Trail3 <- lm(Strict ~ GII + HDI + IHDI + MPI + HealthExp + LEI + GNIperCapita + Pop_Den, data = CleanDepInd)
print(summary(Trail3))
## 
## Call:
## lm(formula = Strict ~ GII + HDI + IHDI + MPI + HealthExp + LEI + 
##     GNIperCapita + Pop_Den, data = CleanDepInd)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -69.403  -6.466   1.032   9.284  22.901 
## 
## Coefficients: (1 not defined because of singularities)
##                Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  -2.102e+01  2.859e+01  -0.735   0.4639  
## GII           5.791e+01  2.446e+01   2.368   0.0198 *
## HDI           8.769e+01  5.721e+01   1.533   0.1284  
## IHDI         -1.992e+01  5.212e+01  -0.382   0.7031  
## MPI                  NA         NA      NA       NA  
## HealthExp    -4.110e-01  6.616e-01  -0.621   0.5358  
## LEI           3.901e+01  3.389e+01   1.151   0.2524  
## GNIperCapita -2.195e-04  1.919e-04  -1.144   0.2553  
## Pop_Den       2.378e-03  2.330e-03   1.020   0.3099  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.24 on 101 degrees of freedom
##   (97 observations deleted due to missingness)
## Multiple R-squared:  0.1611, Adjusted R-squared:  0.103 
## F-statistic: 2.771 on 7 and 101 DF,  p-value: 0.0112

Loading CAGR Index and sorting low growth to high growth, ranking accordingly

CAGR <- read.csv("C:/Users/ramya.emandi/Desktop/Econ Policy/COVID Indices/index.csv")
colnames(CAGR) [3] <- "index"
View(CAGR)
I1 <- CAGR[order(CAGR$index), ]

rankI1 <- c(1:251)
I1 <- cbind(I1,rankI1)
view(I1)

Ranking the stringency index

I2 <- CleanDepInd[order(CleanDepInd$Strict), ]
rankI2 <- c(1:206)
I2 <- cbind(I2,rankI2)
View(I2)

merge both rankings (stringency and CAGR)

Index <- merge(x = I1, y = I2, by.x = "Countries_Confirmed.CNTRY_NAME", by.y = "Country", all.x = TRUE)
View(Index)
Index$rank <- Index$rankI1 + Index$rankI2

linear regression of combined ranking index (dep) and HDR

reg <- lm(rank ~ GII + HDI + IHDI + MPI + HealthExp + LEI + GNIperCapita + Pop_Den, data = Index)
print(summary(reg))
## 
## Call:
## lm(formula = rank ~ GII + HDI + IHDI + MPI + HealthExp + LEI + 
##     GNIperCapita + Pop_Den, data = Index)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -131.846  -45.321    1.063   54.575  177.217 
## 
## Coefficients: (1 not defined because of singularities)
##                Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  -1.899e+02  1.292e+02  -1.470   0.1444  
## GII           2.124e+02  1.102e+02   1.927   0.0566 .
## HDI           2.496e+02  2.538e+02   0.984   0.3275  
## IHDI          3.594e+00  2.267e+02   0.016   0.9874  
## MPI                  NA         NA      NA       NA  
## HealthExp     1.255e+00  2.919e+00   0.430   0.6682  
## LEI           1.399e+02  1.524e+02   0.918   0.3605  
## GNIperCapita -8.530e-04  8.453e-04  -1.009   0.3151  
## Pop_Den       5.931e-03  1.014e-02   0.585   0.5599  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 70.39 on 109 degrees of freedom
##   (134 observations deleted due to missingness)
## Multiple R-squared:  0.08358,    Adjusted R-squared:  0.02473 
## F-statistic:  1.42 on 7 and 109 DF,  p-value: 0.2044

new indicator testing numbers

test <- read.csv("C:/Users/ramya.emandi/Desktop/Econ Policy/COVID Indices/owid-covid-data.csv")
test$testperpop <- test$Sum.of.total_tests/ test$Average.of.population
I3 <- test[order(-test$testperpop), ]
rankI3 <- c(1:213)
I3 <- cbind(I3,rankI3)
View(I3)

Merge I2, I3, I3

Index3 <- merge(x = Index, y = I3, by.x = "Countries_Confirmed.CNTRY_NAME", by.y = "Row.Labels", all.x = TRUE)
View(Index3)
Index3$rank <- Index3$rankI1 + Index3$rankI2 + Index3$rankI3

checking the correlation of testing indicator to HDR variables

reg <- lm(testperpop ~ GII + HDI + IHDI + HealthExp + LEI + GNIperCapita + Pop_Den, data = Index3)
print(summary(reg))
## 
## Call:
## lm(formula = testperpop ~ GII + HDI + IHDI + HealthExp + LEI + 
##     GNIperCapita + Pop_Den, data = Index3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1705 -0.4792 -0.1138  0.2906  7.5802 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   5.364e+00  3.723e+00   1.441   0.1549  
## GII          -5.546e+00  3.030e+00  -1.830   0.0724 .
## HDI          -2.134e+00  7.434e+00  -0.287   0.7751  
## IHDI         -1.592e+00  6.188e+00  -0.257   0.7979  
## HealthExp    -1.372e-01  8.060e-02  -1.702   0.0941 .
## LEI           1.443e-01  4.465e+00   0.032   0.9743  
## GNIperCapita  3.621e-05  2.128e-05   1.702   0.0941 .
## Pop_Den      -4.761e-04  2.148e-04  -2.217   0.0306 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.311 on 58 degrees of freedom
##   (185 observations deleted due to missingness)
## Multiple R-squared:  0.3577, Adjusted R-squared:  0.2802 
## F-statistic: 4.615 on 7 and 58 DF,  p-value: 0.0003724

checking the correlation of hospital beds indicator to HDR variables

reg <- lm(Average.of.hospital_beds_per_thousand ~ GII + HDI + IHDI + HealthExp + LEI + GNIperCapita + Pop_Den, data = Index3)
print(summary(reg))
## 
## Call:
## lm(formula = Average.of.hospital_beds_per_thousand ~ GII + HDI + 
##     IHDI + HealthExp + LEI + GNIperCapita + Pop_Den, data = Index3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7647 -0.8919 -0.1348  0.6387  8.0483 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7.701e+00  3.100e+00   2.484 0.014636 *  
## GII          -3.173e+00  2.569e+00  -1.235 0.219742    
## HDI          -5.227e+00  6.137e+00  -0.852 0.396463    
## IHDI          2.227e+01  5.364e+00   4.152 6.94e-05 ***
## HealthExp     3.126e-02  7.810e-02   0.400 0.689791    
## LEI          -1.544e+01  4.058e+00  -3.805 0.000244 ***
## GNIperCapita -5.742e-05  1.955e-05  -2.937 0.004112 ** 
## Pop_Den       2.163e-04  2.383e-04   0.908 0.366182    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.573 on 100 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.5551, Adjusted R-squared:  0.5239 
## F-statistic: 17.82 on 7 and 100 DF,  p-value: 3.597e-15

Linear regression of rank (stringency, CAGR and testing per population) to HDR indicators

reg <- lm(rank ~ GII + HDI + IHDI + HealthExp + LEI + GNIperCapita + Pop_Den, data = Index3)
print(summary(reg))
## 
## Call:
## lm(formula = rank ~ GII + HDI + IHDI + HealthExp + LEI + GNIperCapita + 
##     Pop_Den, data = Index3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -151.38  -50.63  -12.59   42.25  262.92 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -1.467e+02  1.435e+02  -1.023 0.308730    
## GII           4.200e+02  1.225e+02   3.430 0.000855 ***
## HDI           2.089e+01  2.819e+02   0.074 0.941061    
## IHDI          2.756e+02  2.519e+02   1.094 0.276236    
## HealthExp     3.271e+00  3.243e+00   1.009 0.315349    
## LEI           1.063e+02  1.693e+02   0.628 0.531416    
## GNIperCapita -1.572e-03  9.390e-04  -1.674 0.096935 .  
## Pop_Den       1.409e-02  1.126e-02   1.251 0.213622    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 78.19 on 109 degrees of freedom
##   (134 observations deleted due to missingness)
## Multiple R-squared:  0.2471, Adjusted R-squared:  0.1987 
## F-statistic:  5.11 on 7 and 109 DF,  p-value: 4.774e-05

######author: “Ramya Emandi”