W. Q. Meeker and L. A. Escobar
15 June 2020
More advanced parametric distributions than those described in Chapter 4
The properties and importance of parametric distributions that cannot be transformed into a location-scale distribution
Threshold-parameter distributions
How some statistical distributions can be determined by applying basic ideas of probability theory to physical properties of a system or population of units
For the distributions presented in this chapter no closed-form solution exists for the hazard rate function
The are several instances in this presentation where you will copy/paste code into an R console to render a shiny application to
Many of the distributions introduced up to this point are defined on \(\mathcal{R}^+\)
For these distributions, \(F(t)\) begins increasing at \(t=0\)
Each of these distributions can be generalized by adding a threshold parameter,\(\gamma\ge0\)
If \(\gamma>0\) the entire distribution is shifted by a value equal to \(\gamma\)
par(lwd = 2, family = 'serif', las = 1,
mgp = c(2.25,0.7, 0), tcl = -0.3,
font.lab = 2, font = 2, font.axis = 2,
las = 1, tck = 0.015)
curve(dlnorm(x, 0, 0.5),
col = 1,
n = 300,
xlim = c(0,6),
ylim = c(0,1.05),
xlab = 't',
ylab = 'f(t)')
curve(dlnorm(x-1,0,0.5), col = 2, n = 300, add = T)
curve(dlnorm(x-2,0,0.5), col = 3, n = 300, add = T)
curve(dlnorm(x-3,0,0.5), col = 4, n = 300, add = T)
text(x = seq(.797,3.797),
y = rep(1,4),
labels = c(parse(text = 'gamma==0'),
parse(text = 'gamma==1'),
parse(text = 'gamma==2'),
parse(text = 'gamma==3')),
col = 1:4,
font = rep(2,4))\[ F(t,\alpha, \sigma,\xi)=\begin{cases}\Phi\left[\log(1+\sigma z)^{1/\sigma}\right] &\mbox{for } \sigma>0, z>-1/\sigma\\\\ \Phi(z) &\mbox{for } \sigma=0,z\in(\infty,\infty)\\\\ 1-\Phi\left[\log(1+\sigma z)^{1/|\sigma|}\right] &\mbox{for } \sigma<0, z<-1/\sigma\end{cases} \]
\[ \begin{aligned} \Phi &\equiv \text{ Form of generic cdf with standard parameter values}\\\\ z&=\frac{t-\alpha}{\xi}\\ \sigma &\in(-\infty,\infty)\\\\ \alpha &\in (-\infty,\infty)\\\\ \xi&>0 \end{aligned} \]
\[ f(t,\alpha, \sigma,\xi)=\begin{cases}\phi\left[\log(1+\sigma z)^{1/|\sigma|}\right]\times \frac{1}{\xi(1+\sigma z)} &\mbox{for } \sigma\ne 0\\\\ \phi(z) \times \frac{1}{\xi} &\mbox{for } \sigma=0\\ \end{cases} \]
\[ t_{p}=\alpha +\xi\times w(\sigma,p) \]
\[ w(\sigma,p)=\begin{cases}\frac{\exp\left[\sigma\Phi^{-1}(p)\right]-1}{\sigma} &\mbox{for } \sigma>0\\\\ \Phi^{-1}(p) &\mbox{for } \sigma=0\\\\ \frac{\exp\left[|\sigma|\Phi^{-1}(1-p)\right]-1}{\sigma} &\mbox{for } \sigma<0\end{cases} \]
\[ \begin{aligned} F(t|\alpha,0,\xi)&=\Phi_{nor}\left[\frac{t-\alpha}{\xi}\right]\\\\ F(t|\alpha,0,\xi)&=\Phi_{sev}\left[\frac{t-\alpha}{\xi}\right]\\\\ F(t|\alpha,0,\xi)&=\Phi_{lev}\left[\frac{t-\alpha}{\xi}\right] \end{aligned} \]
\[ \begin{aligned} F(t|\alpha,0,\xi)&=\Phi_{nor}\left[\frac{\log(t-\gamma)-\alpha}{\xi}\right]\\\\ F(t|\alpha,0,\xi)&=\Phi_{sev}\left[\frac{\log(t-\gamma)-\alpha}{\xi}\right]\\\\ F(t|\alpha,0,\xi)&=\Phi_{lev}\left[\frac{\log(t-\gamma)-\alpha}{\xi}\right] \end{aligned} \]
The basic idea behind these methods is to model the physical/chemical process that cause failure
Mixture distributions
Power Distributions
Physical/Chemical Degradation Distributions (Chapters 13 & 18)
Arise if a data set contains observations from two or more distinct processes
Can involve mixtures can be finite or continuous
Mixture distributions result if
Suppose we are interested in testing the fracture toughness of a new glass material to be used in future touchscreens on smartphones
Fracture toughness: total energy that a material can absorb before fracture
Greater toughness implies that if a phone is dropped the screen could flex and absorb the impact energy without cracking
Test: apply specified load to material samples every second until fracture occurs
Response of interest: number of load cycles at fracture \(N\)
Distribution failure cycles will be compared to legacy materials
Further suppose that
The failure time distribution of entire sample could be expressed as shown below
\[ F(N|\mu,\sigma)=0.4\times F(N|\mu_{A},\sigma) + 0.6\times F(N|\mu_{B},\sigma) \]
It’s unlikely that the level of contaminant in the specimens will only have two levels
This more general case results in a continuous mixture distribution, where
\[ \begin{aligned} F(N|\mu,\sigma,\mathbf{\theta})=P(N\le n)&=\int_{-\infty}^{\infty}P(N\le n|\mu=\mu_{1},\sigma)f_{\mu_{1}}(\mu_1|\mathbf{\theta})d\mu_{1}\\\\ &=\int_{-\infty}^{\infty}F_{N|\mu=\mu_{1}}(n|\mathbf{\mu},\sigma,\mathbf{\theta})f_{\mu_{1}}(\mu_1|\mathbf{\theta})d\mu_{1} \end{aligned} \]
\[ f(N|\mu,\sigma,\mathbf{\theta})=\int_{-\infty}^{\infty}f_{N|\mu=\mu_{1}}(n|\mathbf{\mu},\sigma,\mathbf{\theta})f_{\mu_{1}}(\mu_1|\mathbf{\theta})d\mu_{1} \]
Distributions of minima and maxima of \(iid\) random variables have important applications
Are closely related to reliability block diagrams (series/parallel components)
\[ P(T_{system}\le t)=1-P(T_{A}>t)\cap P(T_{B}>t)\cap P(T_{C}>t)\cap P(T_{D}>t)\cap P(T_{E}>t) \]
\[ P(T_{A}>t)\perp P(T_{B}>t)\perp P(T_{C}>t)\perp P(T_{D}>t)\perp P(T_{E}>t) \]
\[ P(T_{system}\le t)=1-P(T_{A}>t)\times P(T_{B}>t)\times P(T_{C}>t)\times P(T_{D}>t)\times P(T_{E}>t) \]
\[ \begin{aligned} F_{system}(T)&=1-\exp\left[-0.5t\right]\exp\left[-0.5t\right]\exp\left[-0.5t\right]\exp\left[-0.5t\right]\exp\left[-0.5t\right]\\\\ &=1-\exp\left[-(0.5+0.5+0.5+0.5+0.5)t\right]\\\\ &=1-\exp\left[-2.5t\right] \end{aligned} \]
Therefore, we see that for a system with
The system lifetime \(T_{system}\sim EXP\left(\sum_{i=1}^n\theta_{i}\right)\)
par(family = "serif", bg = NA)
curve(pexp(x,0.5), yaxt = "n", xlab = "Time", ylab = "F(t)", lwd = 2, ylim = c(0,1))
curve(pexp(x,1.0), col = 2, lwd = 2, add = TRUE)
curve(pexp(x,1.5), col = 3, lwd = 2, add = TRUE)
curve(pexp(x,2.0), col = 4, lwd = 2, add = TRUE)
curve(pexp(x,2.5), col = 5, lwd = 2, add = TRUE)
axis(side = 2, las = 1)
box(lwd = 1.5)
legend("topleft", c(expression(theta==0.5),expression(theta==1.0),
expression(theta==1.5),expression(theta==2.0),
expression(theta==2.5)),
lwd = 2, col = 1:5, bty = "n")\[ P(T_{system}\le t)=P(T_{B}\le t)\cap P(T_{C}\le t)\cap P(T_{D}\le t) \]
\[ P(T_{B}\le t)\perp P(T_{C}\le t)\perp P(T_{D}\le t) \]
\[ \begin{aligned} P(T_{system}\le t)&=P(T_{B}\le t)\times P(T_{C}\le t)\times P(T_{D}\le t)\\\\ &=\prod_{i=1}^n P(T_{i}\le t) \end{aligned} \]
\[ \begin{aligned} F_{system}(T)&=(1-\exp\left[-0.5t\right])(1-\exp [-0.5t])(1-\exp \left[-0.5t\right])\\\\ &=1 - 2\exp [-0.5t]+ \exp [-t] (1-\exp [-0.5t])\\\\ &=1-3\exp\left[-0.5t\right]+3\exp [-t]-\exp [-1.5t] \end{aligned} \]
Therefore, we see that for a system with
The system lifetime \(T_{system}\) is not exponential
par(family = "serif", las = 1)
curve(pexp(x,0.5),
xlab = "Time",
ylab = "F(t)",
lwd = 2,
ylim = c(0,1))
curve(1-2*(1-pexp(x,0.5))+(1-pexp(x,1.0)),
col = 2,
lwd = 2,
add = TRUE)
curve(pexp(x,0.5)*(1-2*(1-pexp(x,0.5))+(1-pexp(x,1.0))),
col = 3,
lwd = 2,
add = TRUE)
legend("topleft",
c(expression("F(t)"[1]),
expression("F(t)"[2]),
expression("F(t)"[3])),
lwd = 2, col = 1:5, bty = "n")