A pneumonia of unknown cause detected in Wuhan, China was first reported to the WHO Country Office in China on 31 December 2019. Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus.

Most people infected with the COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people, and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illness.

The outbreak was declared a Public Health Emergency of International Concern on 30 January 2020.

On 11 February 2020, WHO announced a name for the new coronavirus disease: COVID-19.

To get the latest data on covid 19, we will use the covid19.analytics package.

library(covid19.analytics)

#Data
ag <- covid19.data(case = "aggregated")
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/06-12-2020.csv

If we observe the last line of the output, we see that the data has been updated as of 9th June 2020, which is the latest data as of the date of this project.

#Lets look at the time series data of confirmed cases
time_series_confirmed <- covid19.data(case = "ts-confirmed")
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2020-06-13 11:43:23 || Range of dates on data: 2020-01-22--2020-06-12 | Nbr of records: 266
## --------------------------------------------------------------------------------

We have time series data from 22nd January 2020 to 9th June 2020.

For Summary report.

report.summary(Nentries = 10, 
               graphical.output = T)
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2020-06-13 11:43:23 || Range of dates on data: 2020-01-22--2020-06-12 | Nbr of records: 266
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-confirmed data detected -- 35 records (out of 266) show
## inconsistencies in the data...
## ################################################################################ 
##   ##### TS-CONFIRMED Cases  -- Data dated:  2020-06-12  ::  2020-06-13 11:43:23 
## ################################################################################ 
##   Number of Countries/Regions reported:  188 
##   Number of Cities/Provinces reported:  82 
##   Unique number of distinct geographical locations combined: 266 
## -------------------------------------------------------------------------------- 
##   Worldwide ts-confirmed  Totals: 7632802 
## -------------------------------------------------------------------------------- 
##    Country.Region Province.State  Totals GlobalPerc LastDayChange   t-2   t-3   t-7  t-14  t-30
## 1              US                2048986      26.84         25396 22888 21003 23043 24202 27460
## 2          Brazil                 828810      10.86         25982 30412 32913 27075 33274 13028
## 3          Russia                 510761       6.69          8961  8777  8393  8846  8952  9974
## 4           India                 297535       3.90             0 10930 10459 10438  8336  3942
## 5  United Kingdom                 292950       3.84          1541  1266  1003  1557  1604  3446
## 6           Spain                 243209       3.19           502   427   314   332   664   849
## 7           Italy                 236305       3.10           163   379   202   270   416   992
## 8            Peru                 214788       2.81             0  5965  5087  4358  7386  4298
## 9          France                 188918       2.48           564   358   397   529  1800   731
## 10        Germany                 187226       2.45           535   169    16   526   267   380
## -------------------------------------------------------------------------------- 
##   Global Perc. Average:  0.38 (sd: 1.89) 
##   Global Perc. Average in top  10 :  6.62 (sd: 7.57) 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv
## Data retrieved on 2020-06-13 11:43:24 || Range of dates on data: 2020-01-22--2020-06-12 | Nbr of records: 266
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-deaths data detected -- 22 records (out of 266) show
## inconsistencies in the data...

## ################################################################################ 
##   ##### TS-DEATHS Cases  -- Data dated:  2020-06-12  ::  2020-06-13 11:43:24 
## ################################################################################ 
##   Number of Countries/Regions reported:  188 
##   Number of Cities/Provinces reported:  82 
##   Unique number of distinct geographical locations combined: 266 
## -------------------------------------------------------------------------------- 
##   Worldwide ts-deaths  Totals: 425394 
## -------------------------------------------------------------------------------- 
##    Country.Region Province.State Totals  Perc LastDayChange  t-2  t-3 t-7 t-14 t-30
## 1              US                114669  5.60           846  885  927 707  941 1776
## 2          Brazil                 41828  5.05           909 1239 1274 904  956  759
## 3  United Kingdom                 41481 14.16           202  151  245 204  215  428
## 4           Italy                 34223 14.48            56   53   71  72  111  262
## 5          France                 29315 15.52            28   27   23  31   57  349
## 6           Spain                 27136 11.16             0    0    0   1    4  217
## 7          Mexico                 16448 11.82           504  587  708 341  364  257
## 8         Belgium                  9646 16.13            10    7   10  14   23   60
## 9         Germany                  8783  4.69            11   20   16  15   26   23
## 10           Iran                  8659  4.74            75   78   81  75   57   71
## -------------------------------------------------------------------------------- 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv
## Data retrieved on 2020-06-13 11:43:24 || Range of dates on data: 2020-01-22--2020-06-12 | Nbr of records: 253
## --------------------------------------------------------------------------------
##  >>> checking data integrity...
## No critical issues have been found.
##  >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details): Inconsistency
## of type.II in ts-recovered data detected -- 56 records (out of 253) show
## inconsistencies in the data...

## ################################################################################ 
##   ##### TS-RECOVERED Cases  -- Data dated:  2020-06-12  ::  2020-06-13 11:43:25 
## ################################################################################ 
##   Number of Countries/Regions reported:  188 
##   Number of Cities/Provinces reported:  68 
##   Unique number of distinct geographical locations combined: 253 
## -------------------------------------------------------------------------------- 
##   Worldwide ts-recovered  Totals: 3613277 
## -------------------------------------------------------------------------------- 
##    Country.Region Province.State Totals LastDayChange   t-2   t-3   t-7  t-14 t-30
## 1              US                547386          7094  6788  8649  9143 10015 2984
## 2          Brazil                445123         15158 16049 17179 10209 11416 1055
## 3          Russia                268862          8213  8354 10378  8698  8212 5527
## 4           Italy                173085          1747  1399  1293  1297  2789 2747
## 5         Germany                171535           574   331   501   478   663 1600
## 6           Spain                150376             0     0     0     0     0 2551
## 7          Turkey                149102          1242  1021  2241  1922  1021 2315
## 8           India                147195             0 11989   536  5462  4309 1569
## 9            Iran                144649          1986  2073  2133  2297  1896 1111
## 10          Chile                131358          4914  4664  4419  4459  1833  790
## -------------------------------------------------------------------------------- 
## -------------------------------------------------------------------------------- 
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/06-12-2020.csv

## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  CONFIRMED Cases  -- Data dated:  2020-06-13  ::  2020-06-13 11:43:25 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 188 
##   Number of Cities/Provinces reported: 549 
##   Unique number of distinct geographical locations combined: 3738 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                       Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1  New York City, New York, US    208954           2.74  22043       10.55         0           0.00 186911       89.45
## 2               Moscow, Russia    202935           2.66   3187        1.57    118024          58.16  81724       40.27
## 3                       France    188918           2.48  29315       15.52     69578          36.83  90025       47.65
## 4                         Iran    182525           2.39   8659        4.74    144649          79.25  29217       16.01
## 5                       Turkey    175218           2.30   4778        2.73    149102          85.10  21338       12.18
## 6            Sao Paulo, Brazil    167900           2.20  10368        6.18     49295          29.36 108237       64.47
## 7      England, United Kingdom    156410           2.05  37069       23.70         0           0.00 119341       76.30
## 8         Metropolitana, Chile    129694           1.70   2468        1.90         0           0.00 127226       98.10
## 9                   Lima, Peru    125640           1.65   2675        2.13         0           0.00 122965       97.87
## 10                Saudi Arabia    119942           1.57    893        0.74     81029          67.56  38020       31.70
## ============================================================================================================================================
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  DEATHS Cases  -- Data dated:  2020-06-13  ::  2020-06-13 11:43:25 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 188 
##   Number of Cities/Provinces reported: 549 
##   Unique number of distinct geographical locations combined: 3738 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                       Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1      England, United Kingdom    156410           2.05  37069       23.70         0           0.00 119341       76.30
## 2                       France    188918           2.48  29315       15.52     69578          36.83  90025       47.65
## 3  New York City, New York, US    208954           2.74  22043       10.55         0           0.00 186911       89.45
## 4             Lombardia, Italy     91204           1.19  16405       17.99     57775          63.35  17024       18.67
## 5            Sao Paulo, Brazil    167900           2.20  10368        6.18     49295          29.36 108237       64.47
## 6                      Belgium     59819           0.78   9646       16.13     16498          27.58  33675       56.29
## 7                Madrid, Spain     70231           0.92   8691       12.37     40736          58.00  20804       29.62
## 8                         Iran    182525           2.39   8659        4.74    144649          79.25  29217       16.01
## 9       Rio de Janeiro, Brazil     77784           1.02   7417        9.54     61690          79.31   8677       11.16
## 10                 Netherlands     48461           0.63   6053       12.49         0           0.00  42408       87.51
## ============================================================================================================================================
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  RECOVERED Cases  -- Data dated:  2020-06-13  ::  2020-06-13 11:43:25 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 188 
##   Number of Cities/Provinces reported: 549 
##   Unique number of distinct geographical locations combined: 3738 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                  Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered  Active Perc.Active
## 1           Recovered, US         0           0.00      0         NaN    547386            Inf -621891        -Inf
## 2                  Turkey    175218           2.30   4778        2.73    149102          85.10   21338       12.18
## 3                    Iran    182525           2.39   8659        4.74    144649          79.25   29217       16.01
## 4          Unknown, Chile         0           0.00      0         NaN    131358            Inf -131358        -Inf
## 5          Moscow, Russia    202935           2.66   3187        1.57    118024          58.16   81724       40.27
## 6           Unknown, Peru         0           0.00      0         NaN    107133            Inf -107133        -Inf
## 7            Saudi Arabia    119942           1.57    893        0.74     81029          67.56   38020       31.70
## 8                  France    188918           2.48  29315       15.52     69578          36.83   90025       47.65
## 9            Hubei, China     68135           0.89   4512        6.62     63623          93.38       0        0.00
## 10 Rio de Janeiro, Brazil     77784           1.02   7417        9.54     61690          79.31    8677       11.16
## ============================================================================================================================================
## ############################################################################################################################################ 
##   ##### AGGREGATED Data  -- ORDERED BY  ACTIVE Cases  -- Data dated:  2020-06-13  ::  2020-06-13 11:43:25 
## ############################################################################################################################################ 
##   Number of Countries/Regions reported: 188 
##   Number of Cities/Provinces reported: 549 
##   Unique number of distinct geographical locations combined: 3738 
## -------------------------------------------------------------------------------------------------------------------------------------------- 
##                       Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1  New York City, New York, US    208954           2.74  22043       10.55         0           0.00 186911       89.45
## 2         Metropolitana, Chile    129694           1.70   2468        1.90         0           0.00 127226       98.10
## 3                   Lima, Peru    125640           1.65   2675        2.13         0           0.00 122965       97.87
## 4      England, United Kingdom    156410           2.05  37069       23.70         0           0.00 119341       76.30
## 5            Sao Paulo, Brazil    167900           2.20  10368        6.18     49295          29.36 108237       64.47
## 6      Unknown, United Kingdom    101335           1.33      0        0.00         0           0.00 101335      100.00
## 7                       France    188918           2.48  29315       15.52     69578          36.83  90025       47.65
## 8               Moscow, Russia    202935           2.66   3187        1.57    118024          58.16  81724       40.27
## 9           Cook, Illinois, US     84249           1.10   4162        4.94         0           0.00  80087       95.06
## 10 Los Angeles, California, US     70529           0.92   2834        4.02         0           0.00  67695       95.98
## ============================================================================================================================================
##       Confirmed  Deaths  Recovered   Active 
##   Totals 
##       7632802    425394  3613277 3519626 
##   Average 
##       2041.95    113.8   966.63  941.58 
##   Standard Deviation 
##       10897.86   1014.92 10934.14    12504.68 
##   
## 
##  * Statistical estimators computed considering 3738 independent reported entries
##  >>> checking data integrity...
## No critical issues have been found.

##  
## 
## ******************************************************************************** 
## ********************************  OVERALL SUMMARY******************************** 
## ******************************************************************************** 
##   ****  Time Series Worldwide TOTS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       7632802    425394  3613277 
##              5.57%       47.34% 
##   ****  Time Series Worldwide AVGS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       28694.74   1599.23 14281.73 
##              5.57%       49.77% 
##   ****  Time Series Worldwide SDS **** 
##       ts-confirmed   ts-deaths   ts-recovered 
##       144504.97  8594.52 54130.29 
##              5.95%       37.46% 
##   
## 
##  * Statistical estimators computed considering 266/266/253 independent reported entries per case-type 
## ********************************************************************************

We see that we get data from all the categories.

#Totals per location
 
tots.per.location(time_series_confirmed, geo.loc = "US")
## US  --  2048986 
## ===============================   running models...=============================== 
##   Linear Regression (lm): 
## 
## Call:
## lm(formula = y.var ~ x.var)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -429077 -220285   32196  204523  511391 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -527364.0    43298.4  -12.18   <2e-16 ***
## x.var         15973.6      521.7   30.62   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 257500 on 141 degrees of freedom
## Multiple R-squared:  0.8693, Adjusted R-squared:  0.8683 
## F-statistic: 937.5 on 1 and 141 DF,  p-value: < 2.2e-16
## 
## -------------------------------------------------------------------------------- 
##   Linear Regression (lm): 
## 
## Call:
## lm(formula = y.var ~ x.var)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1779 -1.4400 -0.2985  1.6499  2.8887 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.222693   0.301682   4.053 8.32e-05 ***
## x.var       0.115301   0.003635  31.720  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.794 on 141 degrees of freedom
## Multiple R-squared:  0.8771, Adjusted R-squared:  0.8762 
## F-statistic:  1006 on 1 and 141 DF,  p-value: < 2.2e-16
## 
## -------------------------------------------------------------------------------- 
##   GLM using Family [1] "poisson" : 
## 
## Call:
## glm(formula = y.var ~ x.var, family = family)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -615.8  -369.6  -229.0   242.9   436.9  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) 9.968e+00  4.805e-04   20743   <2e-16 ***
## x.var       3.473e-02  4.051e-06    8575   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 131296912  on 142  degrees of freedom
## Residual deviance:  16501482  on 141  degrees of freedom
## AIC: 16503107
## 
## Number of Fisher Scoring iterations: 6
## 
## --------------------------------------------------------------------------------
## Warning: glm.fit: algorithm did not converge
##   GLM using Family Family: Gamma Link function: log  : 
## 
## Call:
## glm(formula = y.var ~ x.var, family = family)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.9352  -1.9039  -1.0962   0.1839   2.1351  
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.686337   0.248373    6.79 2.89e-10 ***
## x.var       0.126918   0.002993   42.41  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Gamma family taken to be 2.182327)
## 
##     Null deviance: 1102.96  on 142  degrees of freedom
## Residual deviance:  382.96  on 141  degrees of freedom
## AIC: 3321.9
## 
## Number of Fisher Scoring iterations: 25
## 
## --------------------------------------------------------------------------------

We see that there are 3 different models fitted on to the data.

The most interesting seems to be the non-linear model. We see a convex pattern, showing an increasing trend and then we see a concave pattern signifying a decreasing trend.

Lets analyse the growth rate for USA

#Growth rate

growth.rate(time_series_confirmed, geo.loc = "US")
## Processing...  US
## Loading required package: pheatmap
## Loading required package: gplots
## 
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
## 
##     lowess

## $Changes
##   geo.loc 2020-01-23 2020-01-24 2020-01-25 2020-01-26 2020-01-27 2020-01-28
## 1      US          0          1          0          3          0          0
##   2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02 2020-02-03 2020-02-04
## 1          0          0          2          1          0          3          0
##   2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09 2020-02-10 2020-02-11
## 1          0          0          0          0          0          0          1
##   2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16 2020-02-17 2020-02-18
## 1          0          1          0          0          0          0          0
##   2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23 2020-02-24 2020-02-25
## 1          0          0          2          0          0          0          0
##   2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01 2020-03-02 2020-03-03
## 1          0          1          0          8          6         23         20
##   2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08 2020-03-09 2020-03-10
## 1         31         70         48        115        114         68        192
##   2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15 2020-03-16 2020-03-17
## 1        398        451        589        710         96       1383       1776
##   2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22 2020-03-23 2020-03-24
## 1       2760       5224       5312       6323       7927      10060      10239
##   2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29 2020-03-30 2020-03-31
## 1      11913      18021      18147      19774      19115      21456      25980
##   2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05 2020-04-06 2020-04-07
## 1      25427      30362      31904      33131      27834      29588      30707
##   2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12 2020-04-13 2020-04-14
## 1      31638      34693      33449      29965      28515      25245      26981
##   2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19 2020-04-20 2020-04-21
## 1      29085      31226      32679      28283      26034      27281      25440
##   2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26 2020-04-27 2020-04-28
## 1      28144      34092      36176      32870      27641      22414      24445
##   2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03 2020-05-04 2020-05-05
## 1      27332      29622      34093      29146      25558      22363      24080
##   2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10 2020-05-11 2020-05-12
## 1      25160      27774      27040      25663      19735      18703      21789
##   2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17 2020-05-18 2020-05-19
## 1      21009      27460      25154      25055      18960      21589      20323
##   2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24 2020-05-25 2020-05-26
## 1      23414      25372      23985      21776      20754      18946      18718
##   2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31 2020-06-01 2020-06-02
## 1      18252      22718      24378      24202      20071      17272      20778
##   2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07 2020-06-08 2020-06-09
## 1      19768      21179      30005      23043      18135      17633      18078
##   2020-06-10 2020-06-11 2020-06-12
## 1      21003      22888      25396
## 
## $Growth.Rate
##   geo.loc 2020-01-24 2020-01-25 2020-01-26 2020-01-27 2020-01-28 2020-01-29
## 1      US         NA          0         NA          0        NaN        NaN
##   2020-01-30 2020-01-31 2020-02-01 2020-02-02 2020-02-03 2020-02-04 2020-02-05
## 1        NaN         NA        0.5          0         NA          0        NaN
##   2020-02-06 2020-02-07 2020-02-08 2020-02-09 2020-02-10 2020-02-11 2020-02-12
## 1        NaN        NaN        NaN        NaN        NaN         NA          0
##   2020-02-13 2020-02-14 2020-02-15 2020-02-16 2020-02-17 2020-02-18 2020-02-19
## 1         NA          0        NaN        NaN        NaN        NaN        NaN
##   2020-02-20 2020-02-21 2020-02-22 2020-02-23 2020-02-24 2020-02-25 2020-02-26
## 1        NaN         NA          0        NaN        NaN        NaN        NaN
##   2020-02-27 2020-02-28 2020-02-29 2020-03-01 2020-03-02 2020-03-03 2020-03-04
## 1         NA          0         NA       0.75   3.833333  0.8695652       1.55
##   2020-03-05 2020-03-06 2020-03-07 2020-03-08 2020-03-09 2020-03-10 2020-03-11
## 1   2.258065  0.6857143   2.395833  0.9913043  0.5964912   2.823529   2.072917
##   2020-03-12 2020-03-13 2020-03-14 2020-03-15 2020-03-16 2020-03-17 2020-03-18
## 1   1.133166   1.305987   1.205433  0.1352113   14.40625   1.284165   1.554054
##   2020-03-19 2020-03-20 2020-03-21 2020-03-22 2020-03-23 2020-03-24 2020-03-25
## 1   1.892754   1.016845   1.190324   1.253677    1.26908   1.017793   1.163493
##   2020-03-26 2020-03-27 2020-03-28 2020-03-29 2020-03-30 2020-03-31 2020-04-01
## 1   1.512717   1.006992   1.089657  0.9666734   1.122469    1.21085  0.9787144
##   2020-04-02 2020-04-03 2020-04-04 2020-04-05 2020-04-06 2020-04-07 2020-04-08
## 1   1.194085   1.050787   1.038459  0.8401195   1.063016   1.037819   1.030319
##   2020-04-09 2020-04-10 2020-04-11 2020-04-12 2020-04-13 2020-04-14 2020-04-15
## 1   1.096561  0.9641426  0.8958414  0.9516102  0.8853235   1.068766   1.077981
##   2020-04-16 2020-04-17 2020-04-18 2020-04-19 2020-04-20 2020-04-21 2020-04-22
## 1   1.073612   1.046532  0.8654794  0.9204823   1.047899  0.9325171   1.106289
##   2020-04-23 2020-04-24 2020-04-25 2020-04-26 2020-04-27 2020-04-28 2020-04-29
## 1   1.211342   1.061129  0.9086134  0.8409188  0.8108969   1.090613   1.118102
##   2020-04-30 2020-05-01 2020-05-02 2020-05-03 2020-05-04 2020-05-05 2020-05-06
## 1   1.083785   1.150935  0.8548969  0.8768956  0.8749902   1.076779    1.04485
##   2020-05-07 2020-05-08 2020-05-09 2020-05-10 2020-05-11 2020-05-12 2020-05-13
## 1   1.103895  0.9735724  0.9490754   0.769006  0.9477071      1.165  0.9642021
##   2020-05-14 2020-05-15 2020-05-16 2020-05-17 2020-05-18 2020-05-19 2020-05-20
## 1   1.307059  0.9160233  0.9960642  0.7567352    1.13866   0.941359   1.152094
##   2020-05-21 2020-05-22 2020-05-23 2020-05-24 2020-05-25 2020-05-26 2020-05-27
## 1   1.083625  0.9453334  0.9079008  0.9530676  0.9128843  0.9879658  0.9751042
##   2020-05-28 2020-05-29 2020-05-30 2020-05-31 2020-06-01 2020-06-02 2020-06-03
## 1   1.244686    1.07307  0.9927804  0.8293116  0.8605451   1.202987  0.9513909
##   2020-06-04 2020-06-05 2020-06-06 2020-06-07 2020-06-08 2020-06-09 2020-06-10
## 1   1.071378   1.416734   0.767972  0.7870069  0.9723187   1.025237   1.161799
##   2020-06-11 2020-06-12 NA
## 1   1.089749   1.109577 NA

This plot has 2 y axis- the first axis shows changes on a regular scale, the second axis is in a log scale. The graph on the top shows the log cases while the one on the bottom is for the regular scale.

The number of changes are hovering around 30,000 at present and we can see a slight downward trend in the graph towards the end signifying stabilization and the decline in the number of new cases.

Let’s import all time series data-

time_series_all <- covid19.data(case = 'ts-ALL')
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
## -------------------------------------------------------------------------------- 
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
## -------------------------------------------------------------------------------- 
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
## --------------------------------------------------------------------------------
#We will use the all data for a totals plot

totals.plt(time_series_all)
## Warning: `arrange_()` is deprecated as of dplyr 0.7.0.
## Please use `arrange()` instead.
## See vignette('programming') for more help
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.

One of the models that is being used by the researchers is the SIR model. In this mode, people are grouped into 3 categories healthy but susceptible - ‘S’, Infected - ‘I’, Recovered - ‘R’

generate.SIR.model(time_series_confirmed, "US", tot.population = 32820000)
## ################################################################################
## This is an experimental feature, being currently under active development!
## Please check the development version of the package for the latest updates on it
## ################################################################################ 
## Processing...  US 
##   [1]       1       1       2       2       5       5       5       5       5
##  [10]       7       8       8      11      11      11      11      11      11
##  [19]      11      11      12      12      13      13      13      13      13
##  [28]      13      13      13      15      15      15      15      15      15
##  [37]      16      16      24      30      53      73     104     174     222
##  [46]     337     451     519     711    1109    1560    2149    2859    2955
##  [55]    4338    6114    8874   14098   19410   25733   33660   43720   53959
##  [64]   65872   83893  102040  121814  140929  162385  188365  213792  244154
##  [73]  276058  309189  337023  366611  397318  428956  463649  497098  527063
##  [82]  555578  580823  607804  636889  668115  700794  729077  755111  782392
##  [91]  807832  835976  870068  906244  939114  966755  989169 1013614 1040946
## [100] 1070568 1104661 1133807 1159365 1181728 1205808 1230968 1258742 1285782
## [109] 1311445 1331180 1349883 1371672 1392681 1420141 1445295 1470350 1489310
## [118] 1510899 1531222 1554636 1580008 1603993 1625769 1646523 1665469 1684187
## [127] 1702439 1725157 1749535 1773737 1793808 1811080 1831858 1851626 1872805
## [136] 1902810 1925853 1943988 1961621 1979699 2000702 2023590 2048986
## [1] 40
##  [1]    30    53    73   104   174   222   337   451   519   711  1109  1560
## [13]  2149  2859  2955  4338  6114  8874 14098 19410 25733 33660 43720 53959
## [25] 65872 83893
## ------------------------  Parameters used to create model ------------------------ 
##      Region: US 
##      Time interval to consider: t0=40 - t1= ; tfinal=90 
##          t0: 2020-03-02 -- t1:  
##      Number of days considered for initial guess: 26 
##      Fatality rate: 0.02 
##      Population of the region: 32820000 
## --------------------------------------------------------------------------------
## Loading required package: deSolve
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
##      beta     gamma 
## 0.6608945 0.3391055 
##   R0 = 1.9489344224675 
##   Max of infecteded: 4728217.28  ( 14.41 %) 
##   Max nbr of casualties, assuming  2% fatality rate: 94564.35 
##   Max reached at day : 44 ==>  2020-04-15 
## ================================================================================
## Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE): 1 y value
## <= 0 omitted from logarithmic plot

## $Infected
##  [1]    30    53    73   104   174   222   337   451   519   711  1109  1560
## [13]  2149  2859  2955  4338  6114  8874 14098 19410 25733 33660 43720 53959
## [25] 65872 83893
## 
## $model
##    time        S            I            R
## 1     1 32819970 3.000000e+01 0.000000e+00
## 2     2 32819947 4.138777e+01 1.200062e+01
## 3     3 32819914 5.709823e+01 2.855658e+01
## 4     4 32819870 7.877219e+01 5.139705e+01
## 5     5 32819808 1.086733e+02 8.290755e+01
## 6     6 32819724 1.499243e+02 1.263790e+02
## 7     7 32819607 2.068332e+02 1.863517e+02
## 8     8 32819446 2.853431e+02 2.690890e+02
## 9     9 32819223 3.936524e+02 3.832315e+02
## 10   10 32818916 5.430704e+02 5.406994e+02
## 11   11 32818493 7.491972e+02 7.579362e+02
## 12   12 32817909 1.033551e+03 1.057626e+03
## 13   13 32817103 1.425809e+03 1.471058e+03
## 14   14 32815992 1.966902e+03 2.041392e+03
## 15   15 32814459 2.713268e+03 2.828157e+03
## 16   16 32812344 3.742714e+03 3.913450e+03
## 17   17 32809427 5.162487e+03 5.410479e+03
## 18   18 32805404 7.120346e+03 7.475324e+03
## 19   19 32799857 9.819780e+03 1.032312e+04
## 20   20 32792209 1.354083e+04 1.425030e+04
## 21   21 32781666 1.866851e+04 1.966513e+04
## 22   22 32767139 2.573153e+04 2.712953e+04
## 23   23 32747129 3.545453e+04 3.741623e+04
## 24   24 32719585 4.882830e+04 5.158653e+04
## 25   25 32681702 6.720286e+04 7.109561e+04
## 26   26 32629657 9.240891e+04 9.793411e+04
## 27   27 32558271 1.269125e+05 1.348162e+05
## 28   28 32460568 1.740050e+05 1.854266e+05
## 29   29 32327242 2.380216e+05 2.547365e+05
## 30   30 32146035 3.245681e+05 3.493966e+05
## 31   31 31901097 4.407019e+05 4.782008e+05
## 32   32 31572443 5.949658e+05 6.525907e+05
## 33   33 31135779 7.970984e+05 8.871224e+05
## 34   34 30563098 1.057158e+06 1.199744e+06
## 35   35 29824621 1.383745e+06 1.611634e+06
## 36   36 28892664 1.781091e+06 2.146245e+06
## 37   37 27747680 2.245143e+06 2.827177e+06
## 38   38 26385795 2.759532e+06 3.674673e+06
## 39   39 24825770 3.293269e+06 4.700962e+06
## 40   40 23112107 3.802441e+06 5.905453e+06
## 41   41 21311441 4.237173e+06 7.271386e+06
## 42   42 19501955 4.552459e+06 8.765586e+06
## 43   43 17759198 4.718809e+06 1.034199e+07
## 44   44 16143669 4.728217e+06 1.194811e+07
## 45   45 14694168 4.593461e+06 1.353237e+07
## 46   46 13427642 4.342111e+06 1.505025e+07
## 47   47 12343488 4.008562e+06 1.646795e+07
## 48   48 11429481 3.627026e+06 1.776349e+07
## 49   49 10667234 3.226991e+06 1.892577e+07
## 50   50 10036242 2.831181e+06 1.995258e+07
## 51   51  9516418 2.455384e+06 2.084820e+07
## 52   52  9089448 2.109327e+06 2.162123e+07
## 53   53  8739335 1.797964e+06 2.228270e+07
## 54   54  8452478 1.522797e+06 2.284472e+07
## 55   55  8217511 1.283006e+06 2.331948e+07
## 56   56  8025030 1.076348e+06 2.371862e+07
## 57   57  7867311 8.998090e+05 2.405288e+07
## 58   58  7738027 7.500619e+05 2.433191e+07
## 59   59  7632009 6.237613e+05 2.456423e+07
## 60   60  7545033 5.177243e+05 2.475724e+07
## 61   61  7473653 4.290308e+05 2.491732e+07
## 62   62  7415052 3.550683e+05 2.504988e+07
## 63   63  7366926 2.935420e+05 2.515953e+07
## 64   64  7327393 2.424636e+05 2.525014e+07
## 65   65  7294911 2.001284e+05 2.532496e+07
## 66   66  7268217 1.650871e+05 2.538670e+07
## 67   67  7246275 1.361149e+05 2.543761e+07
## 68   68  7228238 1.121822e+05 2.547958e+07
## 69   69  7213408 9.242699e+04 2.551416e+07
## 70   70  7201215 7.613002e+04 2.554266e+07
## 71   71  7191188 6.269259e+04 2.556612e+07
## 72   72  7182942 5.161749e+04 2.558544e+07
## 73   73  7176160 4.249247e+04 2.560135e+07
## 74   74  7170582 3.497625e+04 2.561444e+07
## 75   75  7165995 2.878659e+04 2.562522e+07
## 76   76  7162222 2.369030e+04 2.563409e+07
## 77   77  7159118 1.949491e+04 2.564139e+07
## 78   78  7156565 1.604157e+04 2.564739e+07
## 79   79  7154465 1.319935e+04 2.565234e+07
## 80   80  7152737 1.086029e+04 2.565640e+07
## 81   81  7151316 8.935454e+03 2.565975e+07
## 82   82  7150147 7.351576e+03 2.566250e+07
## 83   83  7149186 6.048324e+03 2.566477e+07
## 84   84  7148395 4.976018e+03 2.566663e+07
## 85   85  7147744 4.093762e+03 2.566816e+07
## 86   86  7147209 3.367892e+03 2.566942e+07
## 87   87  7146769 2.770699e+03 2.567046e+07
## 88   88  7146406 2.279382e+03 2.567131e+07
## 89   89  7146108 1.875176e+03 2.567202e+07
## 90   90  7145863 1.542639e+03 2.567259e+07

Analysis: The y-axis are the number of people who are affected vs no of days on the x axis.(based on 1st 25 days of data). The second plot is the same except that the number of infected have been converted to log scale. This semi-log plot or log linear plot. The model fits the data well The third plot gives us the break up according to the three categories ‘S I R’ The number of people infected (red line)reached a peak around day 45 whereas the recovered(green line) peaked at around day 60. We can see that the things are stabilizing pretty much from this plot. The same is echoed by the 4th plot which is the log of the third plot.

Lets look at UK as well-

generate.SIR.model(time_series_confirmed, "United Kingdom", tot.population = 67886004)
## ################################################################################
## This is an experimental feature, being currently under active development!
## Please check the development version of the package for the latest updates on it
## ################################################################################ 
## Processing...  UNITED KINGDOM 
##   [1]      0      0      0      0      0      0      0      0      0      2
##  [11]      2      2      2      2      2      2      3      3      3      8
##  [21]      8      9      9      9      9      9      9      9      9      9
##  [31]      9      9      9     13     13     13     15     20     23     36
##  [41]     40     51     86    116    164    207    274    322    384    459
##  [51]    459    802   1144   1145   1551   1960   2642   2716   4014   5067
##  [61]   5745   6726   8164   9640  11812  14745  17312  19780  22453  25481
##  [71]  29865  34173  38689  42477  48436  52279  55949  61474  65872  74605
##  [81]  79874  85206  89570  94845  99483 104145 109769 115314 121172 125856
##  [91] 130172 134638 139246 144640 149569 154037 158348 162350 166441 172481
## [101] 178685 183500 187842 191832 196243 202359 207977 212629 216525 220449
## [111] 224332 227741 230985 234440 238004 241461 244995 247709 250138 249619
## [121] 252246 255544 258504 260916 262547 266599 268619 270508 272607 274219
## [131] 276156 277736 279392 281270 283079 284734 286294 287621 288834 290581
## [141] 291588 292860 294402
## [1] 39
##  [1]   23   36   40   51   86  116  164  207  274  322  384  459  459  802 1144
## [16] 1145 1551 1960 2642 2716 4014 5067 5745 6726 8164 9640
## ------------------------  Parameters used to create model ------------------------ 
##      Region: UNITED KINGDOM 
##      Time interval to consider: t0=39 - t1= ; tfinal=90 
##          t0: 2020-03-01 -- t1:  
##      Number of days considered for initial guess: 26 
##      Fatality rate: 0.02 
##      Population of the region: 67886004 
## -------------------------------------------------------------------------------- 
## [1] "ERROR: ABNORMAL_TERMINATION_IN_LNSRCH"
##      beta     gamma 
## 0.6228167 0.3771834 
##   R0 = 1.6512303058082 
##   Max of infecteded: 6140682.72  ( 9.05 %) 
##   Max nbr of casualties, assuming  2% fatality rate: 122813.65 
##   Max reached at day : 59 ==>  2020-04-29 
## ================================================================================
## Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE): 1 y value
## <= 0 omitted from logarithmic plot

## $Infected
##  [1]   23   36   40   51   86  116  164  207  274  322  384  459  459  802 1144
## [16] 1145 1551 1960 2642 2716 4014 5067 5745 6726 8164 9640
## 
## $model
##    time        S            I            R
## 1     1 67885981 2.300000e+01 0.000000e+00
## 2     2 67885965 2.940390e+01 9.833547e+00
## 3     3 67885944 3.759083e+01 2.240505e+01
## 4     4 67885917 4.805724e+01 3.847685e+01
## 5     5 67885884 6.143780e+01 5.902352e+01
## 6     6 67885840 7.854388e+01 8.529099e+01
## 7     7 67885785 1.004127e+02 1.188720e+02
## 8     8 67885714 1.283704e+02 1.618030e+02
## 9     9 67885623 1.641122e+02 2.166872e+02
## 10   10 67885507 2.098053e+02 2.868526e+02
## 11   11 67885359 2.682202e+02 3.765538e+02
## 12   12 67885170 3.428986e+02 4.912298e+02
## 13   13 67884928 4.383684e+02 6.378341e+02
## 14   14 67884618 5.604174e+02 8.252557e+02
## 15   15 67884223 7.164446e+02 1.064858e+03
## 16   16 67883717 9.159079e+02 1.371168e+03
## 17   17 67883070 1.170897e+03 1.762757e+03
## 18   18 67882244 1.496865e+03 2.263361e+03
## 19   19 67881187 1.913564e+03 2.903328e+03
## 20   20 67879836 2.446237e+03 3.721444e+03
## 21   21 67878110 3.127144e+03 4.767289e+03
## 22   22 67875902 3.997509e+03 6.104232e+03
## 23   23 67873081 5.110003e+03 7.813262e+03
## 24   24 67869474 6.531907e+03 9.997876e+03
## 25   25 67864865 8.349156e+03 1.279033e+04
## 26   26 67858973 1.067147e+04 1.635958e+04
## 27   27 67851444 1.363891e+04 2.092149e+04
## 28   28 67841822 1.743013e+04 2.675170e+04
## 29   29 67829529 2.227299e+04 3.420217e+04
## 30   30 67813824 2.845776e+04 4.372210e+04
## 31   31 67793765 3.635398e+04 5.588454e+04
## 32   32 67768152 4.643150e+04 7.142008e+04
## 33   33 67735458 5.928679e+04 9.125953e+04
## 34   34 67693741 7.567555e+04 1.165875e+05
## 35   35 67640541 9.655283e+04 1.489100e+05
## 36   36 67572744 1.231217e+05 1.901381e+05
## 37   37 67486420 1.568912e+05 2.426927e+05
## 38   38 67376628 1.997439e+05 3.096317e+05
## 39   39 67237186 2.540120e+05 3.948058e+05
## 40   40 67060403 3.225581e+05 5.030426e+05
## 41   41 66836789 4.088532e+05 6.403617e+05
## 42   42 66554747 5.170394e+05 8.142172e+05
## 43   43 66200293 6.519540e+05 1.033757e+06
## 44   44 65756846 8.190807e+05 1.310078e+06
## 45   45 65205182 1.024379e+06 1.656443e+06
## 46   46 64523673 1.273930e+06 2.088401e+06
## 47   47 63688955 1.573323e+06 2.623726e+06
## 48   48 62677216 1.926723e+06 3.282065e+06
## 49   49 61466222 2.335606e+06 4.084175e+06
## 50   50 60038157 2.797223e+06 5.050624e+06
## 51   51 58383067 3.303041e+06 6.199895e+06
## 52   52 56502484 3.837552e+06 7.545968e+06
## 53   53 54412409 4.378003e+06 9.095592e+06
## 54   54 52144710 4.895568e+06 1.084573e+07
## 55   55 49746107 5.358165e+06 1.278173e+07
## 56   56 47274468 5.734640e+06 1.487690e+07
## 57   57 44792944 5.999395e+06 1.709366e+07
## 58   58 42363213 6.136280e+06 1.938651e+07
## 59   59 40039358 6.140683e+06 2.170596e+07
## 60   60 37863622 6.019386e+06 2.400300e+07
## 61   61 35864556 5.788465e+06 2.623298e+07
## 62   62 34057377 5.470017e+06 2.835861e+07
## 63   63 32445865 5.088659e+06 3.035148e+07
## 64   64 31025012 4.668526e+06 3.219247e+07
## 65   65 29783758 4.231138e+06 3.387111e+07
## 66   66 28707410 3.794223e+06 3.538437e+07
## 67   67 27779553 3.371330e+06 3.673512e+07
## 68   68 26983423 2.972013e+06 3.793057e+07
## 69   69 26302820 2.602337e+06 3.898085e+07
## 70   70 25722651 2.265528e+06 3.989783e+07
## 71   71 25229206 1.962641e+06 4.069416e+07
## 72   72 24810262 1.693161e+06 4.138258e+07
## 73   73 24455061 1.455516e+06 4.197543e+07
## 74   74 24154233 1.247473e+06 4.248430e+07
## 75   75 23899673 1.066453e+06 4.291988e+07
## 76   76 23684411 9.097423e+05 4.329185e+07
## 77   77 23502479 7.746501e+05 4.360888e+07
## 78   78 23348782 6.586059e+05 4.387862e+07
## 79   79 23218985 5.592194e+05 4.410780e+07
## 80   80 23109401 4.743109e+05 4.430229e+07
## 81   81 23016904 4.019225e+05 4.446718e+07
## 82   82 22938844 3.403161e+05 4.460684e+07
## 83   83 22872978 2.879630e+05 4.472506e+07
## 84   84 22817408 2.435284e+05 4.482507e+07
## 85   85 22770528 2.058538e+05 4.490962e+07
## 86   86 22730984 1.739387e+05 4.498108e+07
## 87   87 22697630 1.469227e+05 4.504145e+07
## 88   88 22669499 1.240679e+05 4.509244e+07
## 89   89 22645773 1.047434e+05 4.513549e+07
## 90   90 22625765 8.841116e+04 4.517183e+07

Here we see the infected peak at around day 60 and a recovered peak at around day 75.

Now we will look at India

generate.SIR.model(time_series_confirmed, "India", tot.population = 1349217956)
## ################################################################################
## This is an experimental feature, being currently under active development!
## Please check the development version of the package for the latest updates on it
## ################################################################################ 
## Processing...  INDIA 
##   [1]      0      0      0      0      0      0      0      0      1      1
##  [11]      1      2      3      3      3      3      3      3      3      3
##  [21]      3      3      3      3      3      3      3      3      3      3
##  [31]      3      3      3      3      3      3      3      3      3      3
##  [41]      5      5     28     30     31     34     39     43     56     62
##  [51]     73     82    102    113    119    142    156    194    244    330
##  [61]    396    499    536    657    727    887    987   1024   1251   1397
##  [71]   1998   2543   2567   3082   3588   4778   5311   5916   6725   7598
##  [81]   8446   9205  10453  11487  12322  13430  14352  15722  17615  18539
##  [91]  20080  21370  23077  24530  26283  27890  29451  31324  33062  34863
## [101]  37257  39699  42505  46437  49400  52987  56351  59695  62808  67161
## [111]  70768  74292  78055  81997  85784  90648  95698 100328 106475 112028
## [121] 118226 124794 131423 138536 144950 150793 158086 165386 173491 181827
## [131] 190609 198370 207191 216824 226713 236184 246622 257486 265928 276146
## [141] 286605 297535 297535
## [1] 42
##  [1]   5  28  30  31  34  39  43  56  62  73  82 102 113 119 142 156 194 244 330
## [20] 396 499 536 657 727 887 987
## ------------------------  Parameters used to create model ------------------------ 
##      Region: INDIA 
##      Time interval to consider: t0=42 - t1= ; tfinal=90 
##          t0: 2020-03-04 -- t1:  
##      Number of days considered for initial guess: 26 
##      Fatality rate: 0.02 
##      Population of the region: 1349217956 
## -------------------------------------------------------------------------------- 
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
##      beta     gamma 
## 0.6081878 0.3918122 
##   R0 = 1.5522432706608 
##   Max of infecteded: 97822176.53  ( 7.25 %) 
##   Max nbr of casualties, assuming  2% fatality rate: 1956443.53 
##   Max reached at day : 86 ==>  2020-05-29 
## ================================================================================
## Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE): 1 y value
## <= 0 omitted from logarithmic plot

## $Infected
##  [1]   5  28  30  31  34  39  43  56  62  73  82 102 113 119 142 156 194 244 330
## [20] 396 499 536 657 727 887 987
## 
## $model
##    time          S            I            R
## 1     1 1349217951 5.000000e+00 0.000000e+00
## 2     2 1349217948 6.207843e+00 2.187158e+00
## 3     3 1349217943 7.707465e+00 4.902667e+00
## 4     4 1349217938 9.569346e+00 8.274155e+00
## 5     5 1349217932 1.188100e+01 1.246009e+01
## 6     6 1349217924 1.475108e+01 1.765722e+01
## 7     7 1349217914 1.831449e+01 2.410983e+01
## 8     8 1349217901 2.273869e+01 3.212116e+01
## 9     9 1349217886 2.823165e+01 4.206778e+01
## 10   10 1349217867 3.505153e+01 5.441721e+01
## 11   11 1349217843 4.351889e+01 6.974987e+01
## 12   12 1349217813 5.403170e+01 8.878642e+01
## 13   13 1349217776 6.708407e+01 1.124216e+02
## 14   14 1349217731 8.328948e+01 1.417663e+02
## 15   15 1349217674 1.034096e+02 1.781998e+02
## 16   16 1349217604 1.283901e+02 2.234345e+02
## 17   17 1349217517 1.594052e+02 2.795964e+02
## 18   18 1349217409 1.979124e+02 3.493253e+02
## 19   19 1349217274 2.457219e+02 4.358985e+02
## 20   20 1349217108 3.050805e+02 5.433851e+02
## 21   21 1349216900 3.787783e+02 6.768370e+02
## 22   22 1349216643 4.702791e+02 8.425267e+02
## 23   23 1349216324 5.838835e+02 1.048242e+03
## 24   24 1349215927 7.249309e+02 1.303651e+03
## 25   25 1349215435 9.000507e+02 1.620759e+03
## 26   26 1349214824 1.117474e+03 2.014469e+03
## 27   27 1349214065 1.387418e+03 2.503288e+03
## 28   28 1349213123 1.722572e+03 3.110188e+03
## 29   29 1349211954 2.138686e+03 3.863695e+03
## 30   30 1349210501 2.655318e+03 4.799223e+03
## 31   31 1349208699 3.296748e+03 5.960742e+03
## 32   32 1349206460 4.093121e+03 7.402842e+03
## 33   33 1349203681 5.081862e+03 9.193298e+03
## 34   34 1349200230 6.309436e+03 1.141626e+04
## 35   35 1349195946 7.833529e+03 1.417620e+04
## 36   36 1349190627 9.725758e+03 1.760281e+04
## 37   37 1349184024 1.207503e+04 2.185714e+04
## 38   38 1349175825 1.499173e+04 2.713910e+04
## 39   39 1349165646 1.861287e+04 3.369689e+04
## 40   40 1349153009 2.310855e+04 4.183865e+04
## 41   41 1349137319 2.868991e+04 5.194690e+04
## 42   42 1349117840 3.561906e+04 6.449653e+04
## 43   43 1349093658 4.422129e+04 8.007705e+04
## 44   44 1349063635 5.490034e+04 9.942025e+04
## 45   45 1349026364 6.815725e+04 1.234345e+05
## 46   46 1348980095 8.461376e+04 1.532472e+05
## 47   47 1348922657 1.050412e+05 1.902577e+05
## 48   48 1348851357 1.303966e+05 2.362027e+05
## 49   49 1348762852 1.618664e+05 2.932371e+05
## 50   50 1348652999 2.009223e+05 3.640345e+05
## 51   51 1348516656 2.493880e+05 4.519119e+05
## 52   52 1348347450 3.095231e+05 5.609829e+05
## 53   53 1348137482 3.841259e+05 6.963485e+05
## 54   54 1347876965 4.766595e+05 8.643317e+05
## 55   55 1347553782 5.914064e+05 1.072767e+06
## 56   56 1347152940 7.336572e+05 1.331359e+06
## 57   57 1346655898 9.099401e+05 1.652118e+06
## 58   58 1346039760 1.128298e+06 2.049898e+06
## 59   59 1345276277 1.398622e+06 2.543057e+06
## 60   60 1344330657 1.733046e+06 3.154253e+06
## 61   61 1343160130 2.146415e+06 3.911411e+06
## 62   62 1341712247 2.656818e+06 4.848892e+06
## 63   63 1339922878 3.286201e+06 6.008877e+06
## 64   64 1337713911 4.061033e+06 7.443012e+06
## 65   65 1334990644 5.013001e+06 9.214311e+06
## 66   66 1331638932 6.179687e+06 1.139934e+07
## 67   67 1327522199 7.605129e+06 1.409063e+07
## 68   68 1322478526 9.340129e+06 1.739930e+07
## 69   69 1316318170 1.144210e+07 2.145768e+07
## 70   70 1308822027 1.397416e+07 2.642176e+07
## 71   71 1299741809 1.700308e+07 3.247307e+07
## 72   72 1288802932 2.059560e+07 3.981942e+07
## 73   73 1275711340 2.481270e+07 4.869391e+07
## 74   74 1260165587 2.970130e+07 5.935107e+07
## 75   75 1241875333 3.528332e+07 7.205930e+07
## 76   76 1220586812 4.154253e+07 8.708861e+07
## 77   77 1196114611 4.841050e+07 1.046928e+08
## 78   78 1168377259 5.575400e+07 1.250867e+08
## 79   79 1137431900 6.336743e+07 1.484186e+08
## 80   80 1103501340 7.097424e+07 1.747424e+08
## 81   81 1066985961 7.824054e+07 2.039915e+08
## 82   82 1028454370 8.480209e+07 2.359615e+08
## 83   83  988610448 9.030197e+07 2.703055e+08
## 84   84  948239994 9.443287e+07 3.065451e+08
## 85   85  908145489 9.697508e+07 3.440974e+08
## 86   86  869080639 9.782218e+07 3.823151e+08
## 87   87  831695877 9.698885e+07 4.205332e+08
## 88   88  796502559 9.460084e+07 4.581146e+08
## 89   89  763858118 9.087057e+07 4.944893e+08
## 90   90  733970085 8.606532e+07 5.291825e+08

This model seems to suggest that the peak will be around 90 days for Infected rate.