Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset).
The training data for this project are available here:
https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv
The test data are available here:
https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv
The data for this project come from this source: http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har. If you use the document you create for this class for any purpose please cite them as they have been very generous in allowing their data to be used for this kind of assignment.
library(caret)
library(mlbench)
library(tidyverse)
library(doParallel)
library(GGally)
sessionInfo()
## R version 4.0.1 (2020-06-06)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] GGally_2.0.0 doParallel_1.0.15 iterators_1.0.12 foreach_1.5.0
## [5] forcats_0.5.0 stringr_1.4.0 dplyr_1.0.0 purrr_0.3.4
## [9] readr_1.3.1 tidyr_1.1.0 tibble_3.0.1 tidyverse_1.3.0
## [13] mlbench_2.1-1 caret_6.0-86 ggplot2_3.3.1 lattice_0.20-41
##
## loaded via a namespace (and not attached):
## [1] httr_1.4.1 jsonlite_1.6.1 splines_4.0.1
## [4] prodlim_2019.11.13 modelr_0.1.8 assertthat_0.2.1
## [7] stats4_4.0.1 blob_1.2.1 cellranger_1.1.0
## [10] yaml_2.2.1 ipred_0.9-9 pillar_1.4.4
## [13] backports_1.1.7 glue_1.4.1 pROC_1.16.2
## [16] digest_0.6.25 RColorBrewer_1.1-2 rvest_0.3.5
## [19] colorspace_1.4-1 recipes_0.1.12 htmltools_0.4.0
## [22] Matrix_1.2-18 plyr_1.8.6 timeDate_3043.102
## [25] pkgconfig_2.0.3 broom_0.5.6 haven_2.3.1
## [28] scales_1.1.1 gower_0.2.1 lava_1.6.7
## [31] generics_0.0.2 ellipsis_0.3.1 withr_2.2.0
## [34] nnet_7.3-14 cli_2.0.2 survival_3.1-12
## [37] magrittr_1.5 crayon_1.3.4 readxl_1.3.1
## [40] evaluate_0.14 fs_1.4.1 fansi_0.4.1
## [43] nlme_3.1-147 MASS_7.3-51.6 xml2_1.3.2
## [46] class_7.3-17 tools_4.0.1 data.table_1.12.8
## [49] hms_0.5.3 lifecycle_0.2.0 munsell_0.5.0
## [52] reprex_0.3.0 compiler_4.0.1 rlang_0.4.6
## [55] grid_4.0.1 rstudioapi_0.11 rmarkdown_2.2
## [58] gtable_0.3.0 ModelMetrics_1.2.2.2 codetools_0.2-16
## [61] reshape_0.8.8 DBI_1.1.0 reshape2_1.4.4
## [64] R6_2.4.1 lubridate_1.7.9 knitr_1.28
## [67] stringi_1.4.6 Rcpp_1.0.4.6 vctrs_0.3.1
## [70] rpart_4.1-15 dbplyr_1.4.4 tidyselect_1.1.0
## [73] xfun_0.14
if (!file.exists("data")) {
dir.create("data")
}
download.file("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv",
destfile = "./data/pml-training.csv")
download.file("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv",
destfile = "./data/pml-testing.csv")
train_data <-read.csv(
"./data/pml-training.csv",
header = TRUE,
na.strings = c(""," ", "NA","#DIV/0!"))
testing_data <- read.csv(
"./data/pml-testing.csv",
header = TRUE,
na.strings = c(""," ", "NA", "#DIV/0!"))
naAnalysis <- train_data %>%
purrr::map_df(function(x) round(mean(is.na(x)),digits = 2)*100) %>%
gather(EVType, naAverage)
naAnalysis %>% ggplot(aes(x = EVType, y = naAverage)) %>% +
geom_point(aes(reorder(EVType, naAverage))) + theme(axis.text.x =
element_text(angle = 90, hjust = .1)) + labs(x = "Event Type",
y = "NA Average (%)", title = "Missing Data Analysis")
There are more than 50% of variables with greater than 98% missing values. We will proceed in removing them in out analysis.
list_NA <-naAnalysis %>% filter(naAverage >0)
# data frame showing our variables with missing values
training_set <- train_data %>% select(-list_NA$EVType)
# removing variables with missing values
train_set <- training_set %>% select(-c(1:7))
dim(train_set)
## [1] 19622 53
The data are group in 4 separated in 13 variables. See below:
belt<-names(train_set)[1:13]
"arm"<-names(train_set)[14:26]
dumbbell<-names(train_set)[27:39]
forearm<-names(train_set)[40:52]
data.frame(belt, arm, dumbbell, forearm)
## belt arm dumbbell forearm
## 1 roll_belt roll_arm roll_dumbbell roll_forearm
## 2 pitch_belt pitch_arm pitch_dumbbell pitch_forearm
## 3 yaw_belt yaw_arm yaw_dumbbell yaw_forearm
## 4 total_accel_belt total_accel_arm total_accel_dumbbell total_accel_forearm
## 5 gyros_belt_x gyros_arm_x gyros_dumbbell_x gyros_forearm_x
## 6 gyros_belt_y gyros_arm_y gyros_dumbbell_y gyros_forearm_y
## 7 gyros_belt_z gyros_arm_z gyros_dumbbell_z gyros_forearm_z
## 8 accel_belt_x accel_arm_x accel_dumbbell_x accel_forearm_x
## 9 accel_belt_y accel_arm_y accel_dumbbell_y accel_forearm_y
## 10 accel_belt_z accel_arm_z accel_dumbbell_z accel_forearm_z
## 11 magnet_belt_x magnet_arm_x magnet_dumbbell_x magnet_forearm_x
## 12 magnet_belt_y magnet_arm_y magnet_dumbbell_y magnet_forearm_y
## 13 magnet_belt_z magnet_arm_z magnet_dumbbell_z magnet_forearm_z
We can visualize the correlation using ggpairs using GGally package as follows:
cl <- makePSOCKcluster(5)
registerDoParallel(cl)
ggpairs(data = train_set, columns = 1:6, ggplot2::aes(colour = classe, alpha=.3))
# change columns numbers to see remaining correlation pair plot
# i.e. columns = 7:13
stopCluster(cl)
Variables 40:46
cl <- makePSOCKcluster(5)
registerDoParallel(cl)
ggpairs(data = train_set, columns = 40:46, ggplot2::aes(colour = classe, alpha=.3))
# change columns numbers to see remaining correlation pair plot
# i.e. columns = 6:10
stopCluster(cl)
We will use createDataPartition function from the caret package to split the data 75/25, training and test respectively.
set.seed(420)
final_set <- createDataPartition(train_set$classe, p=.75, list= FALSE)
training_ls <-train_set[final_set,]
testing_ls <- train_set[-final_set,]
dim(training_ls)
## [1] 14718 53
dim(testing_ls)
## [1] 4904 53
We will use Random Forest and Naive bayes to construct our model. We will not add any traincontrol in our model and simply accept the default values. We will also use doparallel package to use all cpu cores to speed up the process. I’ve been researching gpu access without any luck. gputools and gpuR seem to have been archieved and cannot use it on r 4.0 version.
set.seed(420)
cl <- makePSOCKcluster(5)
registerDoParallel(cl)
modelfit <- train(data=training_ls, classe~., method="rf")
stopCluster(cl)
g1<- plot(varImp(modelfit), top = 10, main = "Fig.a - Top 10 Predictors for Classe")
g1
final_prediction <- predict(modelfit, newdata = testing_ls)
testing_ls$classe<-as.factor(testing_ls$classe)
confusionMatrix(final_prediction, testing_ls$classe)
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 1395 7 0 0 0
## B 0 939 6 0 0
## C 0 3 845 11 0
## D 0 0 4 792 0
## E 0 0 0 1 901
##
## Overall Statistics
##
## Accuracy : 0.9935
## 95% CI : (0.9908, 0.9955)
## No Information Rate : 0.2845
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9917
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 1.0000 0.9895 0.9883 0.9851 1.0000
## Specificity 0.9980 0.9985 0.9965 0.9990 0.9998
## Pos Pred Value 0.9950 0.9937 0.9837 0.9950 0.9989
## Neg Pred Value 1.0000 0.9975 0.9975 0.9971 1.0000
## Prevalence 0.2845 0.1935 0.1743 0.1639 0.1837
## Detection Rate 0.2845 0.1915 0.1723 0.1615 0.1837
## Detection Prevalence 0.2859 0.1927 0.1752 0.1623 0.1839
## Balanced Accuracy 0.9990 0.9940 0.9924 0.9920 0.9999
set.seed(420)
cl <- makePSOCKcluster(5)
registerDoParallel(cl)
modelfit_nb <- train(data=training_ls, classe~., method="nb")
stopCluster(cl)
set.seed(420)
prediction_nb <- predict(modelfit_nb, newdata = testing_ls)
table(final_prediction, prediction_nb)
## prediction_nb
## final_prediction A B C D E
## A 1239 26 39 91 7
## B 184 641 63 45 12
## C 217 48 549 42 3
## D 149 4 96 496 51
## E 52 78 33 31 708
confusionMatrix(prediction_nb, testing_ls$classe)
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 1233 192 214 150 52
## B 26 639 50 4 78
## C 38 63 548 98 33
## D 91 43 40 501 30
## E 7 12 3 51 708
##
## Overall Statistics
##
## Accuracy : 0.74
## 95% CI : (0.7275, 0.7522)
## No Information Rate : 0.2845
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.6672
##
## Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 0.8839 0.6733 0.6409 0.6231 0.7858
## Specificity 0.8267 0.9601 0.9427 0.9502 0.9818
## Pos Pred Value 0.6697 0.8018 0.7026 0.7106 0.9065
## Neg Pred Value 0.9471 0.9245 0.9256 0.9278 0.9532
## Prevalence 0.2845 0.1935 0.1743 0.1639 0.1837
## Detection Rate 0.2514 0.1303 0.1117 0.1022 0.1444
## Detection Prevalence 0.3754 0.1625 0.1591 0.1438 0.1593
## Balanced Accuracy 0.8553 0.8167 0.7918 0.7867 0.8838
The accuracy of our nb is .74 vs. rf at .99. We will run both predictions on our testing_data we downloaded from the web and compare. We do not have the variable classe in our testing_data.
modelfit which uses random forest “rf” model has a better fit compared with naives bayes “nb”.
Done_rf <- (predict(modelfit, newdata = testing_data))
Done_nb <- (predict(modelfit_nb, newdata = testing_data))
Done_rf
## [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E
table(Done_rf)
## Done_rf
## A B C D E
## 7 8 1 1 3
Done_nb
## [1] A A A A A E D C A A A A B A E B A B A B
## Levels: A B C D E
table(Done_nb)
## Done_nb
## A B C D E
## 12 4 1 1 2
table(Done_rf, Done_nb)
## Done_nb
## Done_rf A B C D E
## A 7 0 0 0 0
## B 4 3 1 0 0
## C 1 0 0 0 0
## D 0 0 0 1 0
## E 0 1 0 0 2