#U1A7
setwd("~/PyE_206145")

#Cargar las bibliotecas con el paquete pacman
library(pacman)
p_load(read,tidyverse,plotly,gganimate,gifsky)
## Installing package into 'C:/Users/Daniela Zazueta D/Documents/R/win-library/3.6'
## (as 'lib' is unspecified)
## Warning: package 'read' is not available (for R version 3.6.3)
## Warning: unable to access index for repository http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/3.6:
##   no fue posible abrir la URL 'http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/3.6/PACKAGES'
## Warning: 'BiocManager' not available.  Could not check Bioconductor.
## 
## Please use `install.packages('BiocManager')` and then retry.
## Warning in p_install(package, character.only = TRUE, ...):
## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
## logical.return = TRUE, : there is no package called 'read'
## Installing package into 'C:/Users/Daniela Zazueta D/Documents/R/win-library/3.6'
## (as 'lib' is unspecified)
## Warning: package 'gifsky' is not available (for R version 3.6.3)
## Warning: unable to access index for repository http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/3.6:
##   no fue posible abrir la URL 'http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/3.6/PACKAGES'
## Warning: 'BiocManager' not available.  Could not check Bioconductor.
## 
## Please use `install.packages('BiocManager')` and then retry.
## Warning in p_install(package, character.only = TRUE, ...):
## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
## logical.return = TRUE, : there is no package called 'gifsky'
## Warning in p_load(read, tidyverse, plotly, gganimate, gifsky): Failed to install/load:
## read, gifsky
#Ler datos de la direccion general de epidemiologia (DGE)

datos <- read.csv("Casos_Diarios_Estado_Nacional_Confirmados_20200609.csv")

#dar formato a los datos diarios(absolutos) de Baja California
BC <- t(datos[datos$nombre=="BAJA CALIFORNIA" ,])
BC <- as.vector(BC)
BC <- BC[4:153] #Filtrar datos
BC <- as.numeric(BC) #para convertir en numerico
BC <- as.vector(BC)
BC
##   [1]   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##  [19]   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0
##  [37]   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##  [55]   0   0   0   0   0   1   0   0   0   0   1   3   4   5   6   3   2  10
##  [73]   9   7  11  16   7  21  29  45  65  29  38  24  20  68  40  59  58  48
##  [91]  34  44  81 103 102  85  97  46  44 110 104  93 108  86  44  67 109  96
## [109] 108  88  89  77  90 141 138 112 116 140  75  69 130 121 122 107 123  68
## [127]  71 180 147 157 152 183  66  76 132 128 118 106 108  82  58 124 124  98
## [145]  90  66  27   5   1   1
cBC <- cumsum(BC) #datos acumulados diarios
cBC
##   [1]    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##  [16]    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##  [31]    0    1    1    1    1    1    1    1    1    1    1    1    1    1    1
##  [46]    1    1    1    1    1    1    1    1    1    1    1    1    1    1    2
##  [61]    2    2    2    2    3    6   10   15   21   24   26   36   45   52   63
##  [76]   79   86  107  136  181  246  275  313  337  357  425  465  524  582  630
##  [91]  664  708  789  892  994 1079 1176 1222 1266 1376 1480 1573 1681 1767 1811
## [106] 1878 1987 2083 2191 2279 2368 2445 2535 2676 2814 2926 3042 3182 3257 3326
## [121] 3456 3577 3699 3806 3929 3997 4068 4248 4395 4552 4704 4887 4953 5029 5161
## [136] 5289 5407 5513 5621 5703 5761 5885 6009 6107 6197 6263 6290 6295 6296 6297
#6297 habitantes confirmados aprox

#Estadistica descriptiva
plot(BC) #Grafico de puntos de datos absolutos

plot(cBC)

#dar formato a los datos diarios (absolutos) de Baja California Sur
BCS <- t(datos[datos$nombre=="BAJA CALIFORNIA SUR" ,])
BCS <- as.vector(BCS)
BCS <- BCS[4:153] #Filtrar datos
BCS <- as.numeric(BCS) #para convertir en numerico
BCS <- as.vector(BCS)
BCS
##   [1]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [26]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [51]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  1  1  0  4  2  0  2
##  [76]  4  4  1 13  7  5 11 16  6  5 23 24 24 25  9  7  5 14 17  5  9  6  4  8  7
## [101] 12  4  9 13  5  8 10  4  4 14  2  9  7  7 12 10 11  9  6 10  6 16 13  8  5
## [126] 11  3 11 15 17  8 15  7  9 17 13 21 19 21 13  8 29 14 12 18 20 12 15  0  0
cBCS <- cumsum(BCS) #datos acumulados diarios
cBCS
##   [1]   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##  [19]   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##  [37]   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##  [55]   0   0   0   0   0   0   0   0   0   0   0   0   1   1   2   3   3   7
##  [73]   9   9  11  15  19  20  33  40  45  56  72  78  83 106 130 154 179 188
##  [91] 195 200 214 231 236 245 251 255 263 270 282 286 295 308 313 321 331 335
## [109] 339 353 355 364 371 378 390 400 411 420 426 436 442 458 471 479 484 495
## [127] 498 509 524 541 549 564 571 580 597 610 631 650 671 684 692 721 735 747
## [145] 765 785 797 812 812 812
#812 habitantes confirmados aprox

#Estadistica descriptiva
plot(BCS) #Grafico de puntos de datos absolutos

plot(cBCS)

#Construir un vector de fechas
Fecha <- seq(from = as.Date("2020-01-12"), to=as.Date("2020-06-09"), by ="day")
Fecha
##   [1] "2020-01-12" "2020-01-13" "2020-01-14" "2020-01-15" "2020-01-16"
##   [6] "2020-01-17" "2020-01-18" "2020-01-19" "2020-01-20" "2020-01-21"
##  [11] "2020-01-22" "2020-01-23" "2020-01-24" "2020-01-25" "2020-01-26"
##  [16] "2020-01-27" "2020-01-28" "2020-01-29" "2020-01-30" "2020-01-31"
##  [21] "2020-02-01" "2020-02-02" "2020-02-03" "2020-02-04" "2020-02-05"
##  [26] "2020-02-06" "2020-02-07" "2020-02-08" "2020-02-09" "2020-02-10"
##  [31] "2020-02-11" "2020-02-12" "2020-02-13" "2020-02-14" "2020-02-15"
##  [36] "2020-02-16" "2020-02-17" "2020-02-18" "2020-02-19" "2020-02-20"
##  [41] "2020-02-21" "2020-02-22" "2020-02-23" "2020-02-24" "2020-02-25"
##  [46] "2020-02-26" "2020-02-27" "2020-02-28" "2020-02-29" "2020-03-01"
##  [51] "2020-03-02" "2020-03-03" "2020-03-04" "2020-03-05" "2020-03-06"
##  [56] "2020-03-07" "2020-03-08" "2020-03-09" "2020-03-10" "2020-03-11"
##  [61] "2020-03-12" "2020-03-13" "2020-03-14" "2020-03-15" "2020-03-16"
##  [66] "2020-03-17" "2020-03-18" "2020-03-19" "2020-03-20" "2020-03-21"
##  [71] "2020-03-22" "2020-03-23" "2020-03-24" "2020-03-25" "2020-03-26"
##  [76] "2020-03-27" "2020-03-28" "2020-03-29" "2020-03-30" "2020-03-31"
##  [81] "2020-04-01" "2020-04-02" "2020-04-03" "2020-04-04" "2020-04-05"
##  [86] "2020-04-06" "2020-04-07" "2020-04-08" "2020-04-09" "2020-04-10"
##  [91] "2020-04-11" "2020-04-12" "2020-04-13" "2020-04-14" "2020-04-15"
##  [96] "2020-04-16" "2020-04-17" "2020-04-18" "2020-04-19" "2020-04-20"
## [101] "2020-04-21" "2020-04-22" "2020-04-23" "2020-04-24" "2020-04-25"
## [106] "2020-04-26" "2020-04-27" "2020-04-28" "2020-04-29" "2020-04-30"
## [111] "2020-05-01" "2020-05-02" "2020-05-03" "2020-05-04" "2020-05-05"
## [116] "2020-05-06" "2020-05-07" "2020-05-08" "2020-05-09" "2020-05-10"
## [121] "2020-05-11" "2020-05-12" "2020-05-13" "2020-05-14" "2020-05-15"
## [126] "2020-05-16" "2020-05-17" "2020-05-18" "2020-05-19" "2020-05-20"
## [131] "2020-05-21" "2020-05-22" "2020-05-23" "2020-05-24" "2020-05-25"
## [136] "2020-05-26" "2020-05-27" "2020-05-28" "2020-05-29" "2020-05-30"
## [141] "2020-05-31" "2020-06-01" "2020-06-02" "2020-06-03" "2020-06-04"
## [146] "2020-06-05" "2020-06-06" "2020-06-07" "2020-06-08" "2020-06-09"
#Crear un arreglo matricial (marco de datos "Data frame", "tibble")
BC_BCS <- data.frame(Fecha, BC, BCS) #Datos absolutos
BC_BCS
##          Fecha  BC BCS
## 1   2020-01-12   0   0
## 2   2020-01-13   0   0
## 3   2020-01-14   0   0
## 4   2020-01-15   0   0
## 5   2020-01-16   0   0
## 6   2020-01-17   0   0
## 7   2020-01-18   0   0
## 8   2020-01-19   0   0
## 9   2020-01-20   0   0
## 10  2020-01-21   0   0
## 11  2020-01-22   0   0
## 12  2020-01-23   0   0
## 13  2020-01-24   0   0
## 14  2020-01-25   0   0
## 15  2020-01-26   0   0
## 16  2020-01-27   0   0
## 17  2020-01-28   0   0
## 18  2020-01-29   0   0
## 19  2020-01-30   0   0
## 20  2020-01-31   0   0
## 21  2020-02-01   0   0
## 22  2020-02-02   0   0
## 23  2020-02-03   0   0
## 24  2020-02-04   0   0
## 25  2020-02-05   0   0
## 26  2020-02-06   0   0
## 27  2020-02-07   0   0
## 28  2020-02-08   0   0
## 29  2020-02-09   0   0
## 30  2020-02-10   0   0
## 31  2020-02-11   0   0
## 32  2020-02-12   1   0
## 33  2020-02-13   0   0
## 34  2020-02-14   0   0
## 35  2020-02-15   0   0
## 36  2020-02-16   0   0
## 37  2020-02-17   0   0
## 38  2020-02-18   0   0
## 39  2020-02-19   0   0
## 40  2020-02-20   0   0
## 41  2020-02-21   0   0
## 42  2020-02-22   0   0
## 43  2020-02-23   0   0
## 44  2020-02-24   0   0
## 45  2020-02-25   0   0
## 46  2020-02-26   0   0
## 47  2020-02-27   0   0
## 48  2020-02-28   0   0
## 49  2020-02-29   0   0
## 50  2020-03-01   0   0
## 51  2020-03-02   0   0
## 52  2020-03-03   0   0
## 53  2020-03-04   0   0
## 54  2020-03-05   0   0
## 55  2020-03-06   0   0
## 56  2020-03-07   0   0
## 57  2020-03-08   0   0
## 58  2020-03-09   0   0
## 59  2020-03-10   0   0
## 60  2020-03-11   1   0
## 61  2020-03-12   0   0
## 62  2020-03-13   0   0
## 63  2020-03-14   0   0
## 64  2020-03-15   0   0
## 65  2020-03-16   1   0
## 66  2020-03-17   3   0
## 67  2020-03-18   4   1
## 68  2020-03-19   5   0
## 69  2020-03-20   6   1
## 70  2020-03-21   3   1
## 71  2020-03-22   2   0
## 72  2020-03-23  10   4
## 73  2020-03-24   9   2
## 74  2020-03-25   7   0
## 75  2020-03-26  11   2
## 76  2020-03-27  16   4
## 77  2020-03-28   7   4
## 78  2020-03-29  21   1
## 79  2020-03-30  29  13
## 80  2020-03-31  45   7
## 81  2020-04-01  65   5
## 82  2020-04-02  29  11
## 83  2020-04-03  38  16
## 84  2020-04-04  24   6
## 85  2020-04-05  20   5
## 86  2020-04-06  68  23
## 87  2020-04-07  40  24
## 88  2020-04-08  59  24
## 89  2020-04-09  58  25
## 90  2020-04-10  48   9
## 91  2020-04-11  34   7
## 92  2020-04-12  44   5
## 93  2020-04-13  81  14
## 94  2020-04-14 103  17
## 95  2020-04-15 102   5
## 96  2020-04-16  85   9
## 97  2020-04-17  97   6
## 98  2020-04-18  46   4
## 99  2020-04-19  44   8
## 100 2020-04-20 110   7
## 101 2020-04-21 104  12
## 102 2020-04-22  93   4
## 103 2020-04-23 108   9
## 104 2020-04-24  86  13
## 105 2020-04-25  44   5
## 106 2020-04-26  67   8
## 107 2020-04-27 109  10
## 108 2020-04-28  96   4
## 109 2020-04-29 108   4
## 110 2020-04-30  88  14
## 111 2020-05-01  89   2
## 112 2020-05-02  77   9
## 113 2020-05-03  90   7
## 114 2020-05-04 141   7
## 115 2020-05-05 138  12
## 116 2020-05-06 112  10
## 117 2020-05-07 116  11
## 118 2020-05-08 140   9
## 119 2020-05-09  75   6
## 120 2020-05-10  69  10
## 121 2020-05-11 130   6
## 122 2020-05-12 121  16
## 123 2020-05-13 122  13
## 124 2020-05-14 107   8
## 125 2020-05-15 123   5
## 126 2020-05-16  68  11
## 127 2020-05-17  71   3
## 128 2020-05-18 180  11
## 129 2020-05-19 147  15
## 130 2020-05-20 157  17
## 131 2020-05-21 152   8
## 132 2020-05-22 183  15
## 133 2020-05-23  66   7
## 134 2020-05-24  76   9
## 135 2020-05-25 132  17
## 136 2020-05-26 128  13
## 137 2020-05-27 118  21
## 138 2020-05-28 106  19
## 139 2020-05-29 108  21
## 140 2020-05-30  82  13
## 141 2020-05-31  58   8
## 142 2020-06-01 124  29
## 143 2020-06-02 124  14
## 144 2020-06-03  98  12
## 145 2020-06-04  90  18
## 146 2020-06-05  66  20
## 147 2020-06-06  27  12
## 148 2020-06-07   5  15
## 149 2020-06-08   1   0
## 150 2020-06-09   1   0
cBC_BCS <- data.frame(Fecha, cBC, cBCS) #Datos acumulados
cBC_BCS
##          Fecha  cBC cBCS
## 1   2020-01-12    0    0
## 2   2020-01-13    0    0
## 3   2020-01-14    0    0
## 4   2020-01-15    0    0
## 5   2020-01-16    0    0
## 6   2020-01-17    0    0
## 7   2020-01-18    0    0
## 8   2020-01-19    0    0
## 9   2020-01-20    0    0
## 10  2020-01-21    0    0
## 11  2020-01-22    0    0
## 12  2020-01-23    0    0
## 13  2020-01-24    0    0
## 14  2020-01-25    0    0
## 15  2020-01-26    0    0
## 16  2020-01-27    0    0
## 17  2020-01-28    0    0
## 18  2020-01-29    0    0
## 19  2020-01-30    0    0
## 20  2020-01-31    0    0
## 21  2020-02-01    0    0
## 22  2020-02-02    0    0
## 23  2020-02-03    0    0
## 24  2020-02-04    0    0
## 25  2020-02-05    0    0
## 26  2020-02-06    0    0
## 27  2020-02-07    0    0
## 28  2020-02-08    0    0
## 29  2020-02-09    0    0
## 30  2020-02-10    0    0
## 31  2020-02-11    0    0
## 32  2020-02-12    1    0
## 33  2020-02-13    1    0
## 34  2020-02-14    1    0
## 35  2020-02-15    1    0
## 36  2020-02-16    1    0
## 37  2020-02-17    1    0
## 38  2020-02-18    1    0
## 39  2020-02-19    1    0
## 40  2020-02-20    1    0
## 41  2020-02-21    1    0
## 42  2020-02-22    1    0
## 43  2020-02-23    1    0
## 44  2020-02-24    1    0
## 45  2020-02-25    1    0
## 46  2020-02-26    1    0
## 47  2020-02-27    1    0
## 48  2020-02-28    1    0
## 49  2020-02-29    1    0
## 50  2020-03-01    1    0
## 51  2020-03-02    1    0
## 52  2020-03-03    1    0
## 53  2020-03-04    1    0
## 54  2020-03-05    1    0
## 55  2020-03-06    1    0
## 56  2020-03-07    1    0
## 57  2020-03-08    1    0
## 58  2020-03-09    1    0
## 59  2020-03-10    1    0
## 60  2020-03-11    2    0
## 61  2020-03-12    2    0
## 62  2020-03-13    2    0
## 63  2020-03-14    2    0
## 64  2020-03-15    2    0
## 65  2020-03-16    3    0
## 66  2020-03-17    6    0
## 67  2020-03-18   10    1
## 68  2020-03-19   15    1
## 69  2020-03-20   21    2
## 70  2020-03-21   24    3
## 71  2020-03-22   26    3
## 72  2020-03-23   36    7
## 73  2020-03-24   45    9
## 74  2020-03-25   52    9
## 75  2020-03-26   63   11
## 76  2020-03-27   79   15
## 77  2020-03-28   86   19
## 78  2020-03-29  107   20
## 79  2020-03-30  136   33
## 80  2020-03-31  181   40
## 81  2020-04-01  246   45
## 82  2020-04-02  275   56
## 83  2020-04-03  313   72
## 84  2020-04-04  337   78
## 85  2020-04-05  357   83
## 86  2020-04-06  425  106
## 87  2020-04-07  465  130
## 88  2020-04-08  524  154
## 89  2020-04-09  582  179
## 90  2020-04-10  630  188
## 91  2020-04-11  664  195
## 92  2020-04-12  708  200
## 93  2020-04-13  789  214
## 94  2020-04-14  892  231
## 95  2020-04-15  994  236
## 96  2020-04-16 1079  245
## 97  2020-04-17 1176  251
## 98  2020-04-18 1222  255
## 99  2020-04-19 1266  263
## 100 2020-04-20 1376  270
## 101 2020-04-21 1480  282
## 102 2020-04-22 1573  286
## 103 2020-04-23 1681  295
## 104 2020-04-24 1767  308
## 105 2020-04-25 1811  313
## 106 2020-04-26 1878  321
## 107 2020-04-27 1987  331
## 108 2020-04-28 2083  335
## 109 2020-04-29 2191  339
## 110 2020-04-30 2279  353
## 111 2020-05-01 2368  355
## 112 2020-05-02 2445  364
## 113 2020-05-03 2535  371
## 114 2020-05-04 2676  378
## 115 2020-05-05 2814  390
## 116 2020-05-06 2926  400
## 117 2020-05-07 3042  411
## 118 2020-05-08 3182  420
## 119 2020-05-09 3257  426
## 120 2020-05-10 3326  436
## 121 2020-05-11 3456  442
## 122 2020-05-12 3577  458
## 123 2020-05-13 3699  471
## 124 2020-05-14 3806  479
## 125 2020-05-15 3929  484
## 126 2020-05-16 3997  495
## 127 2020-05-17 4068  498
## 128 2020-05-18 4248  509
## 129 2020-05-19 4395  524
## 130 2020-05-20 4552  541
## 131 2020-05-21 4704  549
## 132 2020-05-22 4887  564
## 133 2020-05-23 4953  571
## 134 2020-05-24 5029  580
## 135 2020-05-25 5161  597
## 136 2020-05-26 5289  610
## 137 2020-05-27 5407  631
## 138 2020-05-28 5513  650
## 139 2020-05-29 5621  671
## 140 2020-05-30 5703  684
## 141 2020-05-31 5761  692
## 142 2020-06-01 5885  721
## 143 2020-06-02 6009  735
## 144 2020-06-03 6107  747
## 145 2020-06-04 6197  765
## 146 2020-06-05 6263  785
## 147 2020-06-06 6290  797
## 148 2020-06-07 6295  812
## 149 2020-06-08 6296  812
## 150 2020-06-09 6297  812
#Grafica para Baja California de datos absolutos con ggplot
ggplot(data = BC_BCS) +
  ggtitle("Casos diarios COVID-19 en Baja California (DGE)") +
  geom_line(mapping = aes(x=Fecha, y=BC))

#Grafica para Baja Californa sur de datos absolutos con ggplot
ggplot(data = BC_BCS) +
  ggtitle("Casos diarios COVID-19 en Baja California Sur (DGE)") +
  geom_line(mapping = aes(x=Fecha, y=BCS))

#Animacion grafica comparativa de frecuencias acumuladas
#por fechas para los estados de BC y BCS
#Codificados por color
ggplot(data=cBC_BCS) +
  geom_line(aes(Fecha, cBC, colour='Baja California')) +
  geom_line(aes(Fecha, cBCS, colour='Baja California sur')) +
  xlab('Fecha') +
  ylab('Casos diarios acumulados') +
  labs(colour="Estados") +
  transition_reveal(Fecha)

gBC_BCS <- ggplot(data=cBC_BCS)+
  geom_line(aes(Fecha, cBC, colour = 'Baja California')) +
  geom_line(aes(Fecha, cBCS, colour = 'Baja California Sur')) +
  xlab('Fecha') +
  ylab('Casos diarios acumulados') +
  labs(colour ='Estados')

gBC_BCS

ggplotly(gBC_BCS) 
#CONCLUSIONES
#Total  3 315 766 hab. BC aprox
#Densidad   44,1 hab/km²
#0.19% de pobladores infectados aprox

#Total  764 026 hab. BCS aprox
#Densidad   8,4 hab/km²
#0.106% de pobladores infectados

#Aparentemente las graficas parecen mostrar que el estado de BC
#esta mas critico que BCS, pero esto solo demuestra que estos dos
#no pueden ser comparables tomando solo las variables de casos confirmados
#pues, para dar una opinion certera sobre cual estado es mas critico
#se necesita saber los datos mostrados anteriormente (#de habitantes, etc)
#Y con esto podemos concluir que, apesar de que BCS tiene un menor 
#numero de confirmados, es el estado que se encuentra mas critico de los dos
#esto debbido a que a pesar de que su poblacion es considerablemente
#mas baja que la de BC, tienen un porcentaje de confirmados bastante parecidos
#lo que lo hace  mas critico que BC.

#La dos curvas parecen empezar a actuar simoidalmente
#y los datos de las tablas lo confirman
#haciendo notar que en los dos casos, en los ultimos dias ha
#habido un decremento de contagios diarios, 
#lo que demuestra que aparentemente estan en 
#la fase de senescencia, despues de haber crecido exponencialemente


#Datos oficiales tomados de: https://coronavirus.gob.mx/datos/#DownZCSV