Question 9.1

library(stats)
crime <- read.table("uscrime.txt", header = T)
head(crime)
##      M So   Ed  Po1  Po2    LF   M.F Pop   NW    U1  U2 Wealth Ineq     Prob
## 1 15.1  1  9.1  5.8  5.6 0.510  95.0  33 30.1 0.108 4.1   3940 26.1 0.084602
## 2 14.3  0 11.3 10.3  9.5 0.583 101.2  13 10.2 0.096 3.6   5570 19.4 0.029599
## 3 14.2  1  8.9  4.5  4.4 0.533  96.9  18 21.9 0.094 3.3   3180 25.0 0.083401
## 4 13.6  0 12.1 14.9 14.1 0.577  99.4 157  8.0 0.102 3.9   6730 16.7 0.015801
## 5 14.1  0 12.1 10.9 10.1 0.591  98.5  18  3.0 0.091 2.0   5780 17.4 0.041399
## 6 12.1  0 11.0 11.8 11.5 0.547  96.4  25  4.4 0.084 2.9   6890 12.6 0.034201
##      Time Crime
## 1 26.2011   791
## 2 25.2999  1635
## 3 24.3006   578
## 4 29.9012  1969
## 5 21.2998  1234
## 6 20.9995   682
set.seed(1)

Using PCA function from the stats library, we can use PCA on the predictors of our crime dataset. Based on the eigen values of our pca object, we can use an elbow plot to determine how many principle components to use our analysis.

crime.pca <- prcomp(crime[,1:15], center= T, scale = T)
crime.pca
## Standard deviations (1, .., p=15):
##  [1] 2.45335539 1.67387187 1.41596057 1.07805742 0.97892746 0.74377006
##  [7] 0.56729065 0.55443780 0.48492813 0.44708045 0.41914843 0.35803646
## [13] 0.26332811 0.24180109 0.06792764
## 
## Rotation (n x k) = (15 x 15):
##                PC1         PC2           PC3         PC4         PC5
## M      -0.30371194  0.06280357  0.1724199946 -0.02035537 -0.35832737
## So     -0.33088129 -0.15837219  0.0155433104  0.29247181 -0.12061130
## Ed      0.33962148  0.21461152  0.0677396249  0.07974375 -0.02442839
## Po1     0.30863412 -0.26981761  0.0506458161  0.33325059 -0.23527680
## Po2     0.31099285 -0.26396300  0.0530651173  0.35192809 -0.20473383
## LF      0.17617757  0.31943042  0.2715301768 -0.14326529 -0.39407588
## M.F     0.11638221  0.39434428 -0.2031621598  0.01048029 -0.57877443
## Pop     0.11307836 -0.46723456  0.0770210971 -0.03210513 -0.08317034
## NW     -0.29358647 -0.22801119  0.0788156621  0.23925971 -0.36079387
## U1      0.04050137  0.00807439 -0.6590290980 -0.18279096 -0.13136873
## U2      0.01812228 -0.27971336 -0.5785006293 -0.06889312 -0.13499487
## Wealth  0.37970331 -0.07718862  0.0100647664  0.11781752  0.01167683
## Ineq   -0.36579778 -0.02752240 -0.0002944563 -0.08066612 -0.21672823
## Prob   -0.25888661  0.15831708 -0.1176726436  0.49303389  0.16562829
## Time   -0.02062867 -0.38014836  0.2235664632 -0.54059002 -0.14764767
##                 PC6         PC7         PC8         PC9        PC10        PC11
## M      -0.449132706 -0.15707378 -0.55367691  0.15474793 -0.01443093  0.39446657
## So     -0.100500743  0.19649727  0.22734157 -0.65599872  0.06141452  0.23397868
## Ed     -0.008571367 -0.23943629 -0.14644678 -0.44326978  0.51887452 -0.11821954
## Po1    -0.095776709  0.08011735  0.04613156  0.19425472 -0.14320978 -0.13042001
## Po2    -0.119524780  0.09518288  0.03168720  0.19512072 -0.05929780 -0.13885912
## LF      0.504234275 -0.15931612  0.25513777  0.14393498  0.03077073  0.38532827
## M.F    -0.074501901  0.15548197 -0.05507254 -0.24378252 -0.35323357 -0.28029732
## Pop     0.547098563  0.09046187 -0.59078221 -0.20244830 -0.03970718  0.05849643
## NW      0.051219538 -0.31154195  0.20432828  0.18984178  0.49201966 -0.20695666
## U1      0.017385981 -0.17354115 -0.20206312  0.02069349  0.22765278 -0.17857891
## U2      0.048155286 -0.07526787  0.24369650  0.05576010 -0.04750100  0.47021842
## Wealth -0.154683104 -0.14859424  0.08630649 -0.23196695 -0.11219383  0.31955631
## Ineq    0.272027031  0.37483032  0.07184018 -0.02494384 -0.01390576 -0.18278697
## Prob    0.283535996 -0.56159383 -0.08598908 -0.05306898 -0.42530006 -0.08978385
## Time   -0.148203050 -0.44199877  0.19507812 -0.23551363 -0.29264326 -0.26363121
##               PC12        PC13        PC14          PC15
## M       0.16580189 -0.05142365  0.04901705  0.0051398012
## So     -0.05753357 -0.29368483 -0.29364512  0.0084369230
## Ed      0.47786536  0.19441949  0.03964277 -0.0280052040
## Po1     0.22611207 -0.18592255 -0.09490151 -0.6894155129
## Po2     0.19088461 -0.13454940 -0.08259642  0.7200270100
## LF      0.02705134 -0.27742957 -0.15385625  0.0336823193
## M.F    -0.23925913  0.31624667 -0.04125321  0.0097922075
## Pop    -0.18350385  0.12651689 -0.05326383  0.0001496323
## NW     -0.36671707  0.22901695  0.13227774 -0.0370783671
## U1     -0.09314897 -0.59039450 -0.02335942  0.0111359325
## U2      0.28440496  0.43292853 -0.03985736  0.0073618948
## Wealth -0.32172821 -0.14077972  0.70031840 -0.0025685109
## Ineq    0.43762828 -0.12181090  0.59279037  0.0177570357
## Prob    0.15567100 -0.03547596  0.04761011  0.0293376260
## Time    0.13536989 -0.05738113 -0.04488401  0.0376754405
summary(crime.pca)
## Importance of components:
##                           PC1    PC2    PC3     PC4     PC5     PC6     PC7
## Standard deviation     2.4534 1.6739 1.4160 1.07806 0.97893 0.74377 0.56729
## Proportion of Variance 0.4013 0.1868 0.1337 0.07748 0.06389 0.03688 0.02145
## Cumulative Proportion  0.4013 0.5880 0.7217 0.79920 0.86308 0.89996 0.92142
##                            PC8     PC9    PC10    PC11    PC12    PC13   PC14
## Standard deviation     0.55444 0.48493 0.44708 0.41915 0.35804 0.26333 0.2418
## Proportion of Variance 0.02049 0.01568 0.01333 0.01171 0.00855 0.00462 0.0039
## Cumulative Proportion  0.94191 0.95759 0.97091 0.98263 0.99117 0.99579 0.9997
##                           PC15
## Standard deviation     0.06793
## Proportion of Variance 0.00031
## Cumulative Proportion  1.00000
screeplot(crime.pca, type="lines",col="blue")

From our elbow plot, we can see that after 4 principle componenets, there starts to be less of an advantage of using more. So we’ll build a regression model with the first 4 principal components.

pc4 <- crime.pca$x[,1:4] #Using the first 4 columns of our principle components
PCAcrime <- as.data.frame(cbind(pc4, crime[,16])) #Combine our PC's with the response from our data set to create a data frame for linear regression.
PCAcrime
##           PC1         PC2         PC3         PC4   V5
## 1  -4.1992835 -1.09383120 -1.11907395  0.67178115  791
## 2   1.1726630  0.67701360 -0.05244634 -0.08350709 1635
## 3  -4.1737248  0.27677501 -0.37107658  0.37793995  578
## 4   3.8349617 -2.57690596  0.22793998  0.38262331 1969
## 5   1.8392999  1.33098564  1.27882805  0.71814305 1234
## 6   2.9072336 -0.33054213  0.53288181  1.22140635  682
## 7   0.2457752 -0.07362562 -0.90742064  1.13685873  963
## 8  -0.1301330 -1.35985577  0.59753132  1.44045387 1555
## 9  -3.6103169 -0.68621008  1.28372246  0.55171150  856
## 10  1.1672376  3.03207033  0.37984502 -0.28887026  705
## 11  2.5384879 -2.66771358  1.54424656 -0.87671210 1674
## 12  1.0065920 -0.06044849  1.18861346 -1.31261964  849
## 13  0.5161143  0.97485189  1.83351610 -1.59117618  511
## 14  0.4265556  1.85044812  1.02893477 -0.07789173  664
## 15 -3.3435299  0.05182823 -1.01358113  0.08840211  798
## 16 -3.0310689 -2.10295524 -1.82993161  0.52347187  946
## 17 -0.2262961  1.44939774 -1.37565975  0.28960865  539
## 18 -0.1127499 -0.39407030 -0.38836278  3.97985093  929
## 19  2.9195668 -1.58646124  0.97612613  0.78629766  750
## 20  2.2998485 -1.73396487 -2.82423222 -0.23281758 1225
## 21  1.1501667  0.13531015  0.28506743 -2.19770548  742
## 22 -5.6594827 -1.09730404  0.10043541 -0.05245484  439
## 23 -0.1011749 -0.57911362  0.71128354 -0.44394773 1216
## 24  1.3836281  1.95052341 -2.98485490 -0.35942784  968
## 25  0.2727756  2.63013778  1.83189535  0.05207518  523
## 26  4.0565577  1.17534729 -0.81690756  1.66990720 1993
## 27  0.8929694  0.79236692  1.26822542 -0.57575615  342
## 28  0.1514495  1.44873320  0.10857670 -0.51040146 1216
## 29  3.5592481 -4.76202163  0.75080576  0.64692974 1043
## 30 -4.1184576 -0.38073981  1.43463965  0.63330834  696
## 31 -0.6811731  1.66926027 -2.88645794 -1.30977099  373
## 32  1.7157269 -1.30836339 -0.55971313 -0.70557980  754
## 33 -1.8860627  0.59058174  1.43570145  0.18239089 1072
## 34  1.9526349  0.52395429 -0.75642216  0.44289927  923
## 35  1.5888864 -3.12998571 -1.73107199 -1.68604766  653
## 36  1.0709414 -1.65628271  0.79436888 -1.85172698 1272
## 37 -4.1101715  0.15766712  2.36296974 -0.56868399  831
## 38 -0.7254706  2.89263339 -0.36348376 -0.50612576  566
## 39 -3.3451254 -0.95045293  0.19551398 -0.27716645  826
## 40 -1.0644466 -1.05265304  0.82886286 -0.12042931 1151
## 41  1.4933989  1.86712106  1.81853582 -1.06112429  880
## 42 -0.6789284  1.83156328 -1.65435992  0.95121379  542
## 43 -2.4164258 -0.46701087  1.42808323  0.41149015  823
## 44  2.2978729  0.41865689 -0.64422929 -0.63462770 1030
## 45 -2.9245282 -1.19488555 -3.35139309 -1.48966984  455
## 46  1.7654525  0.95655926  0.98576138  1.05683769  508
## 47  2.3125056  2.56161119 -1.58223354  0.59863946  849
model1<- lm(V5 ~., data = PCAcrime) #Linear regression on our PC
summary(model1)
## 
## Call:
## lm(formula = V5 ~ ., data = PCAcrime)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -557.76 -210.91  -29.08  197.26  810.35 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   905.09      49.07  18.443  < 2e-16 ***
## PC1            65.22      20.22   3.225  0.00244 ** 
## PC2           -70.08      29.63  -2.365  0.02273 *  
## PC3            25.19      35.03   0.719  0.47602    
## PC4            69.45      46.01   1.509  0.13872    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 336.4 on 42 degrees of freedom
## Multiple R-squared:  0.3091, Adjusted R-squared:  0.2433 
## F-statistic: 4.698 on 4 and 42 DF,  p-value: 0.003178

Now that we have our model, we need to specify it in terms of our original variables and then compare it to our solution from 8.2. We’ll start by obtaining the PC coefficients from the summary of of our model and transform them back into coefficients for our orginal variables.

https://stackoverflow.com/questions/29783790/how-to-reverse-pca-in-prcomp-to-get-original-data

coeffs <- model1$coefficients[2:5]
coeffs
##       PC1       PC2       PC3       PC4 
##  65.21593 -70.08312  25.19408  69.44603
inter <- model1$coefficients[1]

eigvectors <-crime.pca$rotation[,1:4] #Need to multiply our pca coefficients to the matrix of variable loadings(i.e, a matrix whose coluymns contain the eigen vectors)

trans.coeff <- eigvectors %*% coeffs

trans.coeff #coefficients back into our original variables
##              [,1]
## M      -21.277963
## So      10.223091
## Ed      14.352610
## Po1     63.456426
## Po2     64.557974
## LF     -14.005349
## M.F    -24.437572
## Pop     39.830667
## NW      15.434545
## U1     -27.222281
## U2       1.425902
## Wealth  38.607855
## Ineq   -27.536348
## Prob     3.295707
## Time    -6.612616

Question 10.1a

Using the same data as 9.1 and using tree function from tree pacakge to fit the data.

library(tree)
head(crime)
##      M So   Ed  Po1  Po2    LF   M.F Pop   NW    U1  U2 Wealth Ineq     Prob
## 1 15.1  1  9.1  5.8  5.6 0.510  95.0  33 30.1 0.108 4.1   3940 26.1 0.084602
## 2 14.3  0 11.3 10.3  9.5 0.583 101.2  13 10.2 0.096 3.6   5570 19.4 0.029599
## 3 14.2  1  8.9  4.5  4.4 0.533  96.9  18 21.9 0.094 3.3   3180 25.0 0.083401
## 4 13.6  0 12.1 14.9 14.1 0.577  99.4 157  8.0 0.102 3.9   6730 16.7 0.015801
## 5 14.1  0 12.1 10.9 10.1 0.591  98.5  18  3.0 0.091 2.0   5780 17.4 0.041399
## 6 12.1  0 11.0 11.8 11.5 0.547  96.4  25  4.4 0.084 2.9   6890 12.6 0.034201
##      Time Crime
## 1 26.2011   791
## 2 25.2999  1635
## 3 24.3006   578
## 4 29.9012  1969
## 5 21.2998  1234
## 6 20.9995   682
treemodel <- tree(Crime~., data = crime)
summary(treemodel)
## 
## Regression tree:
## tree(formula = Crime ~ ., data = crime)
## Variables actually used in tree construction:
## [1] "Po1" "Pop" "LF"  "NW" 
## Number of terminal nodes:  7 
## Residual mean deviance:  47390 = 1896000 / 40 
## Distribution of residuals:
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -573.900  -98.300   -1.545    0.000  110.600  490.100
plot(treemodel)
text(treemodel)

From using the tree function and plotting the tree with text, we can observe that our function found the best 4 predictors to branch from were Po1, Pop, LF, and NW.

Question 10.1b

Using the same data as 9.1 and using tree function from tree pacakge to fit the data. So since our regression tree model found 4 predictors to use, we will set the same

library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
forestmodel <- randomForest(Crime~., data=crime, mtry = 4)
forestmodel
## 
## Call:
##  randomForest(formula = Crime ~ ., data = crime, mtry = 4) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 4
## 
##           Mean of squared residuals: 85324.85
##                     % Var explained: 41.72
summary(forestmodel)
##                 Length Class  Mode     
## call              4    -none- call     
## type              1    -none- character
## predicted        47    -none- numeric  
## mse             500    -none- numeric  
## rsq             500    -none- numeric  
## oob.times        47    -none- numeric  
## importance       15    -none- numeric  
## importanceSD      0    -none- NULL     
## localImportance   0    -none- NULL     
## proximity         0    -none- NULL     
## ntree             1    -none- numeric  
## mtry              1    -none- numeric  
## forest           11    -none- list     
## coefs             0    -none- NULL     
## y                47    -none- numeric  
## test              0    -none- NULL     
## inbag             0    -none- NULL     
## terms             3    terms  call

Question 10.2

A situation where logistic regression could be useful in business analytics when responses or outcomes need to be predicted as probabilities. For example, predicting the probability a customer will stop using a specific companies services based on a set of predictors. Predictors that could be used can be things like the length of time the a particular individual has been a customer before leaving or the customer feedback on the company.

Question 10.3

german <- read.table("germancredit.txt")
head(german)
##    V1 V2  V3  V4   V5  V6  V7 V8  V9  V10 V11  V12 V13  V14  V15 V16  V17 V18
## 1 A11  6 A34 A43 1169 A65 A75  4 A93 A101   4 A121  67 A143 A152   2 A173   1
## 2 A12 48 A32 A43 5951 A61 A73  2 A92 A101   2 A121  22 A143 A152   1 A173   1
## 3 A14 12 A34 A46 2096 A61 A74  2 A93 A101   3 A121  49 A143 A152   1 A172   2
## 4 A11 42 A32 A42 7882 A61 A74  2 A93 A103   4 A122  45 A143 A153   1 A173   2
## 5 A11 24 A33 A40 4870 A61 A73  3 A93 A101   4 A124  53 A143 A153   2 A173   2
## 6 A14 36 A32 A46 9055 A65 A73  2 A93 A101   4 A124  35 A143 A153   1 A172   2
##    V19  V20 V21
## 1 A192 A201   1
## 2 A191 A201   2
## 3 A191 A201   1
## 4 A191 A201   1
## 5 A191 A201   2
## 6 A192 A201   1

Binomial family in glm only recognises 0’s and 1’s so we need to convert our responses to all binary values.

german$V21[german$V21==1]<-0
german$V21[german$V21==2]<-1

Next, we’ll split the data into training, test, and validation sets. and create our model using the glm function in stats

traindata <- sample(1:nrow(german), size = round(nrow(german)*0.7), replace = F)
train <- german[traindata,]
valid <- german[-traindata,]

model3<- glm(V21~., family = binomial(link = "logit"), data = train)

summary(model3)
## 
## Call:
## glm(formula = V21 ~ ., family = binomial(link = "logit"), data = train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2561  -0.6816  -0.3395   0.6843   2.7446  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.313e+00  1.353e+00   0.970 0.331874    
## V1A12       -5.533e-01  2.681e-01  -2.063 0.039065 *  
## V1A13       -1.250e+00  4.588e-01  -2.724 0.006443 ** 
## V1A14       -1.939e+00  2.910e-01  -6.663 2.68e-11 ***
## V2           3.220e-02  1.134e-02   2.838 0.004534 ** 
## V3A31       -1.778e-01  6.606e-01  -0.269 0.787833    
## V3A32       -1.036e+00  5.294e-01  -1.957 0.050334 .  
## V3A33       -1.414e+00  5.722e-01  -2.471 0.013472 *  
## V3A34       -2.126e+00  5.534e-01  -3.842 0.000122 ***
## V4A41       -1.716e+00  4.663e-01  -3.679 0.000234 ***
## V4A410      -2.691e+00  1.228e+00  -2.191 0.028450 *  
## V4A42       -8.837e-01  3.273e-01  -2.700 0.006933 ** 
## V4A43       -9.902e-01  2.978e-01  -3.325 0.000883 ***
## V4A44       -1.459e+01  5.169e+02  -0.028 0.977486    
## V4A45        5.895e-02  7.310e-01   0.081 0.935721    
## V4A46        1.514e-01  4.622e-01   0.327 0.743319    
## V4A48       -1.021e+00  1.243e+00  -0.822 0.411297    
## V4A49       -1.041e+00  4.088e-01  -2.547 0.010860 *  
## V5           8.776e-05  5.451e-05   1.610 0.107394    
## V6A62       -1.124e-01  3.457e-01  -0.325 0.745083    
## V6A63       -8.989e-01  5.808e-01  -1.548 0.121673    
## V6A64       -1.629e+00  6.544e-01  -2.489 0.012825 *  
## V6A65       -8.437e-01  3.217e-01  -2.622 0.008733 ** 
## V7A72        1.547e-01  5.084e-01   0.304 0.760958    
## V7A73       -2.484e-01  4.913e-01  -0.506 0.613124    
## V7A74       -7.885e-01  5.416e-01  -1.456 0.145451    
## V7A75       -5.122e-02  4.857e-01  -0.105 0.916011    
## V8           1.591e-01  1.075e-01   1.480 0.138851    
## V9A92       -2.794e-02  5.027e-01  -0.056 0.955675    
## V9A93       -5.497e-01  4.966e-01  -1.107 0.268363    
## V9A94       -1.947e-01  5.966e-01  -0.326 0.744158    
## V10A102      3.787e-01  5.209e-01   0.727 0.467216    
## V10A103     -7.809e-01  5.592e-01  -1.396 0.162605    
## V11          4.949e-02  1.072e-01   0.462 0.644195    
## V12A122      1.985e-01  3.114e-01   0.638 0.523745    
## V12A123      2.414e-01  2.927e-01   0.825 0.409634    
## V12A124      7.392e-01  5.473e-01   1.351 0.176835    
## V13         -8.123e-03  1.142e-02  -0.711 0.476896    
## V14A142      6.104e-02  4.802e-01   0.127 0.898841    
## V14A143     -5.777e-01  2.960e-01  -1.952 0.050992 .  
## V15A152     -4.780e-01  2.910e-01  -1.643 0.100432    
## V15A153     -8.604e-01  5.951e-01  -1.446 0.148202    
## V16          3.004e-01  2.275e-01   1.320 0.186682    
## V17A172      3.192e-01  9.251e-01   0.345 0.730100    
## V17A173      4.684e-01  8.962e-01   0.523 0.601266    
## V17A174      5.084e-01  8.905e-01   0.571 0.568071    
## V18         -2.373e-02  2.972e-01  -0.080 0.936362    
## V19A192     -3.457e-01  2.519e-01  -1.372 0.169968    
## V20A202     -1.431e+00  8.283e-01  -1.727 0.084117 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 860.23  on 699  degrees of freedom
## Residual deviance: 604.33  on 651  degrees of freedom
## AIC: 702.33
## 
## Number of Fisher Scoring iterations: 14

Using the summary, we can see that many predictors are not significant due to their p values. We will remake the model with only the predictors that are significant.

model4<- glm(V21 ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8+ V9 + V10 + V12+ V14 + V15 + V16 +V20, family = binomial(link = "logit"), data = train)
summary(model4)
## 
## Call:
## glm(formula = V21 ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + 
##     V10 + V12 + V14 + V15 + V16 + V20, family = binomial(link = "logit"), 
##     data = train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2230  -0.6718  -0.3487   0.6691   2.7023  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.463e+00  1.010e+00   1.449 0.147432    
## V1A12       -5.589e-01  2.651e-01  -2.108 0.034994 *  
## V1A13       -1.309e+00  4.521e-01  -2.895 0.003793 ** 
## V1A14       -1.938e+00  2.893e-01  -6.701 2.07e-11 ***
## V2           3.563e-02  1.106e-02   3.222 0.001274 ** 
## V3A31       -1.938e-01  6.546e-01  -0.296 0.767129    
## V3A32       -1.068e+00  5.260e-01  -2.030 0.042338 *  
## V3A33       -1.415e+00  5.698e-01  -2.483 0.013031 *  
## V3A34       -2.129e+00  5.501e-01  -3.871 0.000108 ***
## V4A41       -1.723e+00  4.605e-01  -3.741 0.000183 ***
## V4A410      -2.700e+00  1.187e+00  -2.275 0.022916 *  
## V4A42       -8.325e-01  3.214e-01  -2.591 0.009581 ** 
## V4A43       -9.585e-01  2.950e-01  -3.249 0.001158 ** 
## V4A44       -1.450e+01  5.203e+02  -0.028 0.977772    
## V4A45        5.475e-02  7.225e-01   0.076 0.939598    
## V4A46        1.066e-01  4.569e-01   0.233 0.815533    
## V4A48       -8.769e-01  1.226e+00  -0.715 0.474358    
## V4A49       -1.122e+00  4.047e-01  -2.772 0.005572 ** 
## V5           6.777e-05  5.102e-05   1.328 0.184075    
## V6A62       -1.059e-01  3.424e-01  -0.309 0.757161    
## V6A63       -9.474e-01  5.722e-01  -1.656 0.097765 .  
## V6A64       -1.648e+00  6.520e-01  -2.528 0.011459 *  
## V6A65       -8.807e-01  3.179e-01  -2.770 0.005604 ** 
## V7A72        2.685e-01  4.343e-01   0.618 0.536406    
## V7A73       -1.200e-01  4.095e-01  -0.293 0.769420    
## V7A74       -6.503e-01  4.705e-01  -1.382 0.166937    
## V7A75        3.478e-02  4.176e-01   0.083 0.933624    
## V8           1.504e-01  1.039e-01   1.448 0.147574    
## V9A92       -3.697e-02  4.905e-01  -0.075 0.939930    
## V9A93       -5.790e-01  4.824e-01  -1.200 0.230056    
## V9A94       -2.081e-01  5.838e-01  -0.356 0.721511    
## V10A102      4.683e-01  5.215e-01   0.898 0.369262    
## V10A103     -7.702e-01  5.527e-01  -1.393 0.163477    
## V12A122      2.170e-01  3.073e-01   0.706 0.480137    
## V12A123      2.768e-01  2.857e-01   0.969 0.332533    
## V12A124      6.642e-01  5.384e-01   1.234 0.217372    
## V14A142      8.685e-02  4.781e-01   0.182 0.855862    
## V14A143     -5.436e-01  2.939e-01  -1.850 0.064348 .  
## V15A152     -5.341e-01  2.752e-01  -1.941 0.052286 .  
## V15A153     -8.543e-01  5.824e-01  -1.467 0.142368    
## V16          2.602e-01  2.203e-01   1.181 0.237630    
## V20A202     -1.418e+00  8.251e-01  -1.718 0.085710 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 860.23  on 699  degrees of freedom
## Residual deviance: 607.42  on 658  degrees of freedom
## AIC: 691.42
## 
## Number of Fisher Scoring iterations: 14