```
Model5 = glmer(GatesScore ~ zAge + zWordAttack + zKnowIt + zNarrativity + zWordConcreteness + zRefCohesion + zDeepCohesion + zArousal + (1|ID) ,data = Brussels3, family = binomial)
summary(Model5)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## GatesScore ~ zAge + zWordAttack + zKnowIt + zNarrativity + zWordConcreteness +
## zRefCohesion + zDeepCohesion + zArousal + (1 | ID)
## Data: Brussels3
##
## AIC BIC logLik deviance df.resid
## 7448.7 7518.1 -3714.4 7428.7 7574
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -6.3799 -0.5961 0.3290 0.5390 2.8345
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 0.7341 0.8568
## Number of obs: 7584, groups: ID, 158
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.19515 0.07625 15.673 < 2e-16 ***
## zAge 0.36317 0.07920 4.585 4.53e-06 ***
## zWordAttack 0.74632 0.08213 9.087 < 2e-16 ***
## zKnowIt 0.49479 0.07874 6.284 3.30e-10 ***
## zNarrativity 0.22444 0.04393 5.109 3.23e-07 ***
## zWordConcreteness -0.29040 0.04064 -7.145 8.99e-13 ***
## zRefCohesion 0.11575 0.04100 2.823 0.00476 **
## zDeepCohesion 0.22681 0.03279 6.916 4.64e-12 ***
## zArousal 0.29129 0.03970 7.337 2.18e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) zAge zWrdAt zKnwIt zNrrtv zWrdCn zRfChs zDpChs
## zAge 0.036
## zWordAttack 0.050 0.283
## zKnowIt 0.045 0.042 -0.253
## zNarrativty 0.028 0.007 0.014 0.010
## zWrdCncrtns -0.038 -0.009 -0.020 -0.013 0.454
## zRefCohesin 0.017 0.003 0.007 0.005 -0.565 -0.534
## zDeepCohesn 0.033 0.010 0.019 0.014 -0.074 0.014 -0.195
## zArousal 0.041 0.009 0.020 0.014 0.179 -0.395 0.282 -0.367
Model6 = glmer(GatesScore ~ zAge + zWordAttack + zKnowIt + zWordConcreteness + zRefCohesion + zDeepCohesion + zArousal*zNarrativity + (1|ID) ,data = Brussels3, family = binomial)
summary(Model6)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: GatesScore ~ zAge + zWordAttack + zKnowIt + zWordConcreteness +
## zRefCohesion + zDeepCohesion + zArousal * zNarrativity + (1 | ID)
## Data: Brussels3
##
## AIC BIC logLik deviance df.resid
## 7449.6 7525.9 -3713.8 7427.6 7573
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -6.2169 -0.5960 0.3271 0.5399 2.9079
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 0.7348 0.8572
## Number of obs: 7584, groups: ID, 158
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.17716 0.07810 15.072 < 2e-16 ***
## zAge 0.36337 0.07924 4.586 4.52e-06 ***
## zWordAttack 0.74657 0.08217 9.086 < 2e-16 ***
## zKnowIt 0.49502 0.07878 6.284 3.30e-10 ***
## zWordConcreteness -0.26600 0.04668 -5.698 1.21e-08 ***
## zRefCohesion 0.11007 0.04136 2.662 0.00778 **
## zDeepCohesion 0.23787 0.03444 6.906 4.97e-12 ***
## zArousal 0.28987 0.03963 7.314 2.59e-13 ***
## zNarrativity 0.24083 0.04648 5.181 2.21e-07 ***
## zArousal:zNarrativity -0.04016 0.03785 -1.061 0.28868
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) zAge zWrdAt zKnwIt zWrdCn zRfChs zDpChs zArosl zNrrtv
## zAge 0.034
## zWordAttack 0.048 0.283
## zKnowIt 0.044 0.042 -0.253
## zWrdCncrtns -0.137 -0.007 -0.015 -0.010
## zRefCohesin 0.044 0.003 0.007 0.004 -0.524
## zDeepCohesn -0.034 0.010 0.020 0.014 0.162 -0.223
## zArousal 0.045 0.009 0.020 0.014 -0.357 0.285 -0.362
## zNarrativty -0.047 0.007 0.015 0.010 0.540 -0.573 0.035 0.152
## zArsl:zNrrt 0.215 -0.003 -0.004 -0.004 -0.490 0.128 -0.302 0.030 -0.335
Model7 = glmer(GatesScore ~ zArousal*zNarrativity + (1|ID) ,data = Brussels3, family = binomial)
summary(Model7)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: GatesScore ~ zArousal * zNarrativity + (1 | ID)
## Data: Brussels3
##
## AIC BIC logLik deviance df.resid
## 7651.7 7686.4 -3820.9 7641.7 7579
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -5.8360 -0.6178 0.3498 0.5427 2.6838
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 1.707 1.307
## Number of obs: 7584, groups: ID, 158
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.15674 0.11024 10.49 <2e-16 ***
## zArousal 0.30413 0.03476 8.75 <2e-16 ***
## zNarrativity 0.41860 0.03463 12.09 <2e-16 ***
## zArousal:zNarrativity -0.06886 0.03102 -2.22 0.0264 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) zArosl zNrrtv
## zArousal -0.008
## zNarrativty 0.011 0.520
## zArsl:zNrrt 0.118 -0.310 -0.246
plot(effect("zArousal:zNarrativity", Model7), multiline = TRUE)
vif(Model7)
## zArousal zNarrativity zArousal:zNarrativity
## 1.440660 1.386241 1.118735
1/(vif(Model7))
## zArousal zNarrativity zArousal:zNarrativity
## 0.6941263 0.7213752 0.8938666
VIF= Variance inflation factor, which is the reciprocal of tolerence Read the bottom table for tolerence values from Model 7