Generar una distribución de Poisson y determinar las probabilidades dadas sus medidias iniciales
Una empresa electrónica observa que el número de componentes que fallan antes de cumplir 100 horas de funcionamiento es una variable aleatoria de Poisson. Si el número promedio de estos fallos es 8
m=25 * (8/100)
m
## [1] 2
px= round(dpois(0:9, lambda = m),4)
px
## [1] 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361 0.0120 0.0034 0.0009 0.0002
ac= round(ppois(q=0:9, lambda = m),4)
ac
## [1] 0.1353 0.4060 0.6767 0.8571 0.9473 0.9834 0.9955 0.9989 0.9998 1.0000
df= data.frame(1:10,0:9, px, ac)
colnames(df)= c("pos","x","px","ac")
df
## pos x px ac
## 1 1 0 0.1353 0.1353
## 2 2 1 0.2707 0.4060
## 3 3 2 0.2707 0.6767
## 4 4 3 0.1804 0.8571
## 5 5 4 0.0902 0.9473
## 6 6 5 0.0361 0.9834
## 7 7 6 0.0120 0.9955
## 8 8 7 0.0034 0.9989
## 9 9 8 0.0009 0.9998
## 10 10 9 0.0002 1.0000
dpois(x=1,m)
## [1] 0.2706706
1-ppois(1,m)
## [1] 0.5939942
m=50 * (8/100)
m
## [1] 4
px= round(dpois(0:9, lambda = m),4)
px
## [1] 0.0183 0.0733 0.1465 0.1954 0.1954 0.1563 0.1042 0.0595 0.0298 0.0132
ac= round(ppois(q=0:9, lambda = m),4)
ac
## [1] 0.0183 0.0916 0.2381 0.4335 0.6288 0.7851 0.8893 0.9489 0.9786 0.9919
df= data.frame(1:10,0:9, px, ac)
colnames(df)= c("pos","x","px","ac")
df
## pos x px ac
## 1 1 0 0.0183 0.0183
## 2 2 1 0.0733 0.0916
## 3 3 2 0.1465 0.2381
## 4 4 3 0.1954 0.4335
## 5 5 4 0.1954 0.6288
## 6 6 5 0.1563 0.7851
## 7 7 6 0.1042 0.8893
## 8 8 7 0.0595 0.9489
## 9 9 8 0.0298 0.9786
## 10 10 9 0.0132 0.9919
dpois(x=2,m)
## [1] 0.1465251
1- ppois(2,m)
## [1] 0.7618967
m=125 * (8/100)
m
## [1] 10
px= round(dpois(0:9, lambda = m),4)
px
## [1] 0.0000 0.0005 0.0023 0.0076 0.0189 0.0378 0.0631 0.0901 0.1126 0.1251
ac= round(ppois(q=0:9, lambda = m),4)
ac
## [1] 0.0000 0.0005 0.0028 0.0103 0.0293 0.0671 0.1301 0.2202 0.3328 0.4579
df= data.frame(1:10,0:9, px, ac)
colnames(df)= c("pos","x","px","ac")
df
## pos x px ac
## 1 1 0 0.0000 0.0000
## 2 2 1 0.0005 0.0005
## 3 3 2 0.0023 0.0028
## 4 4 3 0.0076 0.0103
## 5 5 4 0.0189 0.0293
## 6 6 5 0.0378 0.0671
## 7 7 6 0.0631 0.1301
## 8 8 7 0.0901 0.2202
## 9 9 8 0.1126 0.3328
## 10 10 9 0.1251 0.4579
dpois(2,m)
## [1] 0.002269996
1- ppois(2,m)
## [1] 0.9972306
ppois(5,m)-ppois(2,m)
## [1] 0.06431657