Statistical Methods for Reliability Data

Chapter 5 - Other Parametric Distributions

W. Q. Meeker and L. A. Escobar

15 June 2020

OVERVIEW

This chapter explains…

5.2 - Gamma Distribution

Gamma Distribution App

SMRD::smrd_app("distribution_gamma")

5.3 - Generalized Gamma Distribution

GENG Distribution App

SMRD::smrd_app("distribution_geng")

5.4 - Extendend Generalized Gamma Distribution

EGENG Distribution App

SMRD::smrd_app("distribution_egeng")

5.6 - Inverse Gaussian Distribution

IGAU Distribution App

SMRD::smrd_app("distribution_igau")

5.7 - Birnbaum-Saunders Distribution

Birnbaum-Saunders Distribution App

SMRD::smrd_app("distribution_bisa")

5.8 - Gompertz-Makeham Distribution

Gompertz-Makeham Distribution App

SMRD::smrd_app("distribution_goma")

5.10 - Distributions With a Threshold Parameter

5.10.1 - Background

Figure 5.6

par(lwd = 2, family = 'serif', las = 1, 
    mgp = c(2.25,0.7, 0), tcl = -0.3, 
    font.lab = 2, font = 2, font.axis = 2, 
    las = 1, tck = 0.015)

curve(dlnorm(x, 0, 0.5), 
      col = 1, 
      n = 300, 
      xlim = c(0,6), 
      ylim = c(0,1.05), 
      xlab = 't', 
      ylab = 'f(t)')
curve(dlnorm(x-1,0,0.5), col = 2, n = 300, add = T)
curve(dlnorm(x-2,0,0.5), col = 3, n = 300, add = T)
curve(dlnorm(x-3,0,0.5), col = 4, n = 300, add = T)

text(x = seq(.797,3.797),
     y = rep(1,4), 
     labels = c(parse(text = 'gamma==0'),
                parse(text = 'gamma==1'),
                parse(text = 'gamma==2'),
                parse(text = 'gamma==3')), 
                col = 1:4, 
                font = rep(2,4))

5.11.2 Generalized Threshold-Scale cdf & pdf

Functional form of the CDF

\[ F(t,\alpha, \sigma,\xi)=\begin{cases}\Phi\left[\log(1+\sigma z)^{1/\sigma}\right] &\mbox{for } \sigma>0, z>-1/\sigma\\\\ \Phi(z) &\mbox{for } \sigma=0,z\in(\infty,\infty)\\\\ 1-\Phi\left[\log(1+\sigma z)^{1/|\sigma|}\right] &\mbox{for } \sigma<0, z<-1/\sigma\end{cases} \]

\[ \begin{aligned} \Phi &\equiv \text{ Form of generic cdf with standard parameter values}\\\\ z&=\frac{t-\alpha}{\xi}\\ \sigma &\in(-\infty,\infty)\\\\ \alpha &\in (-\infty,\infty)\\\\ \xi&>0 \end{aligned} \]

Functional form of the PDF

\[ f(t,\alpha, \sigma,\xi)=\begin{cases}\phi\left[\log(1+\sigma z)^{1/|\sigma|}\right]\times \frac{1}{\xi(1+\sigma z)} &\mbox{for } \sigma\ne 0\\\\ \phi(z) \times \frac{1}{\xi} &\mbox{for } \sigma=0\\ \end{cases} \]

\[ t_{p}=\alpha +\xi\times w(\sigma,p) \]

\[ w(\sigma,p)=\begin{cases}\frac{\exp\left[\sigma\Phi^{-1}(p)\right]-1}{\sigma} &\mbox{for } \sigma>0\\\\ \Phi^{-1}(p) &\mbox{for } \sigma=0\\\\ \frac{\exp\left[|\sigma|\Phi^{-1}(1-p)\right]-1}{\sigma} &\mbox{for } \sigma<0\end{cases} \]

5.11.4 Special Cases of the GETS Distribution

\[ \begin{aligned} F(t|\alpha,0,\xi)&=\Phi_{nor}\left[\frac{t-\alpha}{\xi}\right]\\\\ F(t|\alpha,0,\xi)&=\Phi_{sev}\left[\frac{t-\alpha}{\xi}\right]\\\\ F(t|\alpha,0,\xi)&=\Phi_{lev}\left[\frac{t-\alpha}{\xi}\right] \end{aligned} \]

\[ \begin{aligned} F(t|\alpha,0,\xi)&=\Phi_{nor}\left[\frac{\log(t-\gamma)-\alpha}{\xi}\right]\\\\ F(t|\alpha,0,\xi)&=\Phi_{sev}\left[\frac{\log(t-\gamma)-\alpha}{\xi}\right]\\\\ F(t|\alpha,0,\xi)&=\Phi_{lev}\left[\frac{\log(t-\gamma)-\alpha}{\xi}\right] \end{aligned} \]

5.11.4

SMRD::smrd_app("distribution_norgets")
SMRD::smrd_app("distribution_sevgets")
SMRD::smrd_app("distribution_levgets")

5.12 - Other Methods of Deriving Failure-Time Distributions

Three primary types

Mixture Distributions

Finite Mixture Distributions

\[ F(N|\mu,\sigma)=0.4\times F(N|\mu_{A},\sigma) + 0.6\times F(N|\mu_{B},\sigma) \]

Continuous Mixture Distributions

\[ \begin{aligned} F(N|\mu,\sigma,\mathbf{\theta})=P(N\le n)&=\int_{-\infty}^{\infty}P(N\le n|\mu=\mu_{1},\sigma)f_{\mu_{1}}(\mu_1|\mathbf{\theta})d\mu_{1}\\\\ &=\int_{-\infty}^{\infty}F_{N|\mu=\mu_{1}}(n|\mathbf{\mu},\sigma,\mathbf{\theta})f_{\mu_{1}}(\mu_1|\mathbf{\theta})d\mu_{1} \end{aligned} \]

\[ f(N|\mu,\sigma,\mathbf{\theta})=\int_{-\infty}^{\infty}f_{N|\mu=\mu_{1}}(n|\mathbf{\mu},\sigma,\mathbf{\theta})f_{\mu_{1}}(\mu_1|\mathbf{\theta})d\mu_{1} \]

Power law distributions

background

Power law distributions: Minimum-Type Distributions

\[ P(T_{system}\le t)=1-P(T_{A}>t)\cap P(T_{B}>t)\cap P(T_{C}>t)\cap P(T_{D}>t)\cap P(T_{E}>t) \]

\[ P(T_{A}>t)\perp P(T_{B}>t)\perp P(T_{C}>t)\perp P(T_{D}>t)\perp P(T_{E}>t) \]

\[ P(T_{system}\le t)=1-P(T_{A}>t)\times P(T_{B}>t)\times P(T_{C}>t)\times P(T_{D}>t)\times P(T_{E}>t) \]

\[ \begin{aligned} F_{system}(T)&=1-\exp\left[-0.5t\right]\exp\left[-0.5t\right]\exp\left[-0.5t\right]\exp\left[-0.5t\right]\exp\left[-0.5t\right]\\\\ &=1-\exp\left[-(0.5+0.5+0.5+0.5+0.5)t\right]\\\\ &=1-\exp\left[-2.5t\right] \end{aligned} \]

For items in series, \(S(t_{i})\le\min S_{i}(t_{i})\)

par(family = "serif", bg = NA)
curve(pexp(x,0.5), yaxt = "n", xlab = "Time", ylab = "F(t)", lwd = 2, ylim = c(0,1))
curve(pexp(x,1.0), col = 2, lwd = 2, add = TRUE)
curve(pexp(x,1.5), col = 3, lwd = 2, add = TRUE)
curve(pexp(x,2.0), col = 4, lwd = 2, add = TRUE)
curve(pexp(x,2.5), col = 5, lwd = 2, add = TRUE)
axis(side = 2, las = 1)
box(lwd = 1.5)
legend("topleft", c(expression(theta==0.5),expression(theta==1.0),
                    expression(theta==1.5),expression(theta==2.0), 
                    expression(theta==2.5)), 
       lwd = 2, col = 1:5, bty = "n")

Power law distributions: Maximum-Type Distributions

background

\[ P(T_{system}\le t)=P(T_{B}\le t)\cap P(T_{C}\le t)\cap P(T_{D}\le t) \]

\[ P(T_{B}\le t)\perp P(T_{C}\le t)\perp P(T_{D}\le t) \]

\[ \begin{aligned} P(T_{system}\le t)&=P(T_{B}\le t)\times P(T_{C}\le t)\times P(T_{D}\le t)\\\\ &=\prod_{i=1}^n P(T_{i}\le t) \end{aligned} \]

\[ \begin{aligned} F_{system}(T)&=(1-\exp\left[-0.5t\right])(1-\exp [-0.5t])(1-\exp \left[-0.5t\right])\\\\ &=1 - 2\exp [-0.5t]+ \exp [-t] (1-\exp [-0.5t])\\\\ &=1-3\exp\left[-0.5t\right]+3\exp [-t]-\exp [-1.5t] \end{aligned} \]

For items in parallel, \(S(t_{i})\ge\max S_{i}(t_{i})\)

par(family = "serif", las = 1)
curve(pexp(x,0.5), 
      xlab = "Time", 
      ylab = "F(t)", 
      lwd = 2, 
      ylim = c(0,1))

curve(1-2*(1-pexp(x,0.5))+(1-pexp(x,1.0)), 
      col = 2, 
      lwd = 2, 
      add = TRUE)
curve(pexp(x,0.5)*(1-2*(1-pexp(x,0.5))+(1-pexp(x,1.0))), 
      col = 3, 
      lwd = 2, 
      add = TRUE)
legend("topleft", 
       c(expression("F(t)"[1]),
         expression("F(t)"[2]),
         expression("F(t)"[3])), 
       lwd = 2, col = 1:5, bty = "n")