", fill="grey80")+
geom_point(data=datos_geo, aes(x= Longitude,y=Latitude, size = Relative_Humidity,
color=Relative_Humidity))+ theme_bw()+scale_color_gradient(low="blue3",high="red")
## Regions defined for each Polygons
g1 +ggtitle("Figura 2. Mapa de Puntos de los Sitios Medidos y Humedad Registrada")
Las humedades más altas se encuentran al noroccidente de la finca.
##Analisis del comportamiento de la variable
geodatos=as.geodata(datos,coords.col=1:2,data.col=3)
geodatos1=as.geodata(datos,coords.col=1:2,data.col=4)
#Comportamiento de espacial de la temperatura
plot(geodatos)
#Comportamiento espacial de la humedad
plot(geodatos1)
##Semivariograma Experimental de las variables de estudio
#Geodata Variable Temperatura
geodatos=as.geodata(datos,coords.col=1:2,data.col=3)
#Geodata Variable Humedad
geodatos1=as.geodata(datos,coords.col=1:2,data.col=4)
#Semivariograma temperatura
summary(dist(geodatos$coords))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.673 44.554 72.556 77.993 107.546 211.487
variograma_temp=variog(geodatos,option = "bin",uvec=seq(0,120,10))
## variog: computing omnidirectional variogram
plot(variograma_temp,pch=16, main="Semivariograma Temperatura",col="black",cex.main=1)
#Semivariograma humedad
summary(dist(geodatos1$coords))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.673 44.554 72.556 77.993 107.546 211.487
variograma_hum=variog(geodatos1,option = "bin",uvec=seq(0,120,10))
## variog: computing omnidirectional variogram
plot(variograma_hum,pch=16,main="Semivariograma Humedad", col="blue",cex.main=1)
geodatos.env_tem=variog.mc.env(geodatos,obj=variograma_temp)
## variog.env: generating 99 simulations by permutating data values
## variog.env: computing the empirical variogram for the 99 simulations
## variog.env: computing the envelops
geodatos.env_hum=variog.mc.env(geodatos1,obj=variograma_hum)
## variog.env: generating 99 simulations by permutating data values
## variog.env: computing the empirical variogram for the 99 simulations
## variog.env: computing the envelops
par(mfrow=c(1,2))
plot(variograma_temp,pch=16,main="Simulación MC Temperatura",envelope =geodatos.env_tem,cex.main=1)
plot(variograma_hum,pch=16,main="Simulación MC Humedad",col= "blue", envelope =geodatos.env_hum,cex.main=1)
ini.vals <- expand.grid(seq(20,30,l=10), seq(90,110,l=10))
model_mco_exp_temp=variofit(variograma_temp, ini=ini.vals, cov.model="exponential",
wei="npair", min="optim"); model_mco_exp_temp
## variofit: covariance model used is exponential
## variofit: weights used: npairs
## variofit: minimisation function used: optim
## variofit: searching for best initial value ... selected values:
## sigmasq phi tausq kappa
## initial.value "30" "103.33" "0" "0.5"
## status "est" "est" "est" "fix"
## loss value: 1967069.66877103
## variofit: model parameters estimated by WLS (weighted least squares):
## covariance model is: exponential
## parameter estimates:
## tausq sigmasq phi
## 0.0 112469.0 521408.2
## Practical Range with cor=0.05 for asymptotic range: 1561999
##
## variofit: minimised weighted sum of squares = 975739.6
model_mco_gaus_temp=variofit(variograma_temp, ini=ini.vals, cov.model="gaussian",
wei="npair", min="optim",nugget = 0);model_mco_gaus_temp
## variofit: covariance model used is gaussian
## variofit: weights used: npairs
## variofit: minimisation function used: optim
## variofit: searching for best initial value ... selected values:
## sigmasq phi tausq kappa
## initial.value "30" "90" "0" "0.5"
## status "est" "est" "est" "fix"
## loss value: 675928.964909519
## variofit: model parameters estimated by WLS (weighted least squares):
## covariance model is: gaussian
## parameter estimates:
## tausq sigmasq phi
## 1.1115 6763.4380 1724.6125
## Practical Range with cor=0.05 for asymptotic range: 2984.991
##
## variofit: minimised weighted sum of squares = 32035.8
model_mco_spe_temp=variofit(variograma_temp, ini=ini.vals, cov.model="spheric",fix.nug=TRUE,
wei="npair", min="optim");model_mco_spe_temp;model_mco_spe_temp
## variofit: covariance model used is spherical
## variofit: weights used: npairs
## variofit: minimisation function used: optim
## variofit: searching for best initial value ... selected values:
## sigmasq phi tausq kappa
## initial.value "20" "110" "0" "0.5"
## status "est" "est" "fix" "fix"
## loss value: 2365089.99744213
## variofit: model parameters estimated by WLS (weighted least squares):
## covariance model is: spherical
## fixed value for tausq = 0
## parameter estimates:
## sigmasq phi
## 2646.317 18399.376
## Practical Range with cor=0.05 for asymptotic range: 18399.38
##
## variofit: minimised weighted sum of squares = 975592.1
## variofit: model parameters estimated by WLS (weighted least squares):
## covariance model is: spherical
## fixed value for tausq = 0
## parameter estimates:
## sigmasq phi
## 2646.317 18399.376
## Practical Range with cor=0.05 for asymptotic range: 18399.38
##
## variofit: minimised weighted sum of squares = 975592.1
##Ajuste Semivariograma teorico Humedad
ini.vals1 <- expand.grid(seq(360,400,l=10), seq(140,150,l=10))
model_mco_exp_hum=variofit(variograma_hum, ini=ini.vals1, cov.model="exponential",
wei="npair", min="optim");model_mco_exp_hum
## variofit: covariance model used is exponential
## variofit: weights used: npairs
## variofit: minimisation function used: optim
## variofit: searching for best initial value ... selected values:
## sigmasq phi tausq kappa
## initial.value "400" "140" "0" "0.5"
## status "est" "est" "est" "fix"
## loss value: 149920064.778699
## variofit: model parameters estimated by WLS (weighted least squares):
## covariance model is: exponential
## parameter estimates:
## tausq sigmasq phi
## 0.0 660618.1 271330.6
## Practical Range with cor=0.05 for asymptotic range: 812833.8
##
## variofit: minimised weighted sum of squares = 58950959
model_mco_gaus_hum=variofit(variograma_hum, ini=ini.vals1, cov.model="gaussian",
wei="npair", min="optim",nugget = 0);model_mco_gaus_hum
## variofit: covariance model used is gaussian
## variofit: weights used: npairs
## variofit: minimisation function used: optim
## variofit: searching for best initial value ... selected values:
## sigmasq phi tausq kappa
## initial.value "400" "140" "0" "0.5"
## status "est" "est" "est" "fix"
## loss value: 348201880.162043
## variofit: model parameters estimated by WLS (weighted least squares):
## covariance model is: gaussian
## parameter estimates:
## tausq sigmasq phi
## 29.9255 13053.2407 746.4312
## Practical Range with cor=0.05 for asymptotic range: 1291.937
##
## variofit: minimised weighted sum of squares = 436122.5
model_mco_spe_hum=variofit(variograma_hum, ini=ini.vals1, cov.model="spheric",fix.nug=TRUE,
wei="npair", min="optim");model_mco_spe_hum
## variofit: covariance model used is spherical
## variofit: weights used: npairs
## variofit: minimisation function used: optim
## variofit: searching for best initial value ... selected values:
## sigmasq phi tausq kappa
## initial.value "360" "150" "0" "0.5"
## status "est" "est" "fix" "fix"
## loss value: 296983348.890697
## variofit: model parameters estimated by WLS (weighted least squares):
## covariance model is: spherical
## fixed value for tausq = 0
## parameter estimates:
## sigmasq phi
## 237643.7 145636.5
## Practical Range with cor=0.05 for asymptotic range: 145636.5
##
## variofit: minimised weighted sum of squares = 58862217
par(mfrow=c(1,2))
plot(variograma_temp,pch=16, main="Semivariogramas Teoricos Temperatura",col="black", cex.main= 1)
lines(model_mco_exp_temp,col="blue",lwd=1.5)
lines(model_mco_gaus_temp,col="red",lwd=2)
lines(model_mco_spe_temp,col="purple",lwd=1.5)
legend("topleft", legend=c("Exponential","Gaussian","Spheric"),col=c("blue","red","purple"))
plot(variograma_hum,pch=16,main="Semivariogramas Teoricos Humedad", col="blue",cex.main=1)
lines(model_mco_exp_hum,col="blue",lwd=1.5)
lines(model_mco_gaus_hum,col="red",lwd=2)
lines(model_mco_spe_hum,col="purple",lwd=1.5)
legend("topleft", legend=c("Exponential","Gaussian","Spheric"),col=c("blue","red","purple"))
De los 3 modelos el que mejor se ajusto y el que arrojo el menor error fue el mode Gaussiano
###Punto 5 Predición Espacial Kriging
geodatos_grid=expand.grid(Este=seq(1051533,1051719,l=100), Norte=seq(755028,755246,l=100))
plot(geodatos_grid, main="Area de InterpolaciÓn ")
points(datos.borde, col="black",pch=19,lwd=4)
points(datos[,1:2],col="red",pch=16)
geodatos_ko_tem=krige.conv(geodatos, loc=geodatos_grid,
krige= krige.control(nugget=1.1732,trend.d="cte",
trend.l="cte",cov.pars=c(sigmasq=5909.5331, phi=1618.5770)))
## krige.conv: model with constant mean
## krige.conv: Kriging performed using global neighbourhood
geodatos_ko_hum=krige.conv(geodatos1, loc=geodatos_grid,
krige= krige.control(nugget=29.4835,trend.d="cte",
trend.l="cte",cov.pars=c(sigmasq=16770.7028, phi=844.70)))
## krige.conv: model with constant mean
## krige.conv: Kriging performed using global neighbourhood
#Temperatura
par(mfrow=c(1,2))
pred_tem=cbind(geodatos_grid,geodatos_ko_tem$predict)
temp_predict=rasterFromXYZ(pred_tem)
plot(temp_predict, main = "Prediccion Temperatura (ºC)")
points(datos.borde,col="black",pch=16)
pred_var_tem= cbind(geodatos_grid,geodatos_ko_tem$krige.var)
temp_error=rasterFromXYZ(pred_var_tem)
plot(temp_error,main = "Varianza Temperatura")
points(datos.borde,col="black",pch=16)
#Humedad
pred_hum=cbind(geodatos_grid,geodatos_ko_hum$predict)
hum_predict=rasterFromXYZ(pred_hum)
plot(hum_predict,main="Prediccion Humedad (%)")
points(datos.borde,col="black",pch=16)
pred_var_hum= cbind(geodatos_grid,geodatos_ko_hum$krige.var)
hum_error=rasterFromXYZ(pred_var_hum)
plot(hum_error,main="Varianza Humedad")
points(datos.borde,col="black",pch=16)
par(mfrow=c(1,2))
pred_tem_estudio<-mask(temp_predict,zona_MCO)
plot(pred_tem_estudio, main ="Prediccion Temperatura")
pred_hum_estudio<-mask(hum_predict,zona_MCO)
plot(pred_hum_estudio, main="Prediccion Humedad")
stack1<-stack(temp_predict,hum_predict)
levelplot(stack1,main="Predicciones Kriging variables de estudio")
##Validacion Cruzada
valid_mco_exp_tem = xvalid(geodatos, model = model_mco_exp_temp)
## xvalid: number of data locations = 394
## xvalid: number of validation locations = 394
## xvalid: performing cross-validation at location ... 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394,
## xvalid: end of cross-validation
sce_mco_exp_tem=sqrt(sum((valid_mco_exp_tem$error)^2))/394;sce_mco_exp_tem
## [1] 0.05494721
valid_mco_spe_tem = xvalid(geodatos, model = model_mco_spe_temp)
## xvalid: number of data locations = 394
## xvalid: number of validation locations = 394
## xvalid: performing cross-validation at location ... 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394,
## xvalid: end of cross-validation
sce_mco_spe_tem=sqrt(sum((valid_mco_spe_tem$error)^2))/394;sce_mco_spe_tem
## [1] 0.0549472
valid_mco_gaus_tem = xvalid(geodatos, model = model_mco_gaus_temp)
## xvalid: number of data locations = 394
## xvalid: number of validation locations = 394
## xvalid: performing cross-validation at location ... 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394,
## xvalid: end of cross-validation
sce_mco_gaus_tem=sqrt(sum((valid_mco_gaus_tem$error)^2))/394;sce_mco_gaus_tem
## [1] 0.09044673
Resultados de los 3 modelos en Temperatura
Resultado modelo Exponencial: 0.05494721 Resultado modelo Esferico: 0.0549472 Resultado modelo Gauss: 0.09044673
Error de validacion cruzada
#Humedad
valid_mco_exp_hum = xvalid(geodatos1, model = model_mco_exp_hum)
## xvalid: number of data locations = 394
## xvalid: number of validation locations = 394
## xvalid: performing cross-validation at location ... 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394,
## xvalid: end of cross-validation
sce_mco_exp_hum=sqrt(sum((valid_mco_exp_hum$error)^2))/394;sce_mco_exp_hum
## [1] 0.1940148
valid_mco_spe_hum = xvalid(geodatos1, model = model_mco_spe_hum)
## xvalid: number of data locations = 394
## xvalid: number of validation locations = 394
## xvalid: performing cross-validation at location ... 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394,
## xvalid: end of cross-validation
sce_mco_spe_hum=sqrt(sum((valid_mco_spe_hum$error)^2))/394;sce_mco_spe_hum
## [1] 0.1940149
valid_mco_gaus_hum = xvalid(geodatos1, model = model_mco_gaus_hum)
## xvalid: number of data locations = 394
## xvalid: number of validation locations = 394
## xvalid: performing cross-validation at location ... 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394,
## xvalid: end of cross-validation
sce_mco_gaus_hum=sqrt(sum((valid_mco_gaus_hum$error)^2))/394;sce_mco_gaus_hum
## [1] 0.3426448
Resultados de los 3 modelos en Humedad
Resultado modelo Exponencial: 0.1940148 Resultado modelo Esferico: 0.1940149 Resultado modelo Gauss: 0.3426448