sistema de ecuaciones: \[ \left. 2x + 4y = 8 \atop x - y = 1 \right\} Estos\ son\ los\ sistemas\ a\ trabajar \]

La matirz de los coeficentes \[ matriz= \begin{equation} \begin{pmatrix} x & y\\ 2 & 4\\ 1 & -1 \end{pmatrix} \end{equation} \]

La matriz de los terminos independientes \[ coef= \begin{equation} \begin{pmatrix} 8\\ 1 \end{pmatrix} \end{equation} \]

matriz<-matrix(c(2,1,4,-1),ncol=2,nrow = 2)
matriz
     [,1] [,2]
[1,]    2    4
[2,]    1   -1
coef<-matrix(c(8,1),ncol=1,nrow = 2)
coef
     [,1]
[1,]    8
[2,]    1
solucion<-solve(matriz,coef)
data.frame(variables=c("valor de x","valor de y"),soluciones=solucion)

Esta es la grafica \[ donde\ el\ cuadrado\ es\ las\ soluciones\ cordenadas\ es\ c(2,1) \]

x=seq(-20,20)
y=x-1
plot(x,y,type = "l",xlab = "Valores de x",ylab = "valores de y",col="blue")
curve((8-2*x)/4,-20,20,add = T,col="red")
points(2,1,col="purple",cex=4,pch=22)
title("Sistema de ecuciones")
legend(-10,18,c("2x+4y=8","x-y=1"),col = c("blue","red"),lty = 1)
grid()

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoqKnNpc3RlbWEgZGUgZWN1YWNpb25lczoqKg0KJCQNClxsZWZ0Lg0KMnggKyA0eSAgPSA4IFxhdG9wDQp4IC0geSA9IDENClxyaWdodFx9IEVzdG9zXCBzb25cIGxvc1wgc2lzdGVtYXNcIGFcIHRyYWJhamFyDQokJA0KDQoqKkxhIG1hdGlyeiBkZSBsb3MgY29lZmljZW50ZXMqKg0KJCQNCm1hdHJpej0NClxiZWdpbntlcXVhdGlvbn0NClxiZWdpbntwbWF0cml4fQ0KICB4ICYgeVxcDQogIDIgJiA0XFwNCiAgMSAmIC0xIA0KXGVuZHtwbWF0cml4fQ0KXGVuZHtlcXVhdGlvbn0NCiQkDQoNCioqTGEgbWF0cml6IGRlIGxvcyB0ZXJtaW5vcyBpbmRlcGVuZGllbnRlcyoqDQokJA0KY29lZj0NClxiZWdpbntlcXVhdGlvbn0NClxiZWdpbntwbWF0cml4fQ0KICA4XFwNCiAgMSANClxlbmR7cG1hdHJpeH0NClxlbmR7ZXF1YXRpb259DQokJA0KDQpgYGB7cn0NCm1hdHJpejwtbWF0cml4KGMoMiwxLDQsLTEpLG5jb2w9Mixucm93ID0gMikNCm1hdHJpeg0KYGBgDQoNCmBgYHtyfQ0KY29lZjwtbWF0cml4KGMoOCwxKSxuY29sPTEsbnJvdyA9IDIpDQpjb2VmDQpgYGANCg0KYGBge3J9DQpzb2x1Y2lvbjwtc29sdmUobWF0cml6LGNvZWYpDQpkYXRhLmZyYW1lKHZhcmlhYmxlcz1jKCJ2YWxvciBkZSB4IiwidmFsb3IgZGUgeSIpLHNvbHVjaW9uZXM9c29sdWNpb24pDQpgYGANCg0KKipFc3RhIGVzIGxhIGdyYWZpY2EqKg0KJCQNCmRvbmRlXCBlbFwgY3VhZHJhZG9cIGVzXCBsYXNcIHNvbHVjaW9uZXNcIGNvcmRlbmFkYXNcIGVzXCBjKDIsMSkNCiQkDQoNCg0KYGBge3J9DQp4PXNlcSgtMjAsMjApDQp5PXgtMQ0KcGxvdCh4LHksdHlwZSA9ICJsIix4bGFiID0gIlZhbG9yZXMgZGUgeCIseWxhYiA9ICJ2YWxvcmVzIGRlIHkiLGNvbD0iYmx1ZSIpDQpjdXJ2ZSgoOC0yKngpLzQsLTIwLDIwLGFkZCA9IFQsY29sPSJyZWQiKQ0KcG9pbnRzKDIsMSxjb2w9InB1cnBsZSIsY2V4PTQscGNoPTIyKQ0KdGl0bGUoIlNpc3RlbWEgZGUgZWN1Y2lvbmVzIikNCmxlZ2VuZCgtMTAsMTgsYygiMngrNHk9OCIsIngteT0xIiksY29sID0gYygiYmx1ZSIsInJlZCIpLGx0eSA9IDEpDQpncmlkKCkNCmBgYA0KDQo=