Educational Predictive Analytics Tutorial
1 Goals
Practice using decision tree and logistic regression models to predict which students are going to pass or fail, using the
student-por.csvdata.Fine-tune predictive models.
Compare the results of different predictive models and choose the best one.
Brainstorm about how the predictions would be used in an educational setting.
2 Important reminders
Anywhere you see the word
MODIFYis one place where you might consider making changes to the code.If you are not certain about any interpretations of results—especially confusion matrices, accuracy, sensitivity, and specificity—stop and ask an instructor for assistance.
Link to this document: https://rpubs.com/anshulkumar/EducAnalytics1
3 Load relevant packages
Step 1: Load packages
if (!require(PerformanceAnalytics)) install.packages('PerformanceAnalytics')
if (!require(rpart)) install.packages('rpart')
if (!require(rpart.plot)) install.packages('rpart.plot')
if (!require(car)) install.packages('car')
if (!require(rattle)) install.packages('rattle')
library(PerformanceAnalytics)
library(rpart)
library(rpart.plot)
library(car)
library(rattle)4 Import and describe data
We will use the student-por.csv data.
Step 2: Import data
d <- read.csv("student-por.csv")Data source and details:
P. Cortez and A. Silva. Using Data Mining to Predict Secondary School Student Performance. In A. Brito and J. Teixeira Eds., Proceedings of 5th FUture BUsiness TEChnology Conference (FUBUTEC 2008) pp. 5-12, Porto, Portugal, April, 2008, EUROSIS, ISBN 978-9077381-39-7. Available at https://archive.ics.uci.edu/ml/datasets/Student+Performance.
Alternate source: https://www.kaggle.com/larsen0966/student-performance-data-set
Step 3: List variables
names(d)## [1] "school" "sex" "age" "address" "famsize"
## [6] "Pstatus" "Medu" "Fedu" "Mjob" "Fjob"
## [11] "reason" "guardian" "traveltime" "studytime" "failures"
## [16] "schoolsup" "famsup" "paid" "activities" "nursery"
## [21] "higher" "internet" "romantic" "famrel" "freetime"
## [26] "goout" "Dalc" "Walc" "health" "absences"
## [31] "G1" "G2" "G3"
Description of dataset and all variables: https://archive.ics.uci.edu/ml/datasets/Student+Performance.
All variables in formula (for easy copying and pasting):
(b <- paste(names(d), collapse="+"))## [1] "school+sex+age+address+famsize+Pstatus+Medu+Fedu+Mjob+Fjob+reason+guardian+traveltime+studytime+failures+schoolsup+famsup+paid+activities+nursery+higher+internet+romantic+famrel+freetime+goout+Dalc+Walc+health+absences+G1+G2+G3"
Step 4: Calculate number of observations
nrow(d)## [1] 649
Step 5: Generate binary version of dependent variable, G3 (final grade, 0 to 20).
d$passed <- ifelse(d$G3 > 9.99, 1, 0)We’re assuming that a score of over 9.99 is a passing score, and below that is failing.
Step 6: Descriptive statistics for G3 continuous numeric variable.
summary(d$G3)## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 10.00 12.00 11.91 14.00 19.00
sd(d$G3)## [1] 3.230656
Step 7: Who all passed and failed, binary qualitative categorical variable.
with(d, table(passed, useNA = "always"))## passed
## 0 1 <NA>
## 100 549 0
Step 8: Histogram
hist(as.numeric(d$G3))Step 9: Scatterplots
plot(d$G1 , d$G3) # MODIFY which variables you plotplot(d$health, d$G3)Step 10: Selected correlations (optional)
chart.Correlation(d[c("G3","G1","Medu","failures")], histogram=TRUE, pch=19) 5 Divide training and testing data
Step 11: Divide data
trainingRowIndex <- sample(1:nrow(d), 0.75*nrow(d)) # row indices for training data
dtrain <- d[trainingRowIndex, ] # model training data
dtest <- d[-trainingRowIndex, ] # test data5.1 Training data characteristics
Step 12: Examine training data
nrow(dtrain)## [1] 486
with(dtrain, table(passed, useNA = "always"))## passed
## 0 1 <NA>
## 79 407 0
5.2 Testing data characteristics
Step 13: Examine testing data
nrow(dtest)## [1] 163
with(dtest, table(passed, useNA = "always"))## passed
## 0 1 <NA>
## 21 142 0
6 Decision tree model – regression tree
Activity summary:
- Goal: predict continuous outcome
G3, using a regression tree. - Start by using all variables to make decision tree. Check predictive capability.
- Remove variables to make predictions with less information.
- Modify cutoff thresholds and see how confusion matrix changes.
- Anywhere you see the word
MODIFYis one place where you might consider making changes to the code. - Figure out which students to remediate.
6.1 Train and inspect model
Step 14: Train a decision tree model
tree1 <- rpart(G3 ~ school+sex+age+address+famsize+Pstatus+Medu+Fedu+Mjob+Fjob+reason+guardian+traveltime+studytime+failures+schoolsup+famsup+paid+activities+nursery+higher+internet+romantic+famrel+freetime+goout+Dalc+Walc+health+absences+G1+G2, data=dtrain, method = 'anova')
# MODIFY. Try without G1 and G2. Then try other combinations.
summary(tree1)## Call:
## rpart(formula = G3 ~ school + sex + age + address + famsize +
## Pstatus + Medu + Fedu + Mjob + Fjob + reason + guardian +
## traveltime + studytime + failures + schoolsup + famsup +
## paid + activities + nursery + higher + internet + romantic +
## famrel + freetime + goout + Dalc + Walc + health + absences +
## G1 + G2, data = dtrain, method = "anova")
## n= 486
##
## CP nsplit rel error xerror xstd
## 1 0.51254992 0 1.0000000 1.0014104 0.09835703
## 2 0.14621244 1 0.4874501 0.4933781 0.06289929
## 3 0.08751316 2 0.3412376 0.3635385 0.03806078
## 4 0.03585219 3 0.2537245 0.2786784 0.03812384
## 5 0.03169099 4 0.2178723 0.2721950 0.04066375
## 6 0.01847363 5 0.1861813 0.2236670 0.03828464
## 7 0.01000000 6 0.1677077 0.2042922 0.03802597
##
## Variable importance
## G2 G1 Medu failures school reason absences
## 45 26 6 6 5 5 2
## address famsize traveltime studytime Mjob famsup freetime
## 1 1 1 1 1 1 1
##
## Node number 1: 486 observations, complexity param=0.5125499
## mean=11.78395, MSE=10.95127
## left son=2 (254 obs) right son=3 (232 obs)
## Primary splits:
## G2 < 11.5 to the left, improve=0.51254990, (0 missing)
## G1 < 11.5 to the left, improve=0.43964680, (0 missing)
## failures < 0.5 to the right, improve=0.19056210, (0 missing)
## higher splits as LR, improve=0.11339540, (0 missing)
## school splits as RL, improve=0.07697885, (0 missing)
## Surrogate splits:
## G1 < 11.5 to the left, agree=0.879, adj=0.746, (0 split)
## failures < 0.5 to the right, agree=0.615, adj=0.194, (0 split)
## Medu < 3.5 to the left, agree=0.613, adj=0.190, (0 split)
## school splits as RL, agree=0.611, adj=0.185, (0 split)
## reason splits as LRLR, agree=0.601, adj=0.164, (0 split)
##
## Node number 2: 254 observations, complexity param=0.1462124
## mean=9.519685, MSE=7.22599
## left son=4 (27 obs) right son=5 (227 obs)
## Primary splits:
## G2 < 7.5 to the left, improve=0.42398820, (0 missing)
## G1 < 8.5 to the left, improve=0.29191630, (0 missing)
## failures < 0.5 to the right, improve=0.10862330, (0 missing)
## school splits as RL, improve=0.07848752, (0 missing)
## higher splits as LR, improve=0.05366950, (0 missing)
## Surrogate splits:
## G1 < 5.5 to the left, agree=0.902, adj=0.074, (0 split)
##
## Node number 3: 232 observations, complexity param=0.08751316
## mean=14.26293, MSE=3.271385
## left son=6 (125 obs) right son=7 (107 obs)
## Primary splits:
## G2 < 13.5 to the left, improve=0.61369750, (0 missing)
## G1 < 14.5 to the left, improve=0.46371290, (0 missing)
## schoolsup splits as RL, improve=0.06600864, (0 missing)
## studytime < 1.5 to the left, improve=0.04155828, (0 missing)
## paid splits as RL, improve=0.03131116, (0 missing)
## Surrogate splits:
## G1 < 13.5 to the left, agree=0.819, adj=0.607, (0 split)
## Medu < 3.5 to the left, agree=0.591, adj=0.112, (0 split)
## studytime < 2.5 to the left, agree=0.591, adj=0.112, (0 split)
## Mjob splits as LLLLR, agree=0.586, adj=0.103, (0 split)
## Fedu < 3.5 to the left, agree=0.578, adj=0.084, (0 split)
##
## Node number 4: 27 observations, complexity param=0.03585219
## mean=4.444444, MSE=13.95062
## left son=8 (15 obs) right son=9 (12 obs)
## Primary splits:
## absences < 1 to the left, improve=0.5065929, (0 missing)
## G2 < 5.5 to the left, improve=0.3580810, (0 missing)
## famsup splits as LR, improve=0.2168142, (0 missing)
## traveltime < 1.5 to the right, improve=0.1387611, (0 missing)
## freetime < 3.5 to the right, improve=0.1283134, (0 missing)
## Surrogate splits:
## address splits as LR, agree=0.704, adj=0.333, (0 split)
## famsize splits as LR, agree=0.704, adj=0.333, (0 split)
## traveltime < 1.5 to the right, agree=0.704, adj=0.333, (0 split)
## famsup splits as LR, agree=0.667, adj=0.250, (0 split)
## freetime < 3.5 to the right, agree=0.667, adj=0.250, (0 split)
##
## Node number 5: 227 observations, complexity param=0.03169099
## mean=10.12335, MSE=2.998001
## left son=10 (83 obs) right son=11 (144 obs)
## Primary splits:
## G2 < 9.5 to the left, improve=0.24784420, (0 missing)
## G1 < 8.5 to the left, improve=0.19138490, (0 missing)
## failures < 0.5 to the right, improve=0.10049120, (0 missing)
## higher splits as LR, improve=0.04495073, (0 missing)
## goout < 4.5 to the right, improve=0.03829217, (0 missing)
## Surrogate splits:
## G1 < 8.5 to the left, agree=0.744, adj=0.301, (0 split)
## failures < 0.5 to the right, agree=0.683, adj=0.133, (0 split)
## higher splits as LR, agree=0.661, adj=0.072, (0 split)
## famrel < 1.5 to the left, agree=0.643, adj=0.024, (0 split)
## absences < 11.5 to the right, agree=0.643, adj=0.024, (0 split)
##
## Node number 6: 125 observations
## mean=12.952, MSE=0.813696
##
## Node number 7: 107 observations, complexity param=0.01847363
## mean=15.79439, MSE=1.789501
## left son=14 (80 obs) right son=15 (27 obs)
## Primary splits:
## G2 < 16.5 to the left, improve=0.51349590, (0 missing)
## G1 < 15.5 to the left, improve=0.40601700, (0 missing)
## studytime < 3.5 to the left, improve=0.04418029, (0 missing)
## Mjob splits as RRLLL, improve=0.03995700, (0 missing)
## absences < 0.5 to the right, improve=0.03431453, (0 missing)
## Surrogate splits:
## G1 < 16.5 to the left, agree=0.897, adj=0.593, (0 split)
## studytime < 3.5 to the left, agree=0.757, adj=0.037, (0 split)
##
## Node number 8: 15 observations
## mean=2.066667, MSE=11.79556
##
## Node number 9: 12 observations
## mean=7.416667, MSE=0.7430556
##
## Node number 10: 83 observations
## mean=8.987952, MSE=3.554072
##
## Node number 11: 144 observations
## mean=10.77778, MSE=1.506173
##
## Node number 14: 80 observations
## mean=15.2375, MSE=0.9810938
##
## Node number 15: 27 observations
## mean=17.44444, MSE=0.5432099
6.2 Tree visualization
Step 15: Visualize decision tree model in two ways.
prp(tree1)fancyRpartPlot(tree1, caption = "Regression Tree")6.3 Test model
Step 16: Make predictions on testing data, using trained model
dtest$tree1.pred <- predict(tree1, newdata = dtest)Step 17: Visualize predictions
with(dtest, plot(G3,tree1.pred, main="Actual vs Predicted, testing data",xlab = "Actual G3",ylab = "Predicted G3"))Step 18: Make confusion matrix.
PredictionCutoff <- 9.99 # MODIFY. Compare values in 9-11 range.
dtest$tree1.pred.passed <- ifelse(dtest$tree1.pred > PredictionCutoff, 1, 0)
(cm1 <- with(dtest,table(tree1.pred.passed,passed)))## passed
## tree1.pred.passed 0 1
## 0 19 16
## 1 2 126
Step 19: Calculate accuracy
CorrectPredictions1 <- cm1[1,1] + cm1[2,2]
TotalStudents1 <- nrow(dtest)
(Accuracy1 <- CorrectPredictions1/TotalStudents1)## [1] 0.8895706
Step 20: Sensitivity (proportion of people who actually failed that were correctly predicted to fail).
(Sensitivity1 <- cm1[1,1]/(cm1[1,1]+cm1[2,1]))## [1] 0.9047619
Step 21: Specificity (proportion of people who actually passed that were correctly predicted to pass).
(Specificity1 <- cm1[2,2]/(cm1[1,2]+cm1[2,2]))## [1] 0.8873239
BE SURE TO DOUBLE-CHECK THE CALCULATIONS ABOVE MANUALLY!
Step 22: It is very important for you, the data analyst, to modify the 9.99 cutoff assigned as PredictionCutoff above to see how you can change the predictions made by the model. Write down what you observe as you change this value and re-run the confusion matrix, accuracy, sensitivity, and specificity code above. What are the implications of your manual modification of this cutoff? Remind your instructors to discuss this, in case they forget!
7 Decision tree model – classification tree
Activity summary:
- Goal: predict binary outcome
passed, using a classification tree. - Start by using all variables to make decision tree. Check predictive capability.
- Remove variables to make predictions with less information.
- Modify cutoff thresholds and see how confusion matrix changes.
- Anywhere you see the word
MODIFYis one place where you might consider making changes to the code. - Figure out which students to remediate.
7.1 Train and inspect model
Step 23: Train a decision tree model
tree2 <- rpart(passed ~ school+sex+age+address+famsize+Pstatus+Medu+Fedu+Mjob+Fjob+reason+guardian+traveltime+studytime+failures+schoolsup+famsup+paid+activities+nursery+higher+internet+romantic+famrel+freetime+goout+Dalc+Walc+health+absences+G1+G2, data=dtrain, method = "class")
# MODIFY. Try without G1 and G2. Then try other combinations.
summary(tree2)## Call:
## rpart(formula = passed ~ school + sex + age + address + famsize +
## Pstatus + Medu + Fedu + Mjob + Fjob + reason + guardian +
## traveltime + studytime + failures + schoolsup + famsup +
## paid + activities + nursery + higher + internet + romantic +
## famrel + freetime + goout + Dalc + Walc + health + absences +
## G1 + G2, data = dtrain, method = "class")
## n= 486
##
## CP nsplit rel error xerror xstd
## 1 0.59493671 0 1.0000000 1.0000000 0.10295929
## 2 0.03164557 1 0.4050633 0.4050633 0.06920822
## 3 0.01000000 3 0.3417722 0.4556962 0.07308231
##
## Variable importance
## G2 G1 Mjob traveltime absences age goout
## 63 29 3 1 1 1 1
## higher studytime
## 1 1
##
## Node number 1: 486 observations, complexity param=0.5949367
## predicted class=1 expected loss=0.1625514 P(node) =1
## class counts: 79 407
## probabilities: 0.163 0.837
## left son=2 (59 obs) right son=3 (427 obs)
## Primary splits:
## G2 < 8.5 to the left, improve=72.70349, (0 missing)
## G1 < 8.5 to the left, improve=61.83621, (0 missing)
## failures < 0.5 to the right, improve=18.50123, (0 missing)
## school splits as RL, improve=14.15570, (0 missing)
## higher splits as LR, improve=10.81315, (0 missing)
## Surrogate splits:
## G1 < 7.5 to the left, agree=0.920, adj=0.339, (0 split)
## absences < 21.5 to the right, agree=0.881, adj=0.017, (0 split)
##
## Node number 2: 59 observations
## predicted class=0 expected loss=0.1016949 P(node) =0.1213992
## class counts: 53 6
## probabilities: 0.898 0.102
##
## Node number 3: 427 observations, complexity param=0.03164557
## predicted class=1 expected loss=0.06088993 P(node) =0.8786008
## class counts: 26 401
## probabilities: 0.061 0.939
## left son=6 (26 obs) right son=7 (401 obs)
## Primary splits:
## G1 < 8.5 to the left, improve=8.888203, (0 missing)
## G2 < 9.5 to the left, improve=8.597908, (0 missing)
## school splits as RL, improve=1.561668, (0 missing)
## Dalc < 2.5 to the right, improve=1.490442, (0 missing)
## failures < 0.5 to the right, improve=1.434721, (0 missing)
##
## Node number 6: 26 observations, complexity param=0.03164557
## predicted class=1 expected loss=0.4615385 P(node) =0.05349794
## class counts: 12 14
## probabilities: 0.462 0.538
## left son=12 (15 obs) right son=13 (11 obs)
## Primary splits:
## Mjob splits as LLRLR, improve=2.983683, (0 missing)
## absences < 6.5 to the right, improve=2.753142, (0 missing)
## age < 17.5 to the left, improve=2.223077, (0 missing)
## Medu < 2.5 to the right, improve=1.230769, (0 missing)
## activities splits as RL, improve=1.230769, (0 missing)
## Surrogate splits:
## traveltime < 1.5 to the left, agree=0.769, adj=0.455, (0 split)
## age < 17.5 to the left, agree=0.731, adj=0.364, (0 split)
## higher splits as RL, agree=0.731, adj=0.364, (0 split)
## goout < 4.5 to the left, agree=0.731, adj=0.364, (0 split)
## studytime < 1.5 to the right, agree=0.692, adj=0.273, (0 split)
##
## Node number 7: 401 observations
## predicted class=1 expected loss=0.03491272 P(node) =0.8251029
## class counts: 14 387
## probabilities: 0.035 0.965
##
## Node number 12: 15 observations
## predicted class=0 expected loss=0.3333333 P(node) =0.0308642
## class counts: 10 5
## probabilities: 0.667 0.333
##
## Node number 13: 11 observations
## predicted class=1 expected loss=0.1818182 P(node) =0.02263374
## class counts: 2 9
## probabilities: 0.182 0.818
7.2 Tree Visualization
Step 24: Visualize decision tree model in two ways
prp(tree2)fancyRpartPlot(tree2, caption = "Classification Tree")7.3 Test model
Step 25: Make predictions and confusion matrix on testing data classes, using trained model.
dtest$tree2.pred <- predict(tree2, newdata = dtest, type = 'class')
# MODIFY. change 'class' to 'prob'
(cm2 <- with(dtest,table(tree2.pred,passed)))## passed
## tree2.pred 0 1
## 0 15 3
## 1 6 139
Step 26: Make predictions and confusion matrix on testing data using probability cutoffs. Optional; results not shown.
dtest$tree2.pred <- predict(tree2, newdata = dtest, type = 'prob')
ProbabilityCutoff <- 0.5 # MODIFY. Compare different probability values.
dtest$tree2.pred.probs <- 1-dtest$tree2.pred[,1]
dtest$tree2.pred.passed <- ifelse(dtest$tree2.pred.probs > ProbabilityCutoff, 1, 0)
(cm2b <- with(dtest,table(tree2.pred.passed,passed)))Step 27: Calculate accuracy
CorrectPredictions2 <- cm2[1,1] + cm2[2,2]
TotalStudents2 <- nrow(dtest)
(Accuracy2 <- CorrectPredictions2/TotalStudents2)## [1] 0.9447853
Step 28: Sensitivity (proportion of people who actually failed that were correctly predicted to fail)
(Sensitivity2 <- cm2[1,1]/(cm2[1,1]+cm2[2,1]))## [1] 0.7142857
Step 29: Specificity (proportion of people who actually passed that were correctly predicted to pass):
(Specificity2 <- cm2[2,2]/(cm2[1,2]+cm2[2,2]))## [1] 0.9788732
ALSO DOUBLE-CHECK THE CALCULATIONS ABOVE MANUALLY!
8 Logistic regression model – classification
Activity summary:
- Goal: predict binary outcome
passed, using logistic regression. - Start by using all variables to make a logistic regression model. Check predictive capability.
- Remove variables to make predictions with less information.
- Modify cutoff thresholds and see how confusion matrix changes.
- Anywhere you see the word
MODIFYis one place where you might consider making changes to the code. - Figure out which students to remediate.
8.1 Train and inspect model
Step 30: Train a logistic regression model
blr1 <- glm(passed ~ school+sex+age+address+famsize+Pstatus+Medu+Fedu+guardian+traveltime+studytime+failures+schoolsup+famsup+paid+activities+nursery+higher+internet+romantic+famrel+freetime+goout+Dalc+Walc+health+absences+Mjob+reason+Fjob+G1+G2, data=dtrain, family = "binomial")
# MODIFY. Try without G1 and G2. Then try other combinations.
# also remove variables causing multicollinearity and see if it makes a difference!
summary(blr1)##
## Call:
## glm(formula = passed ~ school + sex + age + address + famsize +
## Pstatus + Medu + Fedu + guardian + traveltime + studytime +
## failures + schoolsup + famsup + paid + activities + nursery +
## higher + internet + romantic + famrel + freetime + goout +
## Dalc + Walc + health + absences + Mjob + reason + Fjob +
## G1 + G2, family = "binomial", data = dtrain)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.0757 0.0001 0.0066 0.0813 1.8149
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -30.15118 8.14281 -3.703 0.000213 ***
## schoolMS -1.08851 0.78243 -1.391 0.164168
## sexM -0.78627 0.73955 -1.063 0.287704
## age 0.47710 0.29663 1.608 0.107740
## addressU 0.44035 0.76060 0.579 0.562622
## famsizeLE3 0.39831 0.68341 0.583 0.560005
## PstatusT 0.67439 1.14806 0.587 0.556925
## Medu -0.22366 0.34423 -0.650 0.515856
## Fedu 0.06211 0.32804 0.189 0.849816
## guardianmother -0.13636 0.79511 -0.171 0.863836
## guardianother 0.78562 1.53926 0.510 0.609779
## traveltime 0.34318 0.38701 0.887 0.375220
## studytime 0.04504 0.37989 0.119 0.905616
## failures -0.06421 0.38269 -0.168 0.866761
## schoolsupyes -0.68289 0.97599 -0.700 0.484118
## famsupyes 0.08435 0.60815 0.139 0.889686
## paidyes -0.69395 1.19520 -0.581 0.561498
## activitiesyes -0.18586 0.59727 -0.311 0.755669
## nurseryyes -0.57052 0.67052 -0.851 0.394847
## higheryes -0.24928 0.82068 -0.304 0.761315
## internetyes -0.12180 0.71099 -0.171 0.863979
## romanticyes -0.47423 0.65288 -0.726 0.467612
## famrel 0.02052 0.28264 0.073 0.942109
## freetime 0.03488 0.28645 0.122 0.903088
## goout -0.12763 0.29909 -0.427 0.669568
## Dalc 0.10583 0.44857 0.236 0.813492
## Walc -0.22782 0.42610 -0.535 0.592878
## health -0.22539 0.24286 -0.928 0.353369
## absences -0.03952 0.06205 -0.637 0.524267
## Mjobhealth 0.62621 1.35132 0.463 0.643072
## Mjobother 0.12519 0.75506 0.166 0.868311
## Mjobservices 0.13444 1.05109 0.128 0.898221
## Mjobteacher 2.68861 1.58196 1.700 0.089216 .
## reasonhome 0.30812 0.77833 0.396 0.692199
## reasonother 0.23116 0.87319 0.265 0.791215
## reasonreputation 1.61106 1.14599 1.406 0.159775
## Fjobhealth -0.82151 2.00861 -0.409 0.682545
## Fjobother -0.27813 1.30689 -0.213 0.831469
## Fjobservices -0.34707 1.35233 -0.257 0.797453
## Fjobteacher -3.50771 1.93941 -1.809 0.070506 .
## G1 1.11496 0.30570 3.647 0.000265 ***
## G2 1.65136 0.35287 4.680 2.87e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 431.45 on 485 degrees of freedom
## Residual deviance: 114.32 on 444 degrees of freedom
## AIC: 198.32
##
## Number of Fisher Scoring iterations: 9
car::vif(blr1)## GVIF Df GVIF^(1/(2*Df))
## school 2.673217 1 1.634998
## sex 2.386451 1 1.544814
## age 2.451568 1 1.565749
## address 2.477824 1 1.574111
## famsize 1.546042 1 1.243399
## Pstatus 1.992302 1 1.411489
## Medu 2.421625 1 1.556157
## Fedu 2.217443 1 1.489108
## guardian 2.978028 2 1.313658
## traveltime 1.758702 1 1.326160
## studytime 1.543159 1 1.242239
## failures 1.934883 1 1.391001
## schoolsup 2.041797 1 1.428915
## famsup 1.575093 1 1.255027
## paid 1.346165 1 1.160243
## activities 1.442708 1 1.201128
## nursery 1.468244 1 1.211711
## higher 1.731705 1 1.315943
## internet 2.005652 1 1.416210
## romantic 1.728680 1 1.314793
## famrel 1.701719 1 1.304500
## freetime 1.798360 1 1.341029
## goout 2.931592 1 1.712189
## Dalc 4.744859 1 2.178270
## Walc 6.404792 1 2.530769
## health 1.950421 1 1.396575
## absences 1.708603 1 1.307135
## Mjob 9.910933 4 1.332031
## reason 5.619753 3 1.333377
## Fjob 8.185609 4 1.300563
## G1 2.222563 1 1.490826
## G2 1.895424 1 1.376744
8.2 Test model
Step 31: Make predictions on testing data, using trained model.
Predicting probabilities…
dtest$blr1.pred <- predict(blr1, newdata = dtest, type = 'response')
# MODIFY. change 'class' to 'prob'
ProbabilityCutoff <- 0.5 # MODIFY. Compare different probability values.
dtest$blr1.pred.probs <- 1-dtest$blr1.pred
dtest$blr1.pred.passed <- ifelse(dtest$blr1.pred > ProbabilityCutoff, 1, 0)
(cm3 <- with(dtest,table(blr1.pred.passed,passed)))## passed
## blr1.pred.passed 0 1
## 0 17 5
## 1 4 137
Step 32: Make confusion matrix
(cm3 <- with(dtest,table(blr1.pred.passed,passed)))## passed
## blr1.pred.passed 0 1
## 0 17 5
## 1 4 137
Step 33: Calculate accuracy
CorrectPredictions3 <- cm3[1,1] + cm3[2,2]
TotalStudents3 <- nrow(dtest)
(Accuracy3 <- CorrectPredictions3/TotalStudents3)## [1] 0.9447853
Step 34: Sensitivity (proportion of people who actually failed that were correctly predicted to fail)
(Sensitivity3 <- cm3[1,1]/(cm3[1,1]+cm3[2,1]))## [1] 0.8095238
Step 35: Specificity (proportion of people who actually passed that were correctly predicted to pass)
(Specificity3 <- cm3[2,2]/(cm3[1,2]+cm3[2,2]))## [1] 0.9647887
ALSO DOUBLE-CHECK THE CALCULATIONS ABOVE MANUALLY!
Step 36: It is very important for you, the data analyst, to modify the 0.5 cutoff assigned as ProbabilityCutoff above to see how you can change the predictions made by the model. Write down what you observe as you change this value and re-run the confusion matrix, accuracy, sensitivity, and specificity code above. What are the implications of your manual modification of this cutoff? Remind your instructors to discuss this, in case they forget!