Question 9.1 Using the same crime data set uscrime.txt as in Question 8.2, apply Principal Component Analysis and then create a regression model using the first few principal components. Specify your new model in terms of the original variables (not the principal components), and compare its quality to that of your solution to Question 8.2. You can use the R function prcomp for PCA. (Note that to first scale the data, you can include scale. = TRUE to scale as part of the PCA function. Don’t forget that, to make a prediction for the new city, you’ll need to unscale the coefficients (i.e., do the scaling calculation in reverse)!)

PC1 explains 40% of the total variance, so it means 40% of the information in the dataset can be encapsulated by PC1. PC2 explains 18 %

#clear environment
rm(list = ls())

# Import data
uscrime <- read.table('uscrime.txt', stringsAsFactors = FALSE, header = TRUE)

head(uscrime)
##      M So   Ed  Po1  Po2    LF   M.F Pop   NW    U1  U2 Wealth Ineq     Prob
## 1 15.1  1  9.1  5.8  5.6 0.510  95.0  33 30.1 0.108 4.1   3940 26.1 0.084602
## 2 14.3  0 11.3 10.3  9.5 0.583 101.2  13 10.2 0.096 3.6   5570 19.4 0.029599
## 3 14.2  1  8.9  4.5  4.4 0.533  96.9  18 21.9 0.094 3.3   3180 25.0 0.083401
## 4 13.6  0 12.1 14.9 14.1 0.577  99.4 157  8.0 0.102 3.9   6730 16.7 0.015801
## 5 14.1  0 12.1 10.9 10.1 0.591  98.5  18  3.0 0.091 2.0   5780 17.4 0.041399
## 6 12.1  0 11.0 11.8 11.5 0.547  96.4  25  4.4 0.084 2.9   6890 12.6 0.034201
##      Time Crime
## 1 26.2011   791
## 2 25.2999  1635
## 3 24.3006   578
## 4 29.9012  1969
## 5 21.2998  1234
## 6 20.9995   682
summary(uscrime)
##        M               So               Ed             Po1       
##  Min.   :11.90   Min.   :0.0000   Min.   : 8.70   Min.   : 4.50  
##  1st Qu.:13.00   1st Qu.:0.0000   1st Qu.: 9.75   1st Qu.: 6.25  
##  Median :13.60   Median :0.0000   Median :10.80   Median : 7.80  
##  Mean   :13.86   Mean   :0.3404   Mean   :10.56   Mean   : 8.50  
##  3rd Qu.:14.60   3rd Qu.:1.0000   3rd Qu.:11.45   3rd Qu.:10.45  
##  Max.   :17.70   Max.   :1.0000   Max.   :12.20   Max.   :16.60  
##       Po2               LF              M.F              Pop        
##  Min.   : 4.100   Min.   :0.4800   Min.   : 93.40   Min.   :  3.00  
##  1st Qu.: 5.850   1st Qu.:0.5305   1st Qu.: 96.45   1st Qu.: 10.00  
##  Median : 7.300   Median :0.5600   Median : 97.70   Median : 25.00  
##  Mean   : 8.023   Mean   :0.5612   Mean   : 98.30   Mean   : 36.62  
##  3rd Qu.: 9.700   3rd Qu.:0.5930   3rd Qu.: 99.20   3rd Qu.: 41.50  
##  Max.   :15.700   Max.   :0.6410   Max.   :107.10   Max.   :168.00  
##        NW              U1                U2            Wealth    
##  Min.   : 0.20   Min.   :0.07000   Min.   :2.000   Min.   :2880  
##  1st Qu.: 2.40   1st Qu.:0.08050   1st Qu.:2.750   1st Qu.:4595  
##  Median : 7.60   Median :0.09200   Median :3.400   Median :5370  
##  Mean   :10.11   Mean   :0.09547   Mean   :3.398   Mean   :5254  
##  3rd Qu.:13.25   3rd Qu.:0.10400   3rd Qu.:3.850   3rd Qu.:5915  
##  Max.   :42.30   Max.   :0.14200   Max.   :5.800   Max.   :6890  
##       Ineq            Prob              Time           Crime       
##  Min.   :12.60   Min.   :0.00690   Min.   :12.20   Min.   : 342.0  
##  1st Qu.:16.55   1st Qu.:0.03270   1st Qu.:21.60   1st Qu.: 658.5  
##  Median :17.60   Median :0.04210   Median :25.80   Median : 831.0  
##  Mean   :19.40   Mean   :0.04709   Mean   :26.60   Mean   : 905.1  
##  3rd Qu.:22.75   3rd Qu.:0.05445   3rd Qu.:30.45   3rd Qu.:1057.5  
##  Max.   :27.60   Max.   :0.11980   Max.   :44.00   Max.   :1993.0
uscrime_pca <- prcomp(uscrime[,1:15], scale. = T)

summary(uscrime_pca)
## Importance of components:
##                           PC1    PC2    PC3     PC4     PC5     PC6     PC7
## Standard deviation     2.4534 1.6739 1.4160 1.07806 0.97893 0.74377 0.56729
## Proportion of Variance 0.4013 0.1868 0.1337 0.07748 0.06389 0.03688 0.02145
## Cumulative Proportion  0.4013 0.5880 0.7217 0.79920 0.86308 0.89996 0.92142
##                            PC8     PC9    PC10    PC11    PC12    PC13   PC14
## Standard deviation     0.55444 0.48493 0.44708 0.41915 0.35804 0.26333 0.2418
## Proportion of Variance 0.02049 0.01568 0.01333 0.01171 0.00855 0.00462 0.0039
## Cumulative Proportion  0.94191 0.95759 0.97091 0.98263 0.99117 0.99579 0.9997
##                           PC15
## Standard deviation     0.06793
## Proportion of Variance 0.00031
## Cumulative Proportion  1.00000

From the scree plot below, I set a cut-off of an eigenvalue > 1, and it suggested to use four variances. Since the first four factors together explain most of the variability in the dataset, it makes sense to only use these data. I used the code from https://rpubs.com/JanpuHou/278584 to build a pcaChart function to calculate the variances and proportion of variances.

## [1] "proportions of variance:"
##  [1] 0.401263510 0.186789802 0.133662956 0.077480520 0.063886598 0.036879593
##  [7] 0.021454579 0.020493418 0.015677019 0.013325395 0.011712360 0.008546007
## [13] 0.004622779 0.003897851 0.000307611

Now I will use the first four PCs to create a model. After creating a model, I will get coefficients in terms of the original data and unscale them. The R-squared and R-squared adjusted values are the same as in the PCA model, but much lower compared to my last week’s model. Last week, my R-square and R-square adjusted values are 0.7659 and 0.7307, respectively.

##              PC1         PC2         PC3         PC4     
##  [1,] -4.1992835 -1.09383120 -1.11907395  0.67178115  791
##  [2,]  1.1726630  0.67701360 -0.05244634 -0.08350709 1635
##  [3,] -4.1737248  0.27677501 -0.37107658  0.37793995  578
##  [4,]  3.8349617 -2.57690596  0.22793998  0.38262331 1969
##  [5,]  1.8392999  1.33098564  1.27882805  0.71814305 1234
##  [6,]  2.9072336 -0.33054213  0.53288181  1.22140635  682
##  [7,]  0.2457752 -0.07362562 -0.90742064  1.13685873  963
##  [8,] -0.1301330 -1.35985577  0.59753132  1.44045387 1555
##  [9,] -3.6103169 -0.68621008  1.28372246  0.55171150  856
## [10,]  1.1672376  3.03207033  0.37984502 -0.28887026  705
## [11,]  2.5384879 -2.66771358  1.54424656 -0.87671210 1674
## [12,]  1.0065920 -0.06044849  1.18861346 -1.31261964  849
## [13,]  0.5161143  0.97485189  1.83351610 -1.59117618  511
## [14,]  0.4265556  1.85044812  1.02893477 -0.07789173  664
## [15,] -3.3435299  0.05182823 -1.01358113  0.08840211  798
## [16,] -3.0310689 -2.10295524 -1.82993161  0.52347187  946
## [17,] -0.2262961  1.44939774 -1.37565975  0.28960865  539
## [18,] -0.1127499 -0.39407030 -0.38836278  3.97985093  929
## [19,]  2.9195668 -1.58646124  0.97612613  0.78629766  750
## [20,]  2.2998485 -1.73396487 -2.82423222 -0.23281758 1225
## [21,]  1.1501667  0.13531015  0.28506743 -2.19770548  742
## [22,] -5.6594827 -1.09730404  0.10043541 -0.05245484  439
## [23,] -0.1011749 -0.57911362  0.71128354 -0.44394773 1216
## [24,]  1.3836281  1.95052341 -2.98485490 -0.35942784  968
## [25,]  0.2727756  2.63013778  1.83189535  0.05207518  523
## [26,]  4.0565577  1.17534729 -0.81690756  1.66990720 1993
## [27,]  0.8929694  0.79236692  1.26822542 -0.57575615  342
## [28,]  0.1514495  1.44873320  0.10857670 -0.51040146 1216
## [29,]  3.5592481 -4.76202163  0.75080576  0.64692974 1043
## [30,] -4.1184576 -0.38073981  1.43463965  0.63330834  696
## [31,] -0.6811731  1.66926027 -2.88645794 -1.30977099  373
## [32,]  1.7157269 -1.30836339 -0.55971313 -0.70557980  754
## [33,] -1.8860627  0.59058174  1.43570145  0.18239089 1072
## [34,]  1.9526349  0.52395429 -0.75642216  0.44289927  923
## [35,]  1.5888864 -3.12998571 -1.73107199 -1.68604766  653
## [36,]  1.0709414 -1.65628271  0.79436888 -1.85172698 1272
## [37,] -4.1101715  0.15766712  2.36296974 -0.56868399  831
## [38,] -0.7254706  2.89263339 -0.36348376 -0.50612576  566
## [39,] -3.3451254 -0.95045293  0.19551398 -0.27716645  826
## [40,] -1.0644466 -1.05265304  0.82886286 -0.12042931 1151
## [41,]  1.4933989  1.86712106  1.81853582 -1.06112429  880
## [42,] -0.6789284  1.83156328 -1.65435992  0.95121379  542
## [43,] -2.4164258 -0.46701087  1.42808323  0.41149015  823
## [44,]  2.2978729  0.41865689 -0.64422929 -0.63462770 1030
## [45,] -2.9245282 -1.19488555 -3.35139309 -1.48966984  455
## [46,]  1.7654525  0.95655926  0.98576138  1.05683769  508
## [47,]  2.3125056  2.56161119 -1.58223354  0.59863946  849
## 
## Call:
## lm(formula = V5 ~ ., data = as.data.frame(uscrime_pc))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -557.76 -210.91  -29.08  197.26  810.35 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   905.09      49.07  18.443  < 2e-16 ***
## PC1            65.22      20.22   3.225  0.00244 ** 
## PC2           -70.08      29.63  -2.365  0.02273 *  
## PC3            25.19      35.03   0.719  0.47602    
## PC4            69.45      46.01   1.509  0.13872    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 336.4 on 42 degrees of freedom
## Multiple R-squared:  0.3091, Adjusted R-squared:  0.2433 
## F-statistic: 4.698 on 4 and 42 DF,  p-value: 0.003178
## [1] 0.3091121
## [1] 0.2433132

After comparing the R-squared values, I will use the PCA model to predict the crime rate in the new city. The predict crime rate for the new city is 1112, which make sense comparing to other crime rates. However, my model from last week predicted that the crime rate to be 1304.

#Ues the new city data given from last week.

test_df <- data.frame(M = 14.0,
So = 0,
Ed = 10.0,
Po1 = 12.0,
Po2 = 15.5,
LF = 0.640,
M.F = 94.0,
Pop = 150,
NW = 1.1,
U1 = 0.120,
U2 = 3.6,
Wealth = 3200,
Ineq = 20.1,
Prob = 0.04,
Time = 39.0)

#Apply the PCA data to the test data
predict1 <- data.frame(predict(uscrime_pca, test_df)) 

#Then use the model to predict the new crime rate
predict2 <- predict(model_1, predict1)

predict2
##        1 
## 1112.678

Question 10.1 Using the same crime data set uscrime.txt as in Questions 8.2 and 9.1, find the best model you can using (a) a regression tree model, and (b) a random forest model. In R, you can use the tree package or the rpart package, and the randomForest package. For each model, describe one or two qualitative takeaways you get from analyzing the results (i.e., don’t just stop when you have a good model, but interpret it too).

The tree model has an R-squared value of 72%, which is pretty. Then I tried the prune.tree function to see if it will improve the model’s performance. But it turns out that pruning the tree gives me a lower R-squared value, which is 67%.

## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## 
## Regression tree:
## tree(formula = Crime ~ ., data = uscrime)
## Variables actually used in tree construction:
## [1] "Po1" "Pop" "LF"  "NW" 
## Number of terminal nodes:  7 
## Residual mean deviance:  47390 = 1896000 / 40 
## Distribution of residuals:
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -573.900  -98.300   -1.545    0.000  110.600  490.100

## [1] 0.7244962

## [1] 0.6691333

The forest model give a R-squared value of 40%. The random forest methond is good at avoiding overfitting.

## 
## Call:
##  randomForest(formula = Crime ~ ., data = uscrime) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##           Mean of squared residuals: 87461.6
##                     % Var explained: 40.26

## [1] 0.4025958

Question 10.2 Describe a situation or problem from your job, everyday life, current events, etc., for which a logistic regression model would be appropriate. List some (up to 5) predictors that you might use.

A Logistic regression that can be used when the response is a probability or a binary. I can use it to estimate the probability that a person is getting infected by COVID-19. Some predictors are the amount of time a person spends in the public and the number of close family members who have coronavirus.

Question 10.3

My 5th iteration is odd.

set.seed(1)

g_credit <- read.table('germancredit.txt', stringsAsFactors = FALSE, header = F)

head(g_credit)
##    V1 V2  V3  V4   V5  V6  V7 V8  V9  V10 V11  V12 V13  V14  V15 V16  V17 V18
## 1 A11  6 A34 A43 1169 A65 A75  4 A93 A101   4 A121  67 A143 A152   2 A173   1
## 2 A12 48 A32 A43 5951 A61 A73  2 A92 A101   2 A121  22 A143 A152   1 A173   1
## 3 A14 12 A34 A46 2096 A61 A74  2 A93 A101   3 A121  49 A143 A152   1 A172   2
## 4 A11 42 A32 A42 7882 A61 A74  2 A93 A103   4 A122  45 A143 A153   1 A173   2
## 5 A11 24 A33 A40 4870 A61 A73  3 A93 A101   4 A124  53 A143 A153   2 A173   2
## 6 A14 36 A32 A46 9055 A65 A73  2 A93 A101   4 A124  35 A143 A153   1 A172   2
##    V19  V20 V21
## 1 A192 A201   1
## 2 A191 A201   2
## 3 A191 A201   1
## 4 A191 A201   1
## 5 A191 A201   2
## 6 A192 A201   1
#Convert1 and 2 to 0 and 1
g_credit$V21[g_credit$V21==1]<-0
g_credit$V21[g_credit$V21==2]<-1

#Split the data: 70% train data & 30% test data

data_train <-g_credit[sample(1:nrow(g_credit), size = round(nrow(g_credit)*0.7), replace = F),]
data_test <-g_credit[-sample(1:nrow(g_credit), size = round(nrow(g_credit)*0.7), replace = F),]


log_model <- glm(V21~., family = binomial(link = "logit"), data = data_train)

summary(log_model)
## 
## Call:
## glm(formula = V21 ~ ., family = binomial(link = "logit"), data = data_train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4438  -0.6861  -0.3608   0.6750   2.4540  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  3.823e-01  1.332e+00   0.287 0.774162    
## V1A12       -5.201e-01  2.681e-01  -1.940 0.052408 .  
## V1A13       -1.150e+00  4.473e-01  -2.570 0.010173 *  
## V1A14       -1.675e+00  2.750e-01  -6.091 1.12e-09 ***
## V2           2.570e-02  1.159e-02   2.217 0.026647 *  
## V3A31        8.440e-02  6.580e-01   0.128 0.897943    
## V3A32       -8.078e-01  4.996e-01  -1.617 0.105907    
## V3A33       -7.683e-01  5.372e-01  -1.430 0.152634    
## V3A34       -1.446e+00  5.127e-01  -2.821 0.004784 ** 
## V4A41       -1.513e+00  4.479e-01  -3.379 0.000728 ***
## V4A410      -2.412e+00  1.160e+00  -2.080 0.037543 *  
## V4A42       -5.496e-01  3.195e-01  -1.720 0.085354 .  
## V4A43       -9.142e-01  3.024e-01  -3.023 0.002503 ** 
## V4A44       -4.163e-01  9.455e-01  -0.440 0.659751    
## V4A45       -1.562e-01  6.742e-01  -0.232 0.816732    
## V4A46       -2.569e-01  5.085e-01  -0.505 0.613382    
## V4A48       -1.531e+01  4.556e+02  -0.034 0.973202    
## V4A49       -5.397e-01  4.017e-01  -1.344 0.179086    
## V5           1.076e-04  5.600e-05   1.922 0.054633 .  
## V6A62       -3.474e-01  3.579e-01  -0.971 0.331777    
## V6A63       -2.440e-01  4.761e-01  -0.513 0.608232    
## V6A64       -1.379e+00  6.535e-01  -2.110 0.034823 *  
## V6A65       -8.106e-01  3.223e-01  -2.515 0.011910 *  
## V7A72       -1.814e-01  5.243e-01  -0.346 0.729300    
## V7A73       -5.253e-01  5.001e-01  -1.050 0.293529    
## V7A74       -1.129e+00  5.455e-01  -2.070 0.038431 *  
## V7A75       -5.927e-01  5.052e-01  -1.173 0.240705    
## V8           3.523e-01  1.094e-01   3.219 0.001284 ** 
## V9A92        4.849e-02  4.760e-01   0.102 0.918863    
## V9A93       -4.446e-01  4.691e-01  -0.948 0.343279    
## V9A94       -4.288e-01  5.837e-01  -0.735 0.462524    
## V10A102      3.052e-01  5.338e-01   0.572 0.567472    
## V10A103     -3.086e-01  5.237e-01  -0.589 0.555669    
## V11         -1.080e-01  1.073e-01  -1.007 0.314147    
## V12A122      2.219e-01  3.161e-01   0.702 0.482767    
## V12A123      3.274e-01  2.922e-01   1.120 0.262504    
## V12A124      1.156e+00  5.656e-01   2.044 0.040944 *  
## V13         -2.257e-02  1.140e-02  -1.980 0.047667 *  
## V14A142     -5.214e-01  4.925e-01  -1.059 0.289757    
## V14A143     -7.780e-01  2.848e-01  -2.732 0.006299 ** 
## V15A152     -6.323e-01  2.870e-01  -2.203 0.027579 *  
## V15A153     -6.674e-01  6.202e-01  -1.076 0.281931    
## V16          2.866e-01  2.236e-01   1.282 0.199939    
## V17A172      1.565e+00  8.891e-01   1.760 0.078442 .  
## V17A173      1.564e+00  8.582e-01   1.823 0.068370 .  
## V17A174      1.400e+00  8.772e-01   1.596 0.110563    
## V18          1.645e-01  3.004e-01   0.548 0.583871    
## V19A192     -3.319e-01  2.413e-01  -1.376 0.168942    
## V20A202     -2.137e+00  8.573e-01  -2.493 0.012665 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 851.79  on 699  degrees of freedom
## Residual deviance: 613.21  on 651  degrees of freedom
## AIC: 711.21
## 
## Number of Fisher Scoring iterations: 14
#1st iteration
log_model <- glm(V21~V1+V2+V3+V4+V6+V7+V8+V12+V13+V14+V15+V20, family = binomial(link = "logit"), data = data_train)

summary(log_model)
## 
## Call:
## glm(formula = V21 ~ V1 + V2 + V3 + V4 + V6 + V7 + V8 + V12 + 
##     V13 + V14 + V15 + V20, family = binomial(link = "logit"), 
##     data = data_train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1343  -0.7151  -0.3829   0.6860   2.4613  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   1.954704   0.891687   2.192 0.028369 *  
## V1A12        -0.576472   0.261484  -2.205 0.027481 *  
## V1A13        -1.246843   0.431631  -2.889 0.003869 ** 
## V1A14        -1.633312   0.268529  -6.082 1.18e-09 ***
## V2            0.036245   0.009018   4.019 5.83e-05 ***
## V3A31        -0.077212   0.626544  -0.123 0.901921    
## V3A32        -0.971152   0.467517  -2.077 0.037778 *  
## V3A33        -0.743337   0.523613  -1.420 0.155715    
## V3A34        -1.447406   0.498458  -2.904 0.003687 ** 
## V4A41        -1.375418   0.415248  -3.312 0.000925 ***
## V4A410       -2.141135   1.005226  -2.130 0.033171 *  
## V4A42        -0.448810   0.306760  -1.463 0.143450    
## V4A43        -0.939346   0.291483  -3.223 0.001270 ** 
## V4A44        -0.492708   0.950608  -0.518 0.604243    
## V4A45        -0.238889   0.676434  -0.353 0.723969    
## V4A46        -0.268251   0.499637  -0.537 0.591342    
## V4A48       -15.257528 451.906122  -0.034 0.973066    
## V4A49        -0.570040   0.388370  -1.468 0.142165    
## V6A62        -0.307611   0.343036  -0.897 0.369862    
## V6A63        -0.484692   0.466898  -1.038 0.299218    
## V6A64        -1.212443   0.622420  -1.948 0.051421 .  
## V6A65        -0.810257   0.313011  -2.589 0.009637 ** 
## V7A72         0.199964   0.461824   0.433 0.665025    
## V7A73        -0.179579   0.428502  -0.419 0.675153    
## V7A74        -0.874730   0.481305  -1.817 0.069154 .  
## V7A75        -0.318585   0.442407  -0.720 0.471453    
## V8            0.235399   0.095022   2.477 0.013237 *  
## V12A122       0.282784   0.305057   0.927 0.353932    
## V12A123       0.433363   0.275990   1.570 0.116365    
## V12A124       1.052152   0.533417   1.972 0.048555 *  
## V13          -0.022929   0.010929  -2.098 0.035904 *  
## V14A142      -0.485528   0.484466  -1.002 0.316251    
## V14A143      -0.716748   0.278048  -2.578 0.009944 ** 
## V15A152      -0.592894   0.264661  -2.240 0.025078 *  
## V15A153      -0.512743   0.587424  -0.873 0.382735    
## V20A202      -2.057069   0.840733  -2.447 0.014415 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 851.79  on 699  degrees of freedom
## Residual deviance: 628.99  on 664  degrees of freedom
## AIC: 700.99
## 
## Number of Fisher Scoring iterations: 14
#2nd
log_model <- glm(V21~V1+V2+V3+V4+V5+V6+V7+V8+V9+V10+V12+V14+V16+V20, family = binomial(link = "logit"), data = data_train)

summary(log_model)
## 
## Call:
## glm(formula = V21 ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + 
##     V10 + V12 + V14 + V16 + V20, family = binomial(link = "logit"), 
##     data = data_train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2462  -0.6956  -0.3953   0.6760   2.4277  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.303e-01  9.669e-01   0.135  0.89278    
## V1A12       -5.800e-01  2.627e-01  -2.208  0.02724 *  
## V1A13       -1.332e+00  4.334e-01  -3.074  0.00211 ** 
## V1A14       -1.710e+00  2.692e-01  -6.353 2.12e-10 ***
## V2           2.722e-02  1.137e-02   2.394  0.01665 *  
## V3A31        9.884e-02  6.436e-01   0.154  0.87794    
## V3A32       -7.908e-01  4.866e-01  -1.625  0.10415    
## V3A33       -7.357e-01  5.249e-01  -1.402  0.16105    
## V3A34       -1.483e+00  5.000e-01  -2.966  0.00302 ** 
## V4A41       -1.427e+00  4.381e-01  -3.257  0.00112 ** 
## V4A410      -2.681e+00  1.112e+00  -2.411  0.01592 *  
## V4A42       -4.295e-01  3.053e-01  -1.407  0.15938    
## V4A43       -8.399e-01  2.944e-01  -2.853  0.00433 ** 
## V4A44       -3.986e-01  9.629e-01  -0.414  0.67893    
## V4A45       -3.058e-01  6.584e-01  -0.465  0.64228    
## V4A46       -1.262e-01  4.882e-01  -0.258  0.79606    
## V4A48       -1.528e+01  4.594e+02  -0.033  0.97348    
## V4A49       -5.376e-01  3.911e-01  -1.375  0.16928    
## V5           8.507e-05  5.311e-05   1.602  0.10919    
## V6A62       -1.985e-01  3.434e-01  -0.578  0.56309    
## V6A63       -4.018e-01  4.662e-01  -0.862  0.38883    
## V6A64       -1.325e+00  6.314e-01  -2.098  0.03589 *  
## V6A65       -8.503e-01  3.144e-01  -2.705  0.00683 ** 
## V7A72        4.714e-01  4.537e-01   1.039  0.29882    
## V7A73        9.016e-02  4.253e-01   0.212  0.83212    
## V7A74       -5.633e-01  4.757e-01  -1.184  0.23640    
## V7A75       -2.568e-01  4.444e-01  -0.578  0.56339    
## V8           3.071e-01  1.056e-01   2.908  0.00364 ** 
## V9A92        9.178e-02  4.517e-01   0.203  0.83898    
## V9A93       -4.491e-01  4.507e-01  -0.997  0.31897    
## V9A94       -3.538e-01  5.594e-01  -0.632  0.52709    
## V10A102      2.701e-01  5.233e-01   0.516  0.60577    
## V10A103     -3.480e-01  5.203e-01  -0.669  0.50356    
## V12A122      1.943e-01  3.063e-01   0.634  0.52597    
## V12A123      3.065e-01  2.814e-01   1.089  0.27607    
## V12A124      7.751e-01  3.716e-01   2.086  0.03699 *  
## V14A142     -5.525e-01  4.866e-01  -1.135  0.25621    
## V14A143     -7.336e-01  2.805e-01  -2.615  0.00892 ** 
## V16          2.078e-01  2.124e-01   0.979  0.32782    
## V20A202     -1.753e+00  8.231e-01  -2.130  0.03320 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 851.79  on 699  degrees of freedom
## Residual deviance: 630.28  on 660  degrees of freedom
## AIC: 710.28
## 
## Number of Fisher Scoring iterations: 14
#3rd
log_model <- glm(V21~V1+V2+V3+V4+V5+V6+V7+V8+V9+V10+V12+V14+V20, family = binomial(link = "logit"), data = data_train)


summary(log_model)
## 
## Call:
## glm(formula = V21 ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + 
##     V10 + V12 + V14 + V20, family = binomial(link = "logit"), 
##     data = data_train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2538  -0.6875  -0.3929   0.6807   2.4314  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  5.263e-01  8.765e-01   0.600  0.54824    
## V1A12       -5.966e-01  2.622e-01  -2.275  0.02289 *  
## V1A13       -1.356e+00  4.325e-01  -3.135  0.00172 ** 
## V1A14       -1.718e+00  2.691e-01  -6.384 1.72e-10 ***
## V2           2.635e-02  1.130e-02   2.332  0.01972 *  
## V3A31       -3.508e-02  6.271e-01  -0.056  0.95538    
## V3A32       -9.209e-01  4.673e-01  -1.971  0.04873 *  
## V3A33       -7.445e-01  5.238e-01  -1.421  0.15527    
## V3A34       -1.459e+00  4.977e-01  -2.931  0.00338 ** 
## V4A41       -1.426e+00  4.360e-01  -3.271  0.00107 ** 
## V4A410      -2.723e+00  1.098e+00  -2.480  0.01314 *  
## V4A42       -4.378e-01  3.044e-01  -1.438  0.15039    
## V4A43       -8.542e-01  2.940e-01  -2.906  0.00366 ** 
## V4A44       -4.385e-01  9.574e-01  -0.458  0.64694    
## V4A45       -2.727e-01  6.605e-01  -0.413  0.67974    
## V4A46       -1.540e-01  4.876e-01  -0.316  0.75207    
## V4A48       -1.532e+01  4.568e+02  -0.034  0.97324    
## V4A49       -5.229e-01  3.907e-01  -1.338  0.18080    
## V5           8.716e-05  5.297e-05   1.645  0.09987 .  
## V6A62       -1.814e-01  3.413e-01  -0.532  0.59496    
## V6A63       -4.269e-01  4.659e-01  -0.916  0.35948    
## V6A64       -1.310e+00  6.297e-01  -2.080  0.03757 *  
## V6A65       -8.523e-01  3.145e-01  -2.710  0.00673 ** 
## V7A72        4.529e-01  4.537e-01   0.998  0.31821    
## V7A73        7.190e-02  4.250e-01   0.169  0.86566    
## V7A74       -5.610e-01  4.757e-01  -1.179  0.23829    
## V7A75       -2.426e-01  4.445e-01  -0.546  0.58516    
## V8           3.048e-01  1.052e-01   2.897  0.00376 ** 
## V9A92        1.048e-01  4.508e-01   0.232  0.81616    
## V9A93       -4.416e-01  4.501e-01  -0.981  0.32653    
## V9A94       -3.395e-01  5.596e-01  -0.607  0.54403    
## V10A102      2.699e-01  5.236e-01   0.515  0.60621    
## V10A103     -3.433e-01  5.204e-01  -0.660  0.50943    
## V12A122      1.797e-01  3.056e-01   0.588  0.55646    
## V12A123      3.088e-01  2.809e-01   1.099  0.27171    
## V12A124      7.765e-01  3.708e-01   2.094  0.03623 *  
## V14A142     -5.193e-01  4.846e-01  -1.072  0.28381    
## V14A143     -7.343e-01  2.807e-01  -2.616  0.00889 ** 
## V20A202     -1.784e+00  8.245e-01  -2.164  0.03046 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 851.79  on 699  degrees of freedom
## Residual deviance: 631.24  on 661  degrees of freedom
## AIC: 709.24
## 
## Number of Fisher Scoring iterations: 14
#4th
log_model <- glm(V21~V1+V2+V4+V6+V8+V12+V14+V20, family = binomial(link = "logit"), data = data_train)
summary (log_model)
## 
## Call:
## glm(formula = V21 ~ V1 + V2 + V4 + V6 + V8 + V12 + V14 + V20, 
##     family = binomial(link = "logit"), data = data_train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1199  -0.7472  -0.4480   0.8419   2.4787  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -0.379306   0.459861  -0.825  0.40947    
## V1A12        -0.474383   0.243169  -1.951  0.05108 .  
## V1A13        -1.288365   0.410994  -3.135  0.00172 ** 
## V1A14        -1.781931   0.255820  -6.966 3.27e-12 ***
## V2            0.036188   0.008534   4.240 2.23e-05 ***
## V4A41        -1.417220   0.412459  -3.436  0.00059 ***
## V4A410       -2.127508   0.944392  -2.253  0.02427 *  
## V4A42        -0.267599   0.287295  -0.931  0.35162    
## V4A43        -0.808736   0.273735  -2.954  0.00313 ** 
## V4A44        -0.230516   0.887256  -0.260  0.79501    
## V4A45        -0.181337   0.651500  -0.278  0.78075    
## V4A46        -0.061361   0.464150  -0.132  0.89483    
## V4A48       -14.810511 477.911966  -0.031  0.97528    
## V4A49        -0.375642   0.359514  -1.045  0.29609    
## V6A62        -0.128174   0.322781  -0.397  0.69130    
## V6A63        -0.446054   0.430723  -1.036  0.30039    
## V6A64        -1.179433   0.586282  -2.012  0.04425 *  
## V6A65        -0.840802   0.293142  -2.868  0.00413 ** 
## V8            0.149793   0.089951   1.665  0.09586 .  
## V12A122       0.344182   0.286458   1.202  0.22955    
## V12A123       0.481438   0.261817   1.839  0.06594 .  
## V12A124       0.912335   0.340060   2.683  0.00730 ** 
## V14A142      -0.324016   0.460411  -0.704  0.48159    
## V14A143      -0.713641   0.262421  -2.719  0.00654 ** 
## V20A202      -1.617442   0.797811  -2.027  0.04263 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 851.79  on 699  degrees of freedom
## Residual deviance: 673.80  on 675  degrees of freedom
## AIC: 723.8
## 
## Number of Fisher Scoring iterations: 14
#5th
log_model <- glm(V21~V1+V2+V4+V6+V12+V14+V20, family = binomial(link = "logit"), data = data_train)
summary (log_model)
## 
## Call:
## glm(formula = V21 ~ V1 + V2 + V4 + V6 + V12 + V14 + V20, family = binomial(link = "logit"), 
##     data = data_train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1905  -0.7603  -0.4411   0.8490   2.4410  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.032372   0.387388   0.084 0.933402    
## V1A12        -0.505237   0.241951  -2.088 0.036782 *  
## V1A13        -1.311344   0.409828  -3.200 0.001376 ** 
## V1A14        -1.782295   0.255256  -6.982 2.90e-12 ***
## V2            0.035996   0.008477   4.246 2.17e-05 ***
## V4A41        -1.450269   0.409841  -3.539 0.000402 ***
## V4A410       -2.178718   0.942274  -2.312 0.020767 *  
## V4A42        -0.268855   0.286809  -0.937 0.348553    
## V4A43        -0.753365   0.270826  -2.782 0.005407 ** 
## V4A44        -0.167882   0.885500  -0.190 0.849631    
## V4A45        -0.113295   0.647735  -0.175 0.861151    
## V4A46        -0.045035   0.463882  -0.097 0.922661    
## V4A48       -14.699464 478.891973  -0.031 0.975513    
## V4A49        -0.377384   0.359077  -1.051 0.293266    
## V6A62        -0.123506   0.321369  -0.384 0.700748    
## V6A63        -0.502831   0.430984  -1.167 0.243329    
## V6A64        -1.119890   0.582743  -1.922 0.054637 .  
## V6A65        -0.806688   0.290646  -2.775 0.005512 ** 
## V12A122       0.361450   0.285866   1.264 0.206086    
## V12A123       0.499577   0.261619   1.910 0.056190 .  
## V12A124       0.975833   0.338287   2.885 0.003919 ** 
## V14A142      -0.255563   0.456179  -0.560 0.575326    
## V14A143      -0.696566   0.262338  -2.655 0.007925 ** 
## V20A202      -1.631364   0.789137  -2.067 0.038708 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 851.79  on 699  degrees of freedom
## Residual deviance: 676.60  on 676  degrees of freedom
## AIC: 724.6
## 
## Number of Fisher Scoring iterations: 14
#Create a binary variable for significant varible

data_train$V1A12[data_train$V1 == "A12"] <- 1
data_train$V1A12[data_train$V1 != "A12"] <- 0

data_train$V1A13[data_train$V1 == "A13"] <- 1
data_train$V1A13[data_train$V1 != "A13"] <- 0

data_train$V1A14[data_train$V1 == "A14"] <- 1
data_train$V1A14[data_train$V1 != "A14"] <- 0

data_train$V4A41[data_train$V1 == "A41"] <- 1
data_train$V4A41[data_train$V1 != "A41"] <- 0

data_train$V4A410[data_train$V1 == "A410"] <- 1
data_train$V4A410[data_train$V1 != "A410"] <- 0

data_train$V4A43[data_train$V1 == "A43"] <- 1
data_train$V4A43[data_train$V1 != "A43"] <- 0

data_train$V6A65[data_train$V1 == "A65"] <- 1
data_train$V6A65[data_train$V1 != "A65"] <- 0

data_train$V12A124[data_train$V1 == "A124"] <- 1
data_train$V12A124[data_train$V1 != "A124"] <- 0

data_train$V14A143[data_train$V1 == "A143"] <- 1
data_train$V14A143[data_train$V1 != "A143"] <- 0

data_train$V20A202[data_train$V1 == "A202"] <- 1
data_train$V20A202[data_train$V1 != "A202"] <- 0

#New model
log_model <- glm(V21~V1A12+V1A13+V1A14+V2+V4A41+V4A410+V4A43+V6A65+V12A124+V14A143+V20A202, family = binomial(link = "logit"), data = data_train)
summary (log_model)
## 
## Call:
## glm(formula = V21 ~ V1A12 + V1A13 + V1A14 + V2 + V4A41 + V4A410 + 
##     V4A43 + V6A65 + V12A124 + V14A143 + V20A202, family = binomial(link = "logit"), 
##     data = data_train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6202  -0.8274  -0.5204   0.9805   2.2733  
## 
## Coefficients: (7 not defined because of singularities)
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -0.839332   0.218057  -3.849 0.000119 ***
## V1A12       -0.516218   0.217998  -2.368 0.017885 *  
## V1A13       -1.258624   0.388276  -3.242 0.001189 ** 
## V1A14       -1.895848   0.234655  -8.079 6.51e-16 ***
## V2           0.038297   0.007309   5.240 1.61e-07 ***
## V4A41              NA         NA      NA       NA    
## V4A410             NA         NA      NA       NA    
## V4A43              NA         NA      NA       NA    
## V6A65              NA         NA      NA       NA    
## V12A124            NA         NA      NA       NA    
## V14A143            NA         NA      NA       NA    
## V20A202            NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 851.79  on 699  degrees of freedom
## Residual deviance: 739.43  on 695  degrees of freedom
## AIC: 749.43
## 
## Number of Fisher Scoring iterations: 4
#Validation
data_test$V1A12[data_test$V1 == "A12"] <- 1
data_test$V1A12[data_test$V1 != "A12"] <- 0

data_test$V1A13[data_test$V1 == "A13"] <- 1
data_test$V1A13[data_test$V1 != "A13"] <- 0

data_test$V1A14[data_test$V1 == "A14"] <- 1
data_test$V1A14[data_test$V1 != "A14"] <- 0

#Predict model
predict_log <- predict(log_model,data_train, type = "response")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
## prediction from a rank-deficient fit may be misleading
predict_log
##        836        679        129        930        509        471        299 
## 0.40618182 0.51993633 0.28987529 0.40618182 0.13990724 0.39259198 0.11447335 
##        270        978        187        307        597        277        874 
## 0.13990724 0.33934604 0.26680771 0.16990783 0.51993633 0.11447335 0.10333275 
##        950        494        330        775        841        591        725 
## 0.13990724 0.24494263 0.24494263 0.16268335 0.63166062 0.40618182 0.15431244 
##         37        105        729        878        485        677        802 
## 0.28967957 0.09316229 0.61838285 0.20480962 0.09316229 0.13990724 0.33934604 
##        987        382        601        940        801        852        931 
## 0.38001209 0.33934604 0.25209441 0.13990724 0.13990724 0.13990724 0.51993633 
##        326        984        554        422        111        404        924 
## 0.36982703 0.63166062 0.28987529 0.28987529 0.24494263 0.09983788 0.28987529 
##        532        506        556        889        343        582        121 
## 0.31408290 0.08688997 0.28987529 0.20480962 0.33934604 0.28987529 0.49122531 
##         40        684        537        375        248        198        378 
## 0.26680771 0.13990724 0.35216135 0.71955388 0.07548046 0.28987529 0.07819675 
##         39        435        810        390        280        672        526 
## 0.15251761 0.37879588 0.31408290 0.08389919 0.13990724 0.20480962 0.41099912 
##        642         45        402         22        718        742        193 
## 0.31408290 0.73084371 0.33934604 0.35216135 0.11447335 0.27436593 0.42030050 
##        371        499        104        965        767        492        838 
## 0.20480962 0.33934604 0.26680771 0.24494263 0.57677970 0.42030050 0.07030630 
##        616        615        843        465        525        808        977 
## 0.61838285 0.11447335 0.11447335 0.11447335 0.33934604 0.09316229 0.24494263 
##        176        345        791        110         84        871         29 
## 0.16990783 0.15251761 0.36555824 0.30589179 0.51993633 0.20480962 0.25209441 
##        141        252        733        620        304        545        557 
## 0.13375285 0.16268335 0.25938328 0.09316229 0.38784836 0.09316229 0.33934604 
##        661        287        614        145        329        487        855 
## 0.16268335 0.73084371 0.51993633 0.12664540 0.32755224 0.09316229 0.20480962 
##        851        630        498        858        816        619        576 
## 0.48165848 0.08389919 0.13990724 0.10333275 0.50578224 0.44852058 0.10333275 
##        490        736        103        316         51        907        290 
## 0.07548046 0.50578224 0.07548046 0.63166062 0.39259198 0.49122531 0.51993633 
##        650        998        811        282        143        442        285 
## 0.40618182 0.09316229 0.25938328 0.09316229 0.54851627 0.40618182 0.39259198 
##        682         48        501        716        511        295        536 
## 0.09316229 0.35216135 0.51993633 0.16990783 0.40618182 0.28967957 0.21522269 
##        693        214        918        737        339        346        675 
## 0.39259198 0.27907455 0.35216135 0.39259198 0.51993633 0.10333275 0.12664540 
##         43          1        910        590        959        796        628 
## 0.33934604 0.35216135 0.26680771 0.40618182 0.55798154 0.08389919 0.26680771 
##        233        293        573        369        451         86        483 
## 0.09316229 0.51993633 0.13990724 0.63166062 0.20480962 0.09316229 0.57677970 
##        327        622        355        819        812         49        361 
## 0.09316229 0.11447335 0.08688997 0.63166062 0.24494263 0.08997689 0.33934604 
##        885        242        440        758        817        818        247 
## 0.39259198 0.07548046 0.16268335 0.17894572 0.07548046 0.07548046 0.09316229 
##        751        219        135        961        958        377        408 
## 0.35216135 0.51993633 0.39236522 0.07548046 0.26680771 0.11447335 0.43416391 
##        884        565        467        356        130        891         65 
## 0.11447335 0.39259198 0.51993633 0.39259198 0.40618182 0.54851627 0.13990724 
##        842        359        992        124         77        218        610 
## 0.12664540 0.09316229 0.10333275 0.15251761 0.68333211 0.32755224 0.10333275 
##        194         19        273        418        543        419        686 
## 0.07548046 0.39259198 0.61838285 0.46257206 0.57677970 0.12664540 0.39236522 
##        403        749        587         16        951        777        604 
## 0.13990724 0.12664540 0.37879588 0.51993633 0.33934604 0.20480962 0.20480962 
##        634        664        138        719        500        761        939 
## 0.08389919 0.24494263 0.28987529 0.23526142 0.13375285 0.10333275 0.71955388 
##        229        423        421        140        126        938        508 
## 0.08389919 0.28987529 0.10333275 0.16268335 0.40618182 0.24494263 0.31408290 
##        854        968        271        821        577        512        849 
## 0.46257206 0.10333275 0.11447335 0.09316229 0.28987529 0.20480962 0.37879588 
##        504        457        358        724        127        645         41 
## 0.39259198 0.39697893 0.20480962 0.26680771 0.40618182 0.46257206 0.16990783 
##        548        305        413        955        880        309        773 
## 0.13990724 0.28967957 0.09316229 0.40618182 0.16990783 0.25938328 0.12664540 
##        441        117        764        470        900        562        336 
## 0.09316229 0.68333211 0.12664540 0.13990724 0.46257206 0.51993633 0.35216135 
##        349         72        857        474        168        872        788 
## 0.07548046 0.07819675 0.08688997 0.07548046 0.28205590 0.13375285 0.28967957 
##        455        783        822        625        234        484        952 
## 0.51993633 0.28987529 0.16268335 0.46257206 0.33934604 0.10333275 0.63166062 
##         73        539        553         15        762        294         62 
## 0.36982703 0.73084371 0.73084371 0.43416391 0.46257206 0.38001209 0.31408290 
##        941        644         35        381        814        820        697 
## 0.09316229 0.13990724 0.16268335 0.48165848 0.73084371 0.46257206 0.28987529 
##        846        665         31        549         28        735        148 
## 0.36555824 0.13375285 0.33934604 0.40618182 0.16268335 0.07030630 0.09316229 
##        772        572        284        334        980        268         93 
## 0.63166062 0.16990783 0.10333275 0.28967957 0.31408290 0.13990724 0.09316229 
##        756        300        834        976        241         33        883 
## 0.51993633 0.36555824 0.39259198 0.23526142 0.51993633 0.33934604 0.44852058 
##        437        792        848        217        108        781        993 
## 0.07548046 0.13990724 0.13990724 0.46257206 0.28987529 0.53445032 0.46257206 
##        209        338        609        584        824        568        434 
## 0.51993633 0.43416391 0.11447335 0.50578224 0.36982703 0.13990724 0.13990724 
##        201        354        357        755        973        514        116 
## 0.08389919 0.40618182 0.09316229 0.09316229 0.51993633 0.28987529 0.28967957 
##        643        962        853        701        668        439        197 
## 0.10333275 0.36555824 0.10333275 0.09316229 0.28967957 0.68333211 0.07548046 
##        220        462        994        235        513        752        173 
## 0.08688997 0.43416391 0.63166062 0.07030630 0.17894572 0.46257206 0.39259198 
##         83        673        407        324        185        922        180 
## 0.11447335 0.39236522 0.13990724 0.46257206 0.33934604 0.28967957 0.49122531 
##        464        493        444        167        982        995        291 
## 0.28987529 0.07548046 0.09316229 0.46257206 0.28967957 0.09316229 0.09316229 
##        653        833        867        839        862        657         56 
## 0.51993633 0.70765404 0.46257206 0.51993633 0.11447335 0.28987529 0.07548046 
##         25         81        472        898        985        647        480 
## 0.08688997 0.13990724 0.35216135 0.09316229 0.13990724 0.57677970 0.43416391 
##        928          3        179        161        384        436        720 
## 0.73084371 0.09316229 0.09316229 0.13990724 0.16268335 0.28987529 0.35672284 
##        260         60        448        488        181        510        133 
## 0.08997689 0.63166062 0.25209441 0.13990724 0.20480962 0.22415574 0.10333275 
##        618        428        547        827        279        658        948 
## 0.35216135 0.11447335 0.13990724 0.46257206 0.07548046 0.28967957 0.09316229 
##        611        721        150        932        169        598        823 
## 0.40618182 0.14763314 0.11447335 0.26680771 0.13990724 0.39259198 0.63166062 
##        702        530        956        789         91        164        544 
## 0.73084371 0.35216135 0.51993633 0.61838285 0.09316229 0.27436593 0.19645233 
##        479        825        119        920        790        607        731 
## 0.28987529 0.11447335 0.60454940 0.51993633 0.66653042 0.13990724 0.39259198 
##        638         89        533        981        690        648         71 
## 0.39236522 0.46257206 0.09316229 0.44852058 0.40618182 0.09316229 0.20480962 
##        639        315        831        414        663        570        972 
## 0.09316229 0.12512477 0.13990724 0.08688997 0.12664540 0.73084371 0.13990724 
##        546        674        574        705        670        832        770 
## 0.51993633 0.07548046 0.43416391 0.42030050 0.27907455 0.46257206 0.09316229 
##        392        281          5        964        925         20        183 
## 0.28987529 0.10333275 0.51993633 0.13990724 0.51993633 0.13990724 0.49122531 
##        694         79        687         69        473        798        296 
## 0.35216135 0.33913286 0.15251761 0.20480962 0.37879588 0.09316229 0.61838285 
##        909        132         42        894        966        887        397 
## 0.10333275 0.63166062 0.28987529 0.50578224 0.44852058 0.39259198 0.40618182 
##        264        177        368        433        139        520        320 
## 0.09316229 0.40618182 0.46257206 0.35216135 0.31408290 0.07548046 0.43416391 
##        115        453        450        551        396        799        813 
## 0.40618182 0.09316229 0.31408290 0.09316229 0.53445032 0.13990724 0.63166062 
##        159        606        495        109        519        740        393 
## 0.39259198 0.51993633 0.40618182 0.51993633 0.35216135 0.44852058 0.63166062 
##        704        936        112         27        222        266        158 
## 0.44852058 0.44852058 0.17894572 0.07548046 0.40618182 0.31408290 0.40618182 
##        765        654        386        175        712        261        166 
## 0.13990724 0.50578224 0.11447335 0.49122531 0.35216135 0.40618182 0.07548046 
##        552        340         92        412         99        516        128 
## 0.07548046 0.27436593 0.40618182 0.18673133 0.50578224 0.35216135 0.28987529 
##        646        919        943        805        192        410         85 
## 0.20480962 0.51993633 0.13990724 0.28987529 0.61838285 0.16268335 0.38784836 
##        213        302        311        208        957        895        383 
## 0.54851627 0.50578224 0.61838285 0.28987529 0.27907455 0.11447335 0.13094217 
##        216        988        259        652         87        743        768 
## 0.24494263 0.09644851 0.10333275 0.28987529 0.33934604 0.12664540 0.08688997 
##        906        303        937        240        868        312          4 
## 0.40618182 0.23526142 0.14763314 0.57677970 0.09316229 0.13990724 0.68333211 
##        711         58        308        975        757        829        342 
## 0.11447335 0.20480962 0.40618182 0.16990783 0.13375285 0.63166062 0.49122531 
##        870        626        845        203        122         44        571 
## 0.40618182 0.10333275 0.11447335 0.15431244 0.13990724 0.57677970 0.51993633 
##        267        734        873        100        313        134        468 
## 0.20480962 0.13990724 0.51993633 0.35672284 0.23526142 0.11447335 0.28967957 
##        232        310        360         11        608        923        631 
## 0.08389919 0.26680771 0.57677970 0.28987529 0.50578224 0.37879588 0.51993633 
##        482        649        256        265         54        146        524 
## 0.39259198 0.23526142 0.71955388 0.08688997 0.11447335 0.61838285 0.13990724 
##        911        236        328        215          6        481        555 
## 0.20480962 0.51993633 0.13990724 0.20480962 0.20480962 0.28987529 0.26680771 
##        515        250        579        258        869        446        288 
## 0.13990724 0.11447335 0.50578224 0.40618182 0.20480962 0.08389919 0.61838285 
##        744        567        593        847        806        605        205 
## 0.51993633 0.40618182 0.12664540 0.11447335 0.63166062 0.15251761 0.09316229 
##        243        780        946        399         55        182        581 
## 0.73084371 0.33934604 0.61838285 0.28987529 0.50578224 0.50578224 0.33934604 
##         61        348        635        921        662        137        325 
## 0.26680771 0.39259198 0.39259198 0.11447335 0.40618182 0.15431244 0.11447335 
##        592        362         66        101        901        245        206 
## 0.39259198 0.16268335 0.15431244 0.13990724 0.44359471 0.09316229 0.57677970 
##        600        974        627        431        380        411        153 
## 0.13990724 0.81129814 0.13375285 0.07285106 0.07548046 0.39259198 0.32755224 
##         17        190        708        478        680        699        621 
## 0.13990724 0.33934604 0.28987529 0.23526142 0.11447335 0.11447335 0.36555824 
##        586        954        276        766        558        454        563 
## 0.46257206 0.20480962 0.08389919 0.28987529 0.12664540 0.13990724 0.13375285 
##        283        353        426        226        184         36        341 
## 0.19645233 0.11447335 0.33934604 0.20480962 0.13990724 0.59092725 0.39259198 
##         52        162        807        912         67        602        882 
## 0.42030050 0.11447335 0.24494263 0.39259198 0.09316229 0.26680771 0.13990724 
##        876        935        335        828        507        363        489 
## 0.28205590 0.40618182 0.51993633 0.11447335 0.17894572 0.16268335 0.08688997 
##        395        286        367        689        425         13        613 
## 0.08389919 0.72324407 0.11447335 0.08389919 0.28987529 0.28987529 0.49122531 
##        905          7         82        389        257        449        420 
## 0.13990724 0.13990724 0.10333275 0.31408290 0.13990724 0.16268335 0.33934604 
##        960        913        529        710        225        942        306 
## 0.39259198 0.44852058 0.63166062 0.26680771 0.10333275 0.08688997 0.07548046 
##        727        538        771        469        594         97        715 
## 0.10333275 0.33934604 0.51993633 0.18673133 0.39259198 0.09316229 0.71955388 
##        466        651        732        856        207        902        929 
## 0.51993633 0.73084371 0.51993633 0.13990724 0.09316229 0.12246976 0.16990783 
##        703        859        803        476        947         80        477 
## 0.23526142 0.43416391 0.48165848 0.46257206 0.51993633 0.44852058 0.22415574 
##        916        251         12        560        406        350        521 
## 0.61838285 0.35216135 0.73084371 0.33934604 0.39259198 0.26680771 0.13990724 
##          8        983        904        787         30          9        879 
## 0.50578224 0.21522269 0.10333275 0.13094217 0.81129814 0.09316229 0.37879588 
##        333        518        860        278        564        102        424 
## 0.71955388 0.20480962 0.08389919 0.40618182 0.50578224 0.50578224 0.12664540 
##        118        713        211        990        917        722        365 
## 0.38784836 0.12664540 0.08389919 0.39259198 0.08688997 0.24494263 0.46257206