This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
library(stringr)
url="http://www.deis.msal.gov.ar/wp-content/uploads/2020/01/DefWeb18.csv"
url1="http://www.deis.msal.gov.ar/wp-content/uploads/2019/01/DefWeb17.csv"
url2="http://www.deis.msal.gov.ar/wp-content/uploads/2018/06/DefWeb16.csv"
url3="http://www.deis.msal.gov.ar/wp-content/uploads/2018/06/DefWeb15.csv"
url4="http://www.deis.msal.gov.ar/wp-content/uploads/2018/06/DefWeb14.csv"
def2018=read.csv(url)
def2017=read.csv(url1)
def2016=read.csv(url2)
def2015=read.csv(url3)
def2014=read.csv(url4)
def2018$año<-c("2018")
def2017$año<-c("2017")
def2016$año<-c("2016")
def2015$año<-c("2015")
def2014$año<-c("2014")
deftotal <- do.call("rbind", list(def2018, def2017, def2016, def2015,def2014))
head(deftotal)
## PROVRES SEXO CAUSA MAT GRUPEDAD CUENTA año
## 1 2 1 A09 12_55 a 59 1 2018
## 2 2 1 A09 17_80 y m\xe1s 3 2018
## 3 2 1 A16 15_70 a 74 3 2018
## 4 2 1 A19 07_30 a 34 1 2018
## 5 2 1 A41 05_20 a 24 1 2018
## 6 2 1 A41 06_25 a 29 3 2018
deftotal[deftotal$SEXO == 1, "SEXO"] <- "Masculino"
deftotal[deftotal$SEXO == 2, "SEXO"] <- "Femenino"
deftotal[deftotal$SEXO == 9, "SEXO"] <- "Sin especificar"
deftotal[deftotal$PROVRES == 2, "PROVRES"] <- "CABA"
deftotal[deftotal$PROVRES == 6, "PROVRES"] <- "Buenos Aires"
deftotal[deftotal$PROVRES == 10, "PROVRES"] <- "Catamarca"
deftotal[deftotal$PROVRES == 14, "PROVRES"] <- "Cordoba"
deftotal[deftotal$PROVRES == 18, "PROVRES"] <- "Corrientes"
deftotal[deftotal$PROVRES == 22, "PROVRES"] <- "Chaco"
deftotal[deftotal$PROVRES == 26, "PROVRES"] <- "Chubut"
deftotal[deftotal$PROVRES == 30, "PROVRES"] <- "Entre Rios"
deftotal[deftotal$PROVRES == 34, "PROVRES"] <- "Formosa"
deftotal[deftotal$PROVRES == 38, "PROVRES"] <- "Jujuy"
deftotal[deftotal$PROVRES == 42, "PROVRES"] <- "La Pampa"
deftotal[deftotal$PROVRES == 46, "PROVRES"] <- "La Rioja"
deftotal[deftotal$PROVRES == 50, "PROVRES"] <- "Mendoza"
deftotal[deftotal$PROVRES == 54, "PROVRES"] <- "Misiones"
deftotal[deftotal$PROVRES == 58, "PROVRES"] <- "Neuquen"
deftotal[deftotal$PROVRES == 62, "PROVRES"] <- "Rio Negro"
deftotal[deftotal$PROVRES == 66, "PROVRES"] <- "Salta"
deftotal[deftotal$PROVRES == 70, "PROVRES"] <- "San Juan"
deftotal[deftotal$PROVRES == 74, "PROVRES"] <- "San Luis"
deftotal[deftotal$PROVRES == 78, "PROVRES"] <- "Santa Cruz"
deftotal[deftotal$PROVRES == 82, "PROVRES"] <- "Santa Fe"
deftotal[deftotal$PROVRES == 86, "PROVRES"] <- "Santiago del Estero"
deftotal[deftotal$PROVRES == 90, "PROVRES"] <- "Tucuman"
deftotal[deftotal$PROVRES == 94, "PROVRES"] <- "Tierra del Fuego"
deftotal[deftotal$PROVRES == 98, "PROVRES"] <- "Otro Pais"
deftotal[deftotal$PROVRES == 99, "PROVRES"] <- "Lugar no especificado"
library("xlsx")
codmuertes<-read.xlsx("codmuertes.xlsx",sheetIndex = 1)
names(deftotal)[names(deftotal) == "CAUSA"] <- "CODIGO"
deffinal<-merge(deftotal,codmuertes, by="CODIGO")
names(deffinal)[names(deffinal) == "VALOR"] <- "CAUSA DE MUERTE"
names(deffinal)[names(deffinal) == "año"] <- "AÑO"
library(utils)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
cuenta<-deftotal %>%
group_by(SEXO)%>%
summarise(cantidad=sum(CUENTA))
ggplot(cuenta, aes(x="", y=cantidad, fill=SEXO)) +
geom_bar(stat="identity", width=45) +
coord_polar("y", start=0)
cuenta2= deftotal %>%
group_by(año)%>%
summarise(cantidad=sum(CUENTA))
ggplot(cuenta2, aes(x=año, y=cantidad))+
geom_histogram(stat="identity", fill="darkcyan")+
ggtitle("Grafico de defunciones por año")+
xlab("Año")+
ylab("Cantidad")+
ylim(0,390000)+
geom_text(aes(label=cantidad),size=3,col="black", vjust=-1)
## Warning: Ignoring unknown parameters: binwidth, bins, pad
counts= deftotal %>%
group_by(año, SEXO)%>%
summarise(cantidad=sum(CUENTA))
ggplot(counts, aes(fill=SEXO, y=cantidad, x=año))+
geom_bar(position="dodge", stat="identity")+
ggtitle("Cantidad de defunciones por año y sexo")
drt<-deftotal %>%
group_by(PROVRES)%>%
summarise(cantidad=sum(CUENTA))%>%
arrange(-cantidad)
library(tidyverse)
## ── Attaching packages ──────────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ tibble 2.1.3 ✓ purrr 0.3.3
## ✓ tidyr 1.0.2 ✓ forcats 0.5.0
## ✓ readr 1.3.1
## ── Conflicts ─────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
ggplot(drt, aes(x=fct_reorder(`PROVRES`, cantidad, .desc=FALSE), y=cantidad, label=cantidad)) +
geom_point(stat='identity', fill="white", size=3) +
geom_segment(aes(y = 0,
x = `PROVRES`,
yend = cantidad,
xend = PROVRES),
color = "black") +
geom_text(color="black", size=2.5, hjust=-0.3) +
labs(title="Cantidad de Defunciones por Provincia",
subtitle="Cantidades tomadas de datos del 2014 al 2018"
) +
ylim(0, 700000) +
coord_flip()
causas=deffinal %>%
group_by(`CAUSA DE MUERTE`) %>%
summarise(cantidad=sum(CUENTA)) %>%
arrange(-cantidad)
topcausas=filter(causas, `cantidad`>19390)
ggplot(topcausas, aes(x=cantidad, y=fct_reorder(`CAUSA DE MUERTE`, cantidad, .desc=FALSE), label=cantidad))+
geom_point(stat='identity', fill="white", size=3) +
geom_segment(aes(xend=cantidad, x=0,yend=`CAUSA DE MUERTE`),color = "black") +
geom_text(color="black", size=2.5, hjust=-0.3)+
xlab("Cantidad")+
ylab("Causa")+
ggtitle("TOP 20 causas por cantidad de defunciones")
# TABLA PARA HACER MAPA POR PROVINCIA
filtro=filter(deftotal, SEXO=="Masculino" | SEXO=="Femenino")
prov=filtro %>%
group_by(PROVRES, SEXO)%>%
summarise(cantidad=sum(CUENTA))%>%
arrange(-cantidad)
# MAPA HECHO CON JSBIN https://output.jsbin.com/mikatawiyu
#COLOR ROSA: GENERO FEMENINO CON MAS DEFUNCIONES EN ESA PROVINCIA
#COLOR CELESTE: GENERO MASCULINO CON MAS DEFUNCIONES EN ESA PROVINCIA
Note that the echo = FALSE
parameter was added to the code chunk to prevent printing of the R code that generated the plot.