Call up tidyverse
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.1 ✓ purrr 0.3.4
## ✓ tibble 3.0.1 ✓ dplyr 1.0.0
## ✓ tidyr 1.1.0 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.5.0
## ── Conflicts ────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
Show the data
Airquality is a pre-built dataset so we can write it to our data directory to store it for later
Look at the structure of the data
str(airquality)
## 'data.frame': 153 obs. of 6 variables:
## $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
## $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
## $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
## $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
## $ Month : int 5 5 5 5 5 5 5 5 5 5 ...
## $ Day : int 1 2 3 4 5 6 7 8 9 10 ...
Calculate Summary Statistics
Here are 2 different ways to calculate mean
mean(airquality$Temp)
## [1] 77.88235
mean(airquality[,4])
## [1] 77.88235
Change the Months from 5-9 to May through September
airquality$Month[airquality$Month == 5]<- "May"
airquality$Month[airquality$Month == 6]<- "June"
airquality$Month[airquality$Month == 7]<- "July"
airquality$Month[airquality$Month == 8]<- "August"
airquality$Month[airquality$Month == 9]<- "September"
Look at the summary statistics of the dataset and see how Month has changed to have characters instead of numbers
str(airquality)
## 'data.frame': 153 obs. of 6 variables:
## $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
## $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
## $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
## $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
## $ Month : chr "May" "May" "May" "May" ...
## $ Day : int 1 2 3 4 5 6 7 8 9 10 ...
summary(airquality)
## Ozone Solar.R Wind Temp
## Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00
## 1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00
## Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
## Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88
## 3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00
## Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00
## NA's :37 NA's :7
## Month Day
## Length:153 Min. : 1.0
## Class :character 1st Qu.: 8.0
## Mode :character Median :16.0
## Mean :15.8
## 3rd Qu.:23.0
## Max. :31.0
##
Month is a categorial variable with different levels called factors
Reorder the Months so they do not default to alphabetical
airquality$Month<-factor(airquality$Month, levels = c("May", "June", "July", "August", "September"))
Plot 1: Create a histogram categorized by Month with qplot
Qplot stands for “Quick-Plot” (in the ggplot2 package)
pl <- qplot(data = airquality,Temp,fill = Month,geom = "histogram", bins = 20)
pl

Plot 2: Make a histogram using ggplot
ggplot is more sophisticated than qplot, but still uses ggplot2 package
reorder the legend so that it is not the default (alphabetical), but rather in order that months come
Outline the bars in white using the color = “white” command
p2 <- airquality %>%
ggplot(aes(x=Temp, fill=Month)) +
geom_histogram(position="identity", alpha=0.5, binwidth = 5, color = "white")+
scale_fill_discrete(name= "Month", labels = c("May", "June", "July", "August", "September"))
p2

Plot 3: Create side-by-side boxplots categorized by Month
Fill=Month command fills each boxplot with a different color in the aesthetics
Scale_fill_discrete makes the legend on the side for discrete color values
p3 <- airquality %>%
ggplot(aes(Month, Temp, fill = Month)) +
ggtitle("Temperatures") +
xlab("Months") +
ylab("Frequency") +
geom_boxplot() +
scale_fill_discrete(name = "Month", labels = c("May", "June", "July", "August", "September"))
p3

Plot 4: Make the same side-by-side boxplots, but in grey-scale
Use the scale_fill_grey command for the grey-scale legend, and again, use fill=Month in the aesthetics
p4 <- airquality %>%
ggplot(aes(Month, Temp, fill = Month)) +
ggtitle("Temperatures") +
xlab("Temperatures") +
ylab("Frequency") +
geom_boxplot() +
scale_fill_grey(name = "Month", labels = c("May", "June", "July", "August", "September"))
p4

Plot 5: Make a histogram using ggplot measuring Wind by Month
p5 <-airquality %>%
ggplot(aes(x=Wind, fill=Month))+
geom_histogram(position="identity", alpha = 0.4, binwidth = 5, color = "black")+
scale_fill_discrete(name = "Month", labels = c("May", "June", "July", "August", "September"))
p5

The End! :)