library(dplyr)
library(tidyr)
library(purrr)
library(DT)
# merge docvars and surveydata
surv <- read.csv(file="career_imp.csv", header=T)
surv$Litho <- trimws(surv$Litho, which=c("both"))
# calculate selected factors
surv$engpc <- (surv$Q3Eng_m + surv$Q3Eng_n + surv$Q3Eng_k)/3
surv$engint <- (surv$Q3Eng_i + surv$Q3Eng_h + surv$Q3Eng_j)/3
surv$engrec <- (surv$Q3Eng_f + surv$Q3Eng_e + surv$Q3Eng_d + surv$Q3Eng_g)/4
surv$belong1 <- (surv$Q4a + surv$Q4b + surv$Q4c + surv$Q4g + surv$Q4h)/5
surv$belong2 <- (surv$Q4e + surv$Q4f)/2
surv$engbel <- (surv$Q5d + surv$Q5h + surv$Q5g + surv$Q5e + surv$Q5b)/5
surv$engemp <- (surv$Q5a + surv$Q5c + surv$Q5f)/3
# subset needed columns
names(surv)
surv2 <- subset(surv, select=c(1,185:205,221:228,229:237,319:327,328:335,377:383))
head(surv2)
# calculate demographics
surv2$racenum <- as.numeric(surv2$Q30a) + as.numeric(surv2$Q30b) + as.numeric(surv2$Q30c) + as.numeric(surv2$Q30d) + as.numeric(surv2$Q30e) + as.numeric(surv2$Q30f) + as.numeric(surv2$Q30g) + as.numeric(surv2$Q30h)
surv2$raceeth[surv2$racenum == 0] <- NA
surv2$raceeth[surv2$racenum == 2] <- "Biracial"
surv2$raceeth[surv2$racenum > 2] <- "Multiracial"
surv2$raceeth[surv2$racenum == 1 & surv2$Q30a == 1] <- "Asian"
surv2$raceeth[surv2$racenum == 1 & surv2$Q30b == 1] <- "Black/AA"
surv2$raceeth[surv2$racenum == 1 & surv2$Q30c == 1] <- "Latinx"
surv2$raceeth[surv2$racenum == 1 & surv2$Q30d == 1] <- "MidEast"
surv2$raceeth[surv2$racenum == 1 & surv2$Q30e == 1] <- "NH/PI"
surv2$raceeth[surv2$racenum == 1 & surv2$Q30f == 1] <- "NA/AN"
surv2$raceeth[surv2$racenum == 1 & surv2$Q30g == 1] <- "White"
surv2$raceeth[surv2$racenum == 1 & surv2$Q30h == 1] <- "WriteIn"
table(surv2$raceeth)
surv2$gennum <- as.numeric(surv2$Q31a) + as.numeric(surv2$Q31b) + as.numeric(surv2$Q31c) + as.numeric(surv2$Q31d) + as.numeric(surv2$Q31e) + as.numeric(surv2$Q31f) + as.numeric(surv2$Q31g)
table(surv2$gennum)
surv2$genid[surv2$gennum == 0] <- NA
surv2$genid[surv2$gennum > 1] <- "Multiple Options Selected"
surv2$genid[surv2$gennum == 1 & surv2$Q31a == 1] <- "Female"
surv2$genid[surv2$gennum == 1 & surv2$Q31b == 1] <- "Male"
surv2$genid[surv2$gennum == 1 & surv2$Q31c == 1] <- "Agender"
surv2$genid[surv2$gennum == 1 & surv2$Q31d == 1] <- "Genderqueer"
surv2$genid[surv2$gennum == 1 & surv2$Q31e == 1] <- "Cisgender"
surv2$genid[surv2$gennum == 1 & surv2$Q31f == 1] <- "Transgender"
surv2$genid[surv2$gennum == 1 & surv2$Q31g == 1] <- "Not Listed"
table(surv2$genid)
subset(surv2, surv2$gennum > 1, select=c(28:35))
# career priorities
colnames(surv2)[2:39] <- c("cmn1","cmn2","cmn3","cmn4","cmn5","cmn6","cmn7","cmn8","cmn9","cmn10","cmn11","cmn12","cmn13","cmn14","cmn15","cmn16","cmn17","cmn18","cmn19","cmn20","cmn21",
"career_money",
"career_known",
"career_helping",
"career_supervising",
"career_security",
"career_people",
"career_invent",
"career_developing",
"field_academia",
"field_industry",
"field_entre",
"field_govt",
"field_k12",
"field_law",
"field_med",
"field_nonprofit",
"field_other")
head(surv2)
names(surv2)
surv3 <- subset(surv2, select=c(1:39,57:63))
head(surv3)
names(surv3)
library(psych)
table(surv3$cmn3)
recodeme <- c(1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1)
surv4 <- surv3
surv4[2:22] <- reverse.code(recodeme, surv3[2:22])
head(surv4)
data <- surv4
rm(list=setdiff(ls(), c("data")))
Q15. How important are the following factors for your future career satisfaction?
Several rows with same Litho number but not same values
rm(list=setdiff(ls(), c("data")))
data$car_fin <- (data$career_security + data$career_money)/2
data$car_lead <- (data$career_known + data$career_supervising + data$career_people)/3
data$car_inno <- (data$career_invent + data$career_developing + data$career_helping)/3
data$cmn_stoic <- (data$cmn6 + data$cmn9)/2
data$cmn_hetero <- (data$cmn4 + data$cmn7)/2
data$cmn_risks <- (data$cmn3 + data$cmn18)/2
data$cmn_help <- (data$cmn21 + data$cmn17)/2
data$cmn_violence <- (data$cmn8 + data$cmn12)/2
data$cmn_importance <- (data$cmn11 + data$cmn16)/2
head(data)
## Litho cmn1 cmn2 cmn3 cmn4 cmn5 cmn6 cmn7 cmn8 cmn9 cmn10 cmn11 cmn12
## 1 1028 1 3 3 6 4 4 6 4 3 5 1 4
## 2 1030 4 2 5 6 3 1 6 1 1 3 1 5
## 3 1029 3 6 6 6 3 0 6 3 0 6 0 6
## 4 1054 NA NA NA NA NA NA NA NA NA NA NA NA
## 5 1027 0 1 4 6 3 4 6 0 2 NA NA NA
## 6 1039 1 1 3 5 1 1 5 4 1 3 3 4
## cmn13 cmn14 cmn15 cmn16 cmn17 cmn18 cmn19 cmn20 cmn21 career_money
## 1 1 4 0 0 1 1 6 0 0 1
## 2 2 1 NA 2 4 4 2 1 4 4
## 3 6 3 0 0 0 3 6 3 0 NA
## 4 NA NA NA NA NA NA NA NA NA NA
## 5 NA NA NA NA NA NA NA NA NA NA
## 6 4 2 0 3 1 4 6 1 2 4
## career_known career_helping career_supervising career_security
## 1 2 5 5 5
## 2 4 5 2 4
## 3 NA NA NA NA
## 4 NA NA NA NA
## 5 NA NA NA NA
## 6 3 5 3 5
## career_people career_invent career_developing field_academia
## 1 5 5 5 5
## 2 4 4 4 2
## 3 NA NA NA NA
## 4 NA NA NA NA
## 5 NA NA NA NA
## 6 4 5 5 5
## field_industry field_entre field_govt field_k12 field_law field_med
## 1 5 0 4 0 3 3
## 2 5 4 4 1 4 4
## 3 NA NA NA NA NA NA
## 4 NA NA NA NA NA NA
## 5 NA NA NA NA NA NA
## 6 5 1 1 1 1 4
## field_nonprofit field_other engpc engint engrec belong1 belong2
## 1 4 5 4.000000 4.666667 5.00 4.4 4.5
## 2 1 5 4.333333 4.333333 4.00 3.6 4.5
## 3 NA NA 6.000000 6.000000 3.00 5.8 6.0
## 4 NA NA 4.666667 5.333333 5.00 4.8 5.0
## 5 NA NA 6.000000 5.333333 3.25 4.8 5.5
## 6 2 3 4.666667 5.333333 3.75 4.6 4.0
## engbel engemp car_fin car_lead car_inno cmn_stoic cmn_hetero cmn_risks
## 1 4.6 4.666667 3.0 4.000000 5.000000 3.5 6 2.0
## 2 5.8 5.000000 4.0 3.333333 4.333333 1.0 6 4.5
## 3 6.0 6.000000 NA NA NA 0.0 6 4.5
## 4 5.2 5.000000 NA NA NA NA NA NA
## 5 4.6 5.333333 NA NA NA 3.0 6 NA
## 6 4.6 3.666667 4.5 3.333333 5.000000 1.0 5 3.5
## cmn_help cmn_violence cmn_importance
## 1 0.5 4.0 0.5
## 2 4.0 3.0 1.5
## 3 0.0 4.5 0.0
## 4 NA NA NA
## 5 NA NA NA
## 6 1.5 4.0 3.0
## Normality
d <- na.omit(data[40:55])
norm <- describe(d)
datatable(norm) %>%
formatRound(1:13) %>%
formatStyle(11:12, color = styleInterval(c(-2, 2), c('red', 'black', 'red')))
kurt <- cbind.data.frame(d$engint, d$car_fin, d$engbel, d$car_inno)
library(Hmisc)
hist.data.frame(kurt)
## Detect Outliers
d1 <- na.omit(data[40:55])
m_dist <- mahalanobis(d1, colMeans(d1), cov(d1))
d1$MD <- round(m_dist, 1)
plot(d1$MD)
d1$outlier <- "No"
d1$outlier[d1$MD > 40] <- "Yes"
table(d1$outlier)
##
## No Yes
## 2290 86
d$outlier <- d1$outlier
d2 <- subset(d1, outlier == "No", select=c(1:16))
d3 <- as.data.frame(scale(d2, center=TRUE, scale=TRUE))
d4 <- subset(d, outlier == "No", select=c(1:16))
allcor <- corr.test(d4, use = "pairwise", adjust = "holm")
allcor_r <- data.frame(allcor$r)
datatable(allcor_r) %>%
formatRound(1:16) %>%
formatStyle(1:16, backgroundColor = styleInterval(.75, c(none, 'yellow')))
library(corrplot)
col4 <- colorRampPalette(c("#7F0000", "red", "#FF7F00", "yellow", "#7FFF7F",
"cyan", "#007FFF", "blue", "#00007F"))
corrplot(allcor$r, p.mat = allcor$p, insig = "blank",
method = "color", order = "hclust", col = col4(10))
library(sjPlot)
library(car)
d <- d4
Y <- d$belong1
fit <- lm(Y ~ d$cmn_help + d$cmn_importance + d$cmn_hetero + d$cmn_risks + d$cmn_violence + d$cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ d$cmn_help + d$cmn_importance + d$cmn_hetero +
## d$cmn_risks + d$cmn_violence + d$cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7482 -0.6406 0.2038 0.9129 2.1466
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.44377 0.13535 32.832 < 2e-16 ***
## d$cmn_help -0.10637 0.01883 -5.649 1.81e-08 ***
## d$cmn_importance -0.13266 0.02138 -6.205 6.48e-10 ***
## d$cmn_hetero 0.04629 0.01393 3.322 0.000907 ***
## d$cmn_risks 0.14166 0.03492 4.057 5.14e-05 ***
## d$cmn_violence 0.05018 0.02957 1.697 0.089890 .
## d$cmn_stoic -0.01877 0.01548 -1.212 0.225466
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.201 on 2283 degrees of freedom
## Multiple R-squared: 0.04776, Adjusted R-squared: 0.04526
## F-statistic: 19.08 on 6 and 2283 DF, p-value: < 2.2e-16
# diagnostics
# distribution of studentized residuals
library(MASS)
layout(matrix(c(1,2,3,4),2,2))
plot(fit)
layout(matrix(c(1), byrow = TRUE))
# Evaluate Collinearity
vif(fit) # variance inflation factors
## d$cmn_help d$cmn_importance d$cmn_hetero d$cmn_risks
## 1.149100 1.144091 1.061365 1.083872
## d$cmn_violence d$cmn_stoic
## 1.115697 1.054945
sqrt(vif(fit)) > 2 # problem?
## d$cmn_help d$cmn_importance d$cmn_hetero d$cmn_risks
## FALSE FALSE FALSE FALSE
## d$cmn_violence d$cmn_stoic
## FALSE FALSE
summary(fit)
##
## Call:
## lm(formula = Y ~ d$cmn_help + d$cmn_importance + d$cmn_hetero +
## d$cmn_risks + d$cmn_violence + d$cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7482 -0.6406 0.2038 0.9129 2.1466
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.44377 0.13535 32.832 < 2e-16 ***
## d$cmn_help -0.10637 0.01883 -5.649 1.81e-08 ***
## d$cmn_importance -0.13266 0.02138 -6.205 6.48e-10 ***
## d$cmn_hetero 0.04629 0.01393 3.322 0.000907 ***
## d$cmn_risks 0.14166 0.03492 4.057 5.14e-05 ***
## d$cmn_violence 0.05018 0.02957 1.697 0.089890 .
## d$cmn_stoic -0.01877 0.01548 -1.212 0.225466
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.201 on 2283 degrees of freedom
## Multiple R-squared: 0.04776, Adjusted R-squared: 0.04526
## F-statistic: 19.08 on 6 and 2283 DF, p-value: < 2.2e-16
plot_model(fit, type = "est") #output
##########
corrplot(allcor$r, p.mat = allcor$p, insig = "blank",
method = "color", order = "hclust", col = col4(10))
Y <- d$belong2
fit <- lm(Y ~ d$cmn_help + d$cmn_importance + d$cmn_hetero + d$cmn_risks + d$cmn_violence + d$cmn_stoic, d=d)
# diagnostics
layout(matrix(c(1,2,3,4),2,2))
plot(fit)
layout(matrix(c(1), byrow = TRUE))
# Evaluate Collinearity
vif(fit) # variance inflation factors
## d$cmn_help d$cmn_importance d$cmn_hetero d$cmn_risks
## 1.149100 1.144091 1.061365 1.083872
## d$cmn_violence d$cmn_stoic
## 1.115697 1.054945
sqrt(vif(fit)) > 2 # problem?
## d$cmn_help d$cmn_importance d$cmn_hetero d$cmn_risks
## FALSE FALSE FALSE FALSE
## d$cmn_violence d$cmn_stoic
## FALSE FALSE
summary(fit)
##
## Call:
## lm(formula = Y ~ d$cmn_help + d$cmn_importance + d$cmn_hetero +
## d$cmn_risks + d$cmn_violence + d$cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6895 -0.7104 0.1603 0.9326 2.4558
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.443759 0.133177 33.367 < 2e-16 ***
## d$cmn_help -0.127450 0.018528 -6.879 7.77e-12 ***
## d$cmn_importance -0.121558 0.021038 -5.778 8.58e-09 ***
## d$cmn_hetero 0.042474 0.013709 3.098 0.00197 **
## d$cmn_risks 0.099528 0.034358 2.897 0.00381 **
## d$cmn_violence 0.077864 0.029100 2.676 0.00751 **
## d$cmn_stoic 0.009415 0.015231 0.618 0.53655
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.182 on 2283 degrees of freedom
## Multiple R-squared: 0.05173, Adjusted R-squared: 0.04924
## F-statistic: 20.76 on 6 and 2283 DF, p-value: < 2.2e-16
plot_model(fit, type = "est") #output
##########
corrplot(allcor$r, p.mat = allcor$p, insig = "blank",
method = "color", order = "hclust", col = col4(10))
Y <- (d$engint + d$engrec + d$engpc)/3
fit <- lm(Y ~ d$cmn_help + d$cmn_importance + d$cmn_hetero + d$cmn_risks + d$cmn_violence + d$cmn_stoic, d=d)
# diagnostics
layout(matrix(c(1,2,3,4),2,2))
plot(fit)
layout(matrix(c(1), byrow = TRUE))
# Evaluate Collinearity
vif(fit) # variance inflation factors
## d$cmn_help d$cmn_importance d$cmn_hetero d$cmn_risks
## 1.149100 1.144091 1.061365 1.083872
## d$cmn_violence d$cmn_stoic
## 1.115697 1.054945
sqrt(vif(fit)) > 2 # problem?
## d$cmn_help d$cmn_importance d$cmn_hetero d$cmn_risks
## FALSE FALSE FALSE FALSE
## d$cmn_violence d$cmn_stoic
## FALSE FALSE
summary(fit)
##
## Call:
## lm(formula = Y ~ d$cmn_help + d$cmn_importance + d$cmn_hetero +
## d$cmn_risks + d$cmn_violence + d$cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3961 -0.5435 0.0882 0.6384 2.0434
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.272641 0.101372 42.148 < 2e-16 ***
## d$cmn_help -0.059823 0.014104 -4.242 2.31e-05 ***
## d$cmn_importance -0.120724 0.016013 -7.539 6.79e-14 ***
## d$cmn_hetero 0.030441 0.010435 2.917 0.00357 **
## d$cmn_risks 0.104338 0.026153 3.989 6.83e-05 ***
## d$cmn_violence 0.050284 0.022151 2.270 0.02329 *
## d$cmn_stoic 0.008556 0.011594 0.738 0.46062
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8994 on 2283 degrees of freedom
## Multiple R-squared: 0.05035, Adjusted R-squared: 0.04785
## F-statistic: 20.17 on 6 and 2283 DF, p-value: < 2.2e-16
plot_model(fit, type = "est") #output
##########
d$id <- (d$engint + d$engrec + d$engpc)/3
Y <- d$id
fit <- lm(Y ~ d$car_fin + d$car_inno + d$car_lead, d=d)
# diagnostics
layout(matrix(c(1,2,3,4),2,2))
plot(fit)
layout(matrix(c(1), byrow = TRUE))
# Evaluate Collinearity
vif(fit) # variance inflation factors
## d$car_fin d$car_inno d$car_lead
## 1.161333 1.294814 1.340308
sqrt(vif(fit)) > 2 # problem?
## d$car_fin d$car_inno d$car_lead
## FALSE FALSE FALSE
summary(fit)
##
## Call:
## lm(formula = Y ~ d$car_fin + d$car_inno + d$car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2239 -0.4911 0.0824 0.5687 2.8504
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.28192 0.11368 20.074 <2e-16 ***
## d$car_fin 0.03049 0.01964 1.552 0.121
## d$car_inno 0.44670 0.02144 20.839 <2e-16 ***
## d$car_lead -0.03570 0.01772 -2.015 0.044 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8294 on 2286 degrees of freedom
## Multiple R-squared: 0.1913, Adjusted R-squared: 0.1902
## F-statistic: 180.2 on 3 and 2286 DF, p-value: < 2.2e-16
plot_model(fit, type = "est") #output
Y <- d$belong1
fit <- lm(Y ~ d$car_fin + d$car_inno + d$car_lead, d=d)
# diagnostics
layout(matrix(c(1,2,3,4),2,2))
plot(fit)
layout(matrix(c(1), byrow = TRUE))
# Evaluate Collinearity
vif(fit) # variance inflation factors
## d$car_fin d$car_inno d$car_lead
## 1.161333 1.294814 1.340308
sqrt(vif(fit)) > 2 # problem?
## d$car_fin d$car_inno d$car_lead
## FALSE FALSE FALSE
summary(fit)
##
## Call:
## lm(formula = Y ~ d$car_fin + d$car_inno + d$car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7845 -0.5665 0.1917 0.7586 3.2305
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.60296 0.15158 10.575 <2e-16 ***
## d$car_fin 0.07080 0.02618 2.704 0.0069 **
## d$car_inno 0.59017 0.02858 20.649 <2e-16 ***
## d$car_lead -0.06001 0.02362 -2.540 0.0111 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.106 on 2286 degrees of freedom
## Multiple R-squared: 0.1912, Adjusted R-squared: 0.1901
## F-statistic: 180.1 on 3 and 2286 DF, p-value: < 2.2e-16
plot_model(fit, type = "est") #output
Y <- d$belong2
fit <- lm(Y ~ d$car_fin + d$car_inno + d$car_lead, d=d)
# diagnostics
layout(matrix(c(1,2,3,4),2,2))
plot(fit)
layout(matrix(c(1), byrow = TRUE))
# Evaluate Collinearity
vif(fit) # variance inflation factors
## d$car_fin d$car_inno d$car_lead
## 1.161333 1.294814 1.340308
sqrt(vif(fit)) > 2 # problem?
## d$car_fin d$car_inno d$car_lead
## FALSE FALSE FALSE
summary(fit)
##
## Call:
## lm(formula = Y ~ d$car_fin + d$car_inno + d$car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1097 -0.6611 0.1593 0.9011 2.7186
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.401712 0.156117 15.384 <2e-16 ***
## d$car_fin 0.003308 0.026968 0.123 0.902
## d$car_inno 0.464748 0.029438 15.788 <2e-16 ***
## d$car_lead -0.027380 0.024330 -1.125 0.261
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.139 on 2286 degrees of freedom
## Multiple R-squared: 0.1175, Adjusted R-squared: 0.1164
## F-statistic: 101.5 on 3 and 2286 DF, p-value: < 2.2e-16
plot_model(fit, type = "est") #output
###########
head(data)
## Litho cmn1 cmn2 cmn3 cmn4 cmn5 cmn6 cmn7 cmn8 cmn9 cmn10 cmn11 cmn12
## 1 1028 1 3 3 6 4 4 6 4 3 5 1 4
## 2 1030 4 2 5 6 3 1 6 1 1 3 1 5
## 3 1029 3 6 6 6 3 0 6 3 0 6 0 6
## 4 1054 NA NA NA NA NA NA NA NA NA NA NA NA
## 5 1027 0 1 4 6 3 4 6 0 2 NA NA NA
## 6 1039 1 1 3 5 1 1 5 4 1 3 3 4
## cmn13 cmn14 cmn15 cmn16 cmn17 cmn18 cmn19 cmn20 cmn21 career_money
## 1 1 4 0 0 1 1 6 0 0 1
## 2 2 1 NA 2 4 4 2 1 4 4
## 3 6 3 0 0 0 3 6 3 0 NA
## 4 NA NA NA NA NA NA NA NA NA NA
## 5 NA NA NA NA NA NA NA NA NA NA
## 6 4 2 0 3 1 4 6 1 2 4
## career_known career_helping career_supervising career_security
## 1 2 5 5 5
## 2 4 5 2 4
## 3 NA NA NA NA
## 4 NA NA NA NA
## 5 NA NA NA NA
## 6 3 5 3 5
## career_people career_invent career_developing field_academia
## 1 5 5 5 5
## 2 4 4 4 2
## 3 NA NA NA NA
## 4 NA NA NA NA
## 5 NA NA NA NA
## 6 4 5 5 5
## field_industry field_entre field_govt field_k12 field_law field_med
## 1 5 0 4 0 3 3
## 2 5 4 4 1 4 4
## 3 NA NA NA NA NA NA
## 4 NA NA NA NA NA NA
## 5 NA NA NA NA NA NA
## 6 5 1 1 1 1 4
## field_nonprofit field_other engpc engint engrec belong1 belong2
## 1 4 5 4.000000 4.666667 5.00 4.4 4.5
## 2 1 5 4.333333 4.333333 4.00 3.6 4.5
## 3 NA NA 6.000000 6.000000 3.00 5.8 6.0
## 4 NA NA 4.666667 5.333333 5.00 4.8 5.0
## 5 NA NA 6.000000 5.333333 3.25 4.8 5.5
## 6 2 3 4.666667 5.333333 3.75 4.6 4.0
## engbel engemp car_fin car_lead car_inno cmn_stoic cmn_hetero cmn_risks
## 1 4.6 4.666667 3.0 4.000000 5.000000 3.5 6 2.0
## 2 5.8 5.000000 4.0 3.333333 4.333333 1.0 6 4.5
## 3 6.0 6.000000 NA NA NA 0.0 6 4.5
## 4 5.2 5.000000 NA NA NA NA NA NA
## 5 4.6 5.333333 NA NA NA 3.0 6 NA
## 6 4.6 3.666667 4.5 3.333333 5.000000 1.0 5 3.5
## cmn_help cmn_violence cmn_importance
## 1 0.5 4.0 0.5
## 2 4.0 3.0 1.5
## 3 0.0 4.5 0.0
## 4 NA NA NA
## 5 NA NA NA
## 6 1.5 4.0 3.0