# path to project directory
knitr::opts_knit$set(root.dir = normalizePath(".."))
# fig quality
knitr::opts_chunk$set(dpi = 50, fig.width = 12)
# read data
dat <- read_excel("./data/Datos de respuestas_cap2.xlsx")
# convert to regular data frame
dat <- as.data.frame(dat)
# create new variable abou
dat$est_repr[dat$estado_repr == 0] <- "Inactivo"
dat$est_repr[dat$estado_repr == 1] <- "Activo"
# aggregate total number of calls
agg_dat <- aggregate(n_llamadas ~ ID + sexo_consulta + sexo_respuesta + est_repr, data = dat, FUN = sum)
# plot
ggplot(agg_dat, aes(fill = sexo_consulta, y = n_llamadas, x = sexo_respuesta)) +
geom_boxplot() +
scale_fill_viridis_d(alpha = 0.7, begin = 0.4) +
theme_classic(base_size = 24) +
labs(x = "Sexo respuesta", y = "Numero de llamadas")+
facet_wrap(~ est_repr) + ggtitle("Total de llamadas")
# create binary variable for calling
dat$n_llam_bin <- ifelse(dat$n_llamadas > 0, 1, 0)
# aggregate
agg_dat2 <- aggregate(n_llam_bin ~ ID + sexo_consulta + sexo_respuesta + est_repr, data = dat, FUN = sum)
#plot
ggplot(agg_dat2, aes(fill = sexo_consulta, y = n_llam_bin, x = sexo_respuesta)) +
geom_boxplot() +
scale_fill_viridis_d(alpha = 0.7, begin = 0.4) +
theme_classic(base_size = 24) +
labs(x = "Sexo respuesta", y = "Cuenta de experimentos con respuesta")+
facet_wrap(~ est_repr) + ggtitle("Experimentos con respuesta")
# define parmeters for MCMCglmm models
itrns <- 300000
burnin <- 3000
thin <- 1000
# prior for effect models
pr <- list(B = list(mu = rep(0, 8), V = diag(8) * (1 + pi^2/3)), R = list(V = 1, fix = 1), G = list(G1 = list(V = 1, fix = 1)))
# run model
md <- MCMCglmm(n_llam_bin ~ sexo_respuesta:est_repr:sexo_consulta - 1, random = ~ ID, data = dat, family = "categorical", prior = pr, verbose = FALSE, nitt = itrns, start = list(QUASI = FALSE), burnin = burnin, thin = thin)
The output contains the posterior distribution of the parameter estimates. These parameter distributions can be used to test specific hypothesis about differences between sexes/stages/inquiry sexes. Column names in md$Sol
(solutions) refer to the combination of levels from the 3 interacting variables:
# simplify names
colnames(md$Sol) <- gsub("sexo_respuesta|est_repr", "", colnames(md$Sol))
colnames(md$Sol)
## [1] "H:Activo:sexo_consultaH" "M:Activo:sexo_consultaH"
## [3] "H:Inactivo:sexo_consultaH" "M:Inactivo:sexo_consultaH"
## [5] "H:Activo:sexo_consultaM" "M:Activo:sexo_consultaM"
## [7] "H:Inactivo:sexo_consultaM" "M:Inactivo:sexo_consultaM"
# stack posteriors
Y <- stack(as.data.frame(md$Sol))
# plot posteriors
ggplot(Y, aes(x=values)) +
geom_vline(xintercept = 0, col = "red", lty = 2) +
geom_density() +
labs(y = "Density", x = "Posterior") +
facet_wrap(~ ind, ncol = 2) +
theme_classic(base_size = 24)
Estimate of the overlap of posteriors can be used a statistical significance test. For instance we can compare calling activity between sexes during the active stage:
# get p value
p.val <- sum(md$Sol[, "M:Activo:sexo_consultaH"] - md$Sol[, "H:Activo:sexo_consultaH"] < 0) / nrow(md$Sol)
p.val
## [1] 0.01010101
# plot distributions
ggplot(Y[Y$ind %in% c("H:Activo:sexo_consultaH", "M:Activo:sexo_consultaH"), ], aes(x=values)) + geom_density(aes(group = ind, colour = ind, fill = ind), alpha=0.3) +
scale_color_viridis_d(alpha = 0.7, begin = 0.4, end = 0.8) +
scale_fill_viridis_d(alpha = 0.7, begin = 0.4, end = 0.8) +
labs(y = "Density", x = "Posterior") +
theme_classic(base_size = 24)
Or whether males responde more to females during the reproductive stage:
# p value
p.val <- sum(md$Sol[, "M:Activo:sexo_consultaH"] - md$Sol[, "M:Inactivo:sexo_consultaH"] < 0) / nrow(md$Sol)
p.val
## [1] 0.04040404
# plot distributions
ggplot(Y[Y$ind %in% c("M:Activo:sexo_consultaM", "M:Inactivo:sexo_consultaM"), ], aes(x=values)) + geom_density(aes(group = ind, colour = ind, fill = ind), alpha=0.3) +
scale_color_viridis_d(alpha = 0.7, begin = 0.4, end = 0.8) +
scale_fill_viridis_d(alpha = 0.7, begin = 0.4, end = 0.8) +
labs(y = "Density", x = "Posterior") +
theme_classic(base_size = 24)
plot(md$Sol)
R session information
## R version 3.6.1 (2019-07-05)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.4 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3
## LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3
##
## locale:
## [1] LC_CTYPE=es_ES.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=es_CR.UTF-8 LC_COLLATE=es_ES.UTF-8
## [5] LC_MONETARY=es_CR.UTF-8 LC_MESSAGES=es_ES.UTF-8
## [7] LC_PAPER=es_CR.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=es_CR.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] MCMCglmm_2.29 ape_5.4 coda_0.19-3 Matrix_1.2-18
## [5] viridis_0.5.1 viridisLite_0.3.0 readxl_1.3.1 ggplot2_3.3.1
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.4.6 pillar_1.4.4 compiler_3.6.1 cellranger_1.1.0
## [5] tools_3.6.1 digest_0.6.25 nlme_3.1-142 lattice_0.20-41
## [9] evaluate_0.14 lifecycle_0.2.0 tibble_3.0.1 gtable_0.3.0
## [13] pkgconfig_2.0.3 rlang_0.4.6 parallel_3.6.1 yaml_2.2.1
## [17] xfun_0.14 gridExtra_2.3 withr_2.2.0 stringr_1.4.0
## [21] dplyr_1.0.0 knitr_1.28 generics_0.0.2 vctrs_0.3.1
## [25] grid_3.6.1 tidyselect_1.1.0 glue_1.4.1 R6_2.4.1
## [29] rmarkdown_2.2 tensorA_0.36.1 farver_2.0.3 corpcor_1.6.9
## [33] purrr_0.3.4 magrittr_1.5 scales_1.1.1 ellipsis_0.3.1
## [37] htmltools_0.4.0 cubature_2.0.4 colorspace_1.4-1 labeling_0.3
## [41] stringi_1.4.6 munsell_0.5.0 crayon_1.3.4