suppressPackageStartupMessages({
library(magrittr)
library(clusterProfiler)
library(SummarizedExperiment)
library(GenomicSignatures)
library(AnnotationDbi)
library(org.Hs.eg.db)
})
clusterProfiler::enrichr for overrepresentation analysis (ORA) and clusterProfiler::GSEA
for gene set enrichment analysis. ORA takes genes with a significant expression
change (it doesn’t contain all the genes), while GSEA take the full gene vector
ordered by direction.
‘When to subset genes’ is still an on-going issue. Currently, I’m selecting gene sets for downstream annotation, and subset training data to common genes before row-normalization. But it might be better to keep all the genes longer, so I can apply different annotation database without repeating pre-processing.
PCAclusters includes avgLoading calcualted from 13,570 PCs (677 refine.bio +
10 PC1s from neg.control + TCGA-COAD training dataset) using hierarchical clustering
(Spearman correlation + ward.D agglomeration).
dat_dir <- "~/data2/Genomic_Super_Signature/refinebio/methods/5_Hierarchical_Clustering_with_SpikeInTCGA"
PCclusters <- readRDS(file.path(dat_dir, "PCclusters.rds"))
Based on validation in refinebio/methods/5_Hierarchical_Clustering_with_SpikeInTCGA.Rmd,
Cl4935_263 is very highly correlated with one of the top 8 PCs of TCGA-BRCA dataset.
which(PCclusters$cluster == 263)
## ERP016798.PC2 SRP191514.PC2
## 322 13302
PCcluster_263 contains two PCs, ERP016798.PC2 and SRP191514.PC2.
mesh_terms <- readRDS("~/data2/Genomic_Super_Signature/refinebio/data/MeSH_terms_889refinebio.rds")
mesh_terms_sub <- mesh_terms[which(mesh_terms$identifier %in% c("ERP016798", "SRP191514")),]
table(mesh_terms_sub$name)
##
## Breast Breast Neoplasms Cell Proliferation
## 1 2 1
## Control Groups Exercise Exercise Therapy
## 1 1 1
## Female Humans Preoperative Care
## 1 2 1
## RNA-Seq Sedentary Behavior Transcriptome
## 1 1 1
## Transcriptome Profiling Utah Whole Exome Sequencing
## 1 1 1
ERP016798 is RNA-Seq was used to profile the transcriptomes of 63 breast cancer patient tumour samples (51 x ER+, 12 x triple negative) collected from the Utah Breast Cancer Study (UBCS).
SRP191514 is RNAseq analysis of primary breast cancer samples Overall design: Inactive women with newly diagnosed breast cancer were randomized to an exercise intervention or mind-body control group, and participated in the study between enrollment and surgery (mean 29.3 days). Tumor were collected at baseline and surgery..
For ORA, we need a vector of gene IDs. For GSEA, we need a ranked list of genes. Gene list for GSEA should meet three criteria: 1) numeric vector, 2) every number is named by the corresponding gene ID, and 3) sorted in decreasing order.
al <- PCclusters$avgLoading[,263] ## feature 1: numeric vector
names(al) <- AnnotationDbi::mapIds(org.Hs.eg.db, keys=names(al),
column='ENTREZID', keytype='SYMBOL') ## feature 2: named vector
## 'select()' returned 1:many mapping between keys and columns
al <- sort(al, decreasing = TRUE) ## feature 3: decreasing order
geneList <- al
gene <- names(geneList)[abs(geneList) > mean(abs(geneList))]
keyword <- "breast"
wpgmtfile <- "~/data2/Genomic_Super_Signature/GSEA/data/wikipathways-20200510-gmt-Homo_sapiens.gmt"
wp2gene <- read.gmt(wpgmtfile)
wp2gene <- wp2gene %>% tidyr::separate(term, c("name","version","wpid","org"), "%")
wpid2gene <- wp2gene %>% dplyr::select(wpid, gene) #TERM2GENE
wpid2name <- wp2gene %>% dplyr::select(wpid, name) #TERM2NAME
wp <- enricher(gene, TERM2GENE = wpid2gene, TERM2NAME = wpid2name)
head(wp)
## ID Description GeneRatio BgRatio
## WP3937 WP3937 Microglia Pathogen Phagocytosis Pathway 26/1582 40/7368
## WP179 WP179 Cell Cycle 55/1582 122/7368
## WP2446 WP2446 Retinoblastoma Gene in Cancer 43/1582 88/7368
## WP3929 WP3929 Chemokine signaling pathway 64/1582 165/7368
## WP2328 WP2328 Allograft Rejection 41/1582 90/7368
## WP619 WP619 Type II interferon signaling (IFNG) 22/1582 37/7368
## pvalue p.adjust qvalue
## WP3937 3.451813e-09 9.318682e-07 7.498803e-07
## WP179 3.720033e-09 9.318682e-07 7.498803e-07
## WP2446 9.860562e-09 1.646714e-06 1.325121e-06
## WP3929 2.410516e-07 2.557582e-05 2.058103e-05
## WP2328 2.552477e-07 2.557582e-05 2.058103e-05
## WP619 5.593955e-07 4.670952e-05 3.758745e-05
## geneID
## WP3937 10451/5777/7305/6850/27040/10095/3684/5880/7409/4689/1535/5336/1536/5294/3071/4688/3055/653361/2207/5293/4067/712/3689/713/714/54210
## WP179 10912/7043/6500/7534/10971/472/7042/5591/5885/4176/9134/2810/7027/8243/5111/6502/894/11200/10459/10926/1875/4172/4175/5933/3066/1032/4173/994/8317/4171/891/4174/1871/995/983/9088/9700/1869/23594/890/1111/1021/5347/8318/990/9232/1870/4998/699/9133/7272/993/991/1029/898
## WP2446 5591/8819/10592/580/4176/9134/7027/8243/3148/2956/1633/5111/6502/1786/5947/5984/6839/4172/10733/4175/4173/994/8317/891/7153/1871/983/3925/1869/890/81620/6241/1111/1021/7298/24137/8318/1870/4998/9133/7272/993/898
## WP3929 9547/10451/25759/56477/115/111/112/57580/3551/2791/4893/9844/6773/2185/5330/7852/5594/6654/109/10235/1445/4793/26230/409/2870/7454/59345/5880/23533/7409/1794/6351/53358/5294/113/3055/653361/6366/58191/6772/5293/2268/4067/6376/1230/5579/6367/1236/5613/3702/6369/6356/6364/6352/3718/2833/2921/10663/6374/2786/3627/4283/6373/10563
## WP2328 730/727/836/1459/7422/3108/10376/5156/3122/3115/3107/3133/3127/3123/3119/3111/3109/3553/3106/6366/6772/3117/3135/942/958/3134/712/713/714/3118/3105/717/50943/10578/5551/3559/3112/3002/4283/6373/10563
## WP619 4843/9021/3433/6773/5967/3659/3459/4261/6688/3394/3553/3106/1536/6772/5698/3383/2633/6890/8651/3662/3627/4283
## Count
## WP3937 26
## WP179 55
## WP2446 43
## WP3929 64
## WP2328 41
## WP619 22
# DT::datatable(as.data.frame(wp)[c("ID", "Description", "GeneRatio", "BgRatio", "p.adjust", "Count")])
wp2 <- GSEA(geneList, TERM2GENE = wpid2gene, TERM2NAME = wpid2name, verbose = FALSE)
head(wp2)
## ID Description
## WP2446 WP2446 Retinoblastoma Gene in Cancer
## WP2328 WP2328 Allograft Rejection
## WP179 WP179 Cell Cycle
## WP4536 WP4536 Genes related to primary cilium development (based on CRISPR)
## WP2877 WP2877 Vitamin D Receptor Pathway
## WP4754 WP4754 IL-18 signaling pathway
## setSize enrichmentScore NES pvalue p.adjust qvalues
## WP2446 82 -0.6256003 -2.060696 5.427469e-08 1.776214e-05 1.552518e-05
## WP2328 58 -0.6819629 -2.114797 7.929527e-08 1.776214e-05 1.552518e-05
## WP179 115 -0.5591999 -1.926600 4.398817e-07 6.159687e-05 5.383937e-05
## WP4536 73 0.5936978 2.244666 5.499721e-07 6.159687e-05 5.383937e-05
## WP2877 110 -0.5475147 -1.877940 1.863276e-06 1.669496e-04 1.459240e-04
## WP4754 198 -0.4735258 -1.737448 6.748606e-06 5.038959e-04 4.404353e-04
## rank leading_edge
## WP2446 1918 tags=57%, list=25%, signal=44%
## WP2328 1231 tags=55%, list=16%, signal=47%
## WP179 1759 tags=45%, list=23%, signal=36%
## WP4536 1099 tags=42%, list=14%, signal=37%
## WP2877 1394 tags=43%, list=18%, signal=36%
## WP4754 1912 tags=40%, list=25%, signal=31%
## core_enrichment
## WP2446 2189/10714/5983/6117/5591/8819/10592/580/4176/9134/7027/8243/3148/2956/1633/5111/6502/1786/5947/5984/6839/4172/10733/4175/4173/994/8317/891/7153/1871/983/3925/1869/890/81620/6241/1111/1021/7298/24137/8318/1870/4998/9133/7272/993/898
## WP2328 3115/3107/3133/3127/3123/3119/3111/3109/3553/3106/6366/6772/3117/3135/942/958/3134/712/713/714/3118/3105/717/50943/10578/5551/3559/3112/3002/4283/6373/10563
## WP179 7534/10971/472/7042/5591/5885/4176/9134/2810/7027/8243/5111/6502/894/11200/10459/10926/1875/4172/4175/5933/3066/1032/4173/994/8317/4171/891/4174/1871/995/983/9088/9700/1869/23594/890/1111/1021/5347/8318/990/9232/1870/4998/699/9133/7272/993/991/1029/898
## WP4536 123016/79600/8100/9742/585/79659/56912/403/79867/51626/129880/54585/80199/91147/112752/150737/23059/582/57728/28981/57545/583/11116/255758/26146/80173/55112/23288/54903/27241/84455
## WP2877 5734/6275/892/219855/5467/3965/3400/3663/3684/6546/240/3123/57167/215/3091/3394/10125/929/1032/7128/7292/3117/50486/639/958/25928/3294/1305/29785/3118/6696/8600/1946/54210/6273/3662/6280/1594/5588/6819/1029/838/6279/875/898/5653/768
## WP4754 22821/860/7076/29781/5905/9021/7114/56886/836/2896/58/55294/581/7422/4314/23/5594/1674/10452/2920/4791/5743/4615/8809/8078/54205/567/6004/3659/8985/274/7185/6347/3654/5337/7052/8837/3162/3553/10062/6351/84823/637/7128/2023/7913/4688/653361/58191/1051/3757/3606/10068/5578/3569/650/8698/5579/330/3925/6696/3383/8600/3801/4794/890/4050/5778/6364/3932/6352/9133/2921/4318/321/7941/3559/4312/6362
# DT::datatable(as.data.frame(wp2))
cell_markers <- vroom::vroom('http://bio-bigdata.hrbmu.edu.cn/CellMarker/download/Human_cell_markers.txt') %>%
tidyr::unite("cellMarker", tissueType, cancerType, cellName, sep=", ") %>%
dplyr::select(cellMarker, geneID) %>%
dplyr::mutate(geneID = strsplit(geneID, ', '))
## Rows: 2,868
## Columns: 15
## Delimiter: "\t"
## chr [15]: speciesType, tissueType, UberonOntologyID, cancerType, cellType, cellName, CellO...
##
## Use `spec()` to retrieve the guessed column specification
## Pass a specification to the `col_types` argument to quiet this message
cm <- enricher(gene, TERM2GENE = cell_markers, minGSSize = 1)
cm <- as.data.frame(cm)
rownames(cm) <- NULL
cm2 <- GSEA(geneList, TERM2GENE = cell_markers, verbose = FALSE)
## Warning in fgseaMultilevel(...): For some pathways, in reality P-values are less
## than 1e-10. You can set the `eps` argument to zero for better estimation.
cm2 <- as.data.frame(cm2)
rownames(cm2) <- NULL
DT::datatable(cm[c("ID", "Description", "GeneRatio", "BgRatio", "p.adjust", "Count")])
grep(keyword, cm$Description, ignore.case = TRUE)
## [1] 83
grep(keyword, cm2$Description, ignore.case = TRUE)
## integer(0)
library(msigdbr)
m_c2 <- msigdbr(species = "Homo sapiens", category = "C2") %>%
dplyr::select(gs_name, entrez_gene)
head(m_c2, 3)
## # A tibble: 3 x 2
## gs_name entrez_gene
## <chr> <int>
## 1 ABBUD_LIF_SIGNALING_1_DN 79026
## 2 ABBUD_LIF_SIGNALING_1_DN 91369
## 3 ABBUD_LIF_SIGNALING_1_DN 8289
msC2 <- enricher(gene, TERM2GENE=m_c2)
msC2_2 <- GSEA(geneList, TERM2GENE = m_c2)
## preparing geneSet collections...
## GSEA analysis...
## Warning in fgseaMultilevel(...): For some pathways, in reality P-values are less
## than 1e-10. You can set the `eps` argument to zero for better estimation.
## leading edge analysis...
## done...
head(msC2)
## ID
## FARMER_BREAST_CANCER_BASAL_VS_LULMINAL FARMER_BREAST_CANCER_BASAL_VS_LULMINAL
## POOLA_INVASIVE_BREAST_CANCER_UP POOLA_INVASIVE_BREAST_CANCER_UP
## SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6 SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6
## DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP
## KOBAYASHI_EGFR_SIGNALING_24HR_DN KOBAYASHI_EGFR_SIGNALING_24HR_DN
## VANTVEER_BREAST_CANCER_ESR1_DN VANTVEER_BREAST_CANCER_ESR1_DN
## Description
## FARMER_BREAST_CANCER_BASAL_VS_LULMINAL FARMER_BREAST_CANCER_BASAL_VS_LULMINAL
## POOLA_INVASIVE_BREAST_CANCER_UP POOLA_INVASIVE_BREAST_CANCER_UP
## SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6 SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6
## DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP
## KOBAYASHI_EGFR_SIGNALING_24HR_DN KOBAYASHI_EGFR_SIGNALING_24HR_DN
## VANTVEER_BREAST_CANCER_ESR1_DN VANTVEER_BREAST_CANCER_ESR1_DN
## GeneRatio BgRatio pvalue
## FARMER_BREAST_CANCER_BASAL_VS_LULMINAL 190/2633 328/20738 1.155881e-85
## POOLA_INVASIVE_BREAST_CANCER_UP 173/2633 292/20738 3.754383e-80
## SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6 207/2633 459/20738 2.040067e-67
## DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP 168/2633 323/20738 3.521104e-66
## KOBAYASHI_EGFR_SIGNALING_24HR_DN 145/2633 252/20738 7.268922e-65
## VANTVEER_BREAST_CANCER_ESR1_DN 148/2633 269/20738 1.238764e-62
## p.adjust qvalue
## FARMER_BREAST_CANCER_BASAL_VS_LULMINAL 5.374845e-82 2.227808e-82
## POOLA_INVASIVE_BREAST_CANCER_UP 8.728940e-77 3.618039e-77
## SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6 3.162104e-64 1.310653e-64
## DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP 4.093283e-63 1.696616e-63
## KOBAYASHI_EGFR_SIGNALING_24HR_DN 6.760098e-62 2.801978e-62
## VANTVEER_BREAST_CANCER_ESR1_DN 9.600419e-60 3.979257e-60
## geneID
## FARMER_BREAST_CANCER_BASAL_VS_LULMINAL 7031/7033/57758/25803/1555/80736/9/10753/2674/7802/771/65055/8416/22977/5733/2330/4602/2593/18/9518/6337/10560/27289/25800/9254/540/2947/36/55733/11226/8800/8821/374/10610/81031/23030/23171/10916/51466/388/3572/80310/3875/2203/55614/10512/10140/51809/7357/4329/3667/596/64087/4832/23194/7466/55568/54681/7043/3315/6405/11059/5087/54894/9135/51097/200734/5914/10455/9368/2530/1728/253782/7108/5002/2194/6720/3487/51474/3856/10965/83752/7020/51181/3693/2954/582/8490/57728/11163/23600/644/4116/23198/86/55144/22929/22978/5500/9474/892/9444/4690/6502/1054/8898/60487/1736/57162/4783/8833/6632/10549/23229/6347/5621/55240/84617/4478/9957/55689/3066/10479/6251/4904/4781/10797/29967/9654/123/2744/23683/1051/1466/4174/29078/4067/6566/1871/6376/688/1183/6491/4651/6285/262/133/4281/3930/2171/8543/23590/6648/5613/5214/83439/23321/23432/1111/23650/24137/3945/2950/1824/22974/9232/9435/699/7272/10635/991/9928/1029/10403/2305/1058/5266/6374/55388/10644/26227/597/6518/898/7368/5317/1116/51083/3854/4321
## POOLA_INVASIVE_BREAST_CANCER_UP 4680/1048/9518/5284/26047/27132/1300/6571/90993/4016/2212/26585/6713/9935/972/4314/7852/11015/4327/9134/23213/8809/6404/55843/11010/1301/3965/4332/6004/4033/54509/3123/3059/7805/7185/91543/813/3371/8477/695/1880/3937/3687/3676/963/7083/6775/3109/57405/9938/5552/3394/1794/5788/6351/4173/113/23643/55215/4688/3669/6646/29899/962/7292/2207/51514/80896/3117/51316/1368/6402/3606/9123/7153/11339/2214/586/4085/10257/942/9837/958/3832/22797/23406/1520/983/1043/3689/1230/5329/5579/64151/5341/10859/341/10437/9056/50515/1439/6503/9332/9055/923/2633/1236/10112/4069/10288/890/701/11184/1063/8530/4751/64581/9051/3561/9787/6241/9235/3702/8140/56992/4050/641/7298/914/6790/3001/1075/332/2215/2359/7412/1824/939/22974/6356/9232/915/3932/11004/11006/9133/2833/10635/974/991/7804/3957/9582/10403/10578/1058/4318/973/7941/597/3627/27074/952/6999/3002/25975/4283/6373/27299/4312/6362/10563/4321
## SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6 8614/81621/5167/11116/4893/79677/3843/10059/55233/1841/10767/1832/25804/28998/5591/8819/23225/10592/7422/9462/790/79980/1763/23310/23141/205/112950/22948/10452/5217/22929/5898/55326/5718/9134/3556/8936/55720/3052/55055/6723/6627/7027/23160/9474/6628/11047/5686/3148/55907/2956/5690/55166/1633/23636/5467/5111/11130/5352/5230/78999/5901/2937/8767/5688/10926/10622/10096/9735/29028/64785/8851/5984/5558/10733/54892/26271/56942/4175/7083/5817/57405/5933/27338/55689/4001/4830/3066/6513/1032/11332/4173/55110/54913/3070/1678/55215/8317/675/10797/891/7004/29899/7277/10460/4860/4704/2643/51514/3159/123/29127/6715/4174/9123/7153/7849/4603/6566/11339/6182/4085/3161/9837/2597/3832/9918/2146/995/983/64151/84296/133/3925/1062/81930/3838/1978/9055/10112/79814/55839/890/701/1063/6648/5214/4751/83990/23149/55247/81620/4647/9787/6241/1111/8140/56992/54821/2491/55143/7298/6790/24137/2175/3945/332/8438/8318/22974/990/9156/9232/11004/4998/699/9133/23397/7272/79019/8836/11065/10635/993/220134/4605/991/9212/9928/9582/55355/10874/1029/146909/79733/10403/1138/2305/1058/51512/55388/875/3559/898/7368/29968/4321
## DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP 7031/123099/2674/771/8614/4602/25800/7494/11001/7869/64798/374/6584/26018/596/6478/9368/403/8204/3487/55540/9424/7374/7443/55835/84131/3251/64858/25804/10592/8914/580/79980/1763/23310/4277/2176/29893/4176/9134/3556/55526/23213/55055/55157/2289/7027/25788/9942/5111/6502/11130/1786/29089/2177/7112/51053/122769/56915/93323/64116/84930/9735/29028/64785/7164/10293/5984/6839/4172/10733/10682/54892/84515/26271/4175/7083/5933/4001/4830/5424/6513/4173/91687/3070/55215/675/4171/11113/10460/51514/3619/8208/4796/29127/4174/2237/79172/7153/4603/79723/7516/9837/3832/9918/983/29128/6491/9088/64151/3925/157570/3613/9055/9700/23590/9824/1869/3833/5888/10721/55839/890/701/83990/81620/9787/6241/1111/8140/641/2491/7298/5347/6790/24137/2175/144455/332/8438/8318/128239/22974/55789/990/9156/9232/147841/1870/11004/699/9133/23397/7272/79019/113130/8836/11065/4605/9212/79733/63967/1138/2305/51512/8645/55388/83879
## KOBAYASHI_EGFR_SIGNALING_24HR_DN 6947/8309/374/1846/55568/8870/200734/5905/7374/7443/8771/10528/3655/10592/8914/5433/580/79980/23310/25937/29893/4176/9134/55055/8091/6723/6627/7027/3148/25788/2956/51182/10212/5111/11130/899/7398/203068/7112/2119/51053/10926/6632/5902/54517/7371/29028/64785/1163/5984/4172/10051/10733/54892/56942/4175/7083/57405/84617/27338/4233/4001/4830/84823/4173/3070/55215/4171/891/29899/1894/51514/50486/29127/4174/4953/2237/8877/7153/4603/8061/4085/3161/9837/6376/7378/3832/2146/983/6491/9088/64151/28231/2171/3838/9055/9700/1869/23594/5888/55839/890/701/4751/8638/81620/9787/6241/56992/54821/641/55143/7298/5347/6790/24137/332/8318/22974/990/9156/11004/4998/136/699/23397/7272/79019/11065/10635/993/4605/7039/991/9212/9928/55355/146909/79733/10403/1058/51512/55388/29968/2707
## VANTVEER_BREAST_CANCER_ESR1_DN 29094/51465/9019/23198/4771/440/55343/5236/9519/9749/5500/6281/892/7347/4690/2230/1054/11010/8898/483/10477/6768/9111/80727/23216/8833/274/11173/8566/7371/7388/10130/55240/5558/3091/140885/64764/10133/4175/5552/3855/3608/10397/4478/1535/8568/1827/5962/22808/1536/6251/7128/84230/51700/3455/4904/2023/1672/5360/29899/6624/4828/8291/1466/4174/1476/445/4953/1612/4067/5292/2597/6376/3601/9918/114793/1183/6948/3689/135112/6491/4651/10859/262/133/4281/3613/23175/8543/2633/51560/4794/2526/1844/6648/5214/83439/54757/84706/27242/641/84002/55143/4064/23650/11240/2175/3945/1075/81624/1824/11025/8438/6352/11004/11182/9435/699/9133/7272/25984/4605/991/1001/9582/55355/5031/3101/3783/1058/8645/26227/56938/145864/597/83879/6518/27074/7368/5317/1116/29968/25975/3620/4316/768/6362/3854
## Count
## FARMER_BREAST_CANCER_BASAL_VS_LULMINAL 190
## POOLA_INVASIVE_BREAST_CANCER_UP 173
## SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6 207
## DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP 168
## KOBAYASHI_EGFR_SIGNALING_24HR_DN 145
## VANTVEER_BREAST_CANCER_ESR1_DN 148
head(msC2_2)
## ID
## BASAKI_YBX1_TARGETS_UP BASAKI_YBX1_TARGETS_UP
## BENPORATH_CYCLING_GENES BENPORATH_CYCLING_GENES
## BENPORATH_ES_1 BENPORATH_ES_1
## BENPORATH_PROLIFERATION BENPORATH_PROLIFERATION
## BERENJENO_TRANSFORMED_BY_RHOA_UP BERENJENO_TRANSFORMED_BY_RHOA_UP
## BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP
## Description
## BASAKI_YBX1_TARGETS_UP BASAKI_YBX1_TARGETS_UP
## BENPORATH_CYCLING_GENES BENPORATH_CYCLING_GENES
## BENPORATH_ES_1 BENPORATH_ES_1
## BENPORATH_PROLIFERATION BENPORATH_PROLIFERATION
## BERENJENO_TRANSFORMED_BY_RHOA_UP BERENJENO_TRANSFORMED_BY_RHOA_UP
## BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP
## setSize enrichmentScore NES
## BASAKI_YBX1_TARGETS_UP 203 -0.6074380 -2.225255
## BENPORATH_CYCLING_GENES 431 -0.4956352 -1.898459
## BENPORATH_ES_1 248 -0.5589326 -2.078097
## BENPORATH_PROLIFERATION 110 -0.7387197 -2.535434
## BERENJENO_TRANSFORMED_BY_RHOA_UP 404 -0.5545070 -2.122571
## BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP 129 -0.6788072 -2.374899
## pvalue p.adjust qvalues
## BASAKI_YBX1_TARGETS_UP 1e-10 4.282e-09 3.314737e-09
## BENPORATH_CYCLING_GENES 1e-10 4.282e-09 3.314737e-09
## BENPORATH_ES_1 1e-10 4.282e-09 3.314737e-09
## BENPORATH_PROLIFERATION 1e-10 4.282e-09 3.314737e-09
## BERENJENO_TRANSFORMED_BY_RHOA_UP 1e-10 4.282e-09 3.314737e-09
## BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP 1e-10 4.282e-09 3.314737e-09
## rank
## BASAKI_YBX1_TARGETS_UP 1475
## BENPORATH_CYCLING_GENES 1283
## BENPORATH_ES_1 1197
## BENPORATH_PROLIFERATION 1340
## BERENJENO_TRANSFORMED_BY_RHOA_UP 2347
## BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP 1573
## leading_edge
## BASAKI_YBX1_TARGETS_UP tags=49%, list=19%, signal=41%
## BENPORATH_CYCLING_GENES tags=34%, list=16%, signal=30%
## BENPORATH_ES_1 tags=38%, list=15%, signal=33%
## BENPORATH_PROLIFERATION tags=75%, list=17%, signal=63%
## BERENJENO_TRANSFORMED_BY_RHOA_UP tags=60%, list=30%, signal=45%
## BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP tags=65%, list=20%, signal=53%
## core_enrichment
## BASAKI_YBX1_TARGETS_UP 29893/4176/10762/348235/2810/55055/6627/84259/2316/3148/10212/2618/11130/26147/122769/4502/5694/11164/192111/10602/10189/3654/4172/7083/4501/84617/3608/84823/4173/1663/55215/4171/891/9688/7277/10785/51514/51316/2744/3918/4494/4174/2237/79172/4603/11339/4495/4085/9837/23406/9918/983/79866/29128/3838/9055/9700/10112/23594/5888/55839/890/701/4751/1111/27242/8140/2491/55143/7298/5347/6790/24137/144455/332/2950/81624/83540/22974/55789/990/9232/147841/11004/6273/699/9133/79019/11065/991/9212/55355/10874/10403/1058/51512/55388/387103/9982/3897
## BENPORATH_CYCLING_GENES 8975/3148/2619/55166/10238/5111/80308/11130/29089/11200/899/2177/7398/7112/51053/1736/1122/2870/5901/9585/93323/54972/2653/3110/84930/9712/2534/1875/29028/64785/1163/10293/5984/5558/3091/10051/3111/4973/84515/9829/4175/3608/6581/27338/8837/4233/4001/8568/1827/1032/4173/91687/994/3070/1663/51700/55215/8317/4171/891/11113/29899/10460/1894/51514/6772/100133941/1244/4828/8208/6715/5293/4174/2237/10068/7153/650/4085/3161/3832/9918/995/79866/29128/6491/9088/262/4281/3930/1062/8543/3838/9055/9700/9824/1869/3833/5888/10721/890/701/1063/4751/55247/9787/6241/55143/7298/5347/6790/2175/332/7412/8438/83540/8318/22974/55789/990/9156/9232/11004/4998/699/9133/23397/7272/79019/11065/10635/993/991/9212/84057/9928/55355/79733/10403/63967/2305/1058/51512/83879/898/3620
## BENPORATH_ES_1 2618/8886/11200/10459/51599/7112/51053/22800/6091/4074/56915/9456/10622/4521/80324/54517/57167/11168/5771/6535/5984/4172/5558/54892/4175/23246/57405/2118/249/4173/8324/3070/7913/4171/10797/891/7004/1525/1894/4257/100133941/1789/3159/23683/4174/29078/2237/6566/11339/4240/11245/3161/983/262/84296/29785/347733/2171/3838/890/701/5163/5613/83439/81620/9787/6241/1111/54821/24137/1075/332/990/9232/3932/11004/4998/699/23397/113130/10635/11040/993/991/9212/7804/10874/1690/55388/10644/875/3620/51083
## BENPORATH_PROLIFERATION 84079/84259/5692/3418/51182/5111/1054/2618/29089/6637/51645/7159/11164/9111/51571/10926/6632/5902/29028/64785/1163/5984/4172/5558/59345/56942/5202/3608/3066/5962/55110/7913/4171/29899/51514/8208/29127/1476/7153/79723/4085/2146/983/9088/64151/3930/3925/1062/7037/3838/9055/23590/58528/5888/55839/1063/4751/81620/6241/7298/6790/2175/332/2178/8438/83540/9156/9232/699/9133/7272/79019/113130/10635/6280/4605/84057/7804/9582/10403/1058/83879
## BERENJENO_TRANSFORMED_BY_RHOA_UP 10946/3624/5717/100287932/3692/55320/2730/8662/64425/9588/22822/6634/191/57122/7295/23082/5597/27101/10471/23649/25791/28232/10171/64981/3939/56945/10963/9994/10055/29107/2539/9097/4609/26524/27000/5693/6633/1729/5211/79902/87178/56902/4436/7965/5791/1073/5983/6117/6888/5223/7076/5905/7114/7443/3843/1841/3251/836/1459/7187/83443/25804/58/8819/3433/5691/3655/581/64432/10592/22824/7422/81/10574/86/8914/51703/1763/79101/205/8726/57819/5464/51377/10452/10054/2920/1024/4176/5743/6749/10762/55720/3329/5734/9188/8091/9446/6723/6627/7027/23160/1839/54801/7296/2091/3148/54205/51182/1633/23636/10436/5111/2618/1786/8886/29089/899/5230/7398/7112/1104/23597/483/51053/2870/5901/84844/5688/3037/6632/5902/7371/10189/6347/8407/3371/26472/1163/5984/4172/5558/10051/10733/286827/7083/5817/23246/84617/5933/4478/4830/4839/5424/286826/6513/705/11332/4173/3070/7128/2710/84230/1678/7913/8317/4171/10797/891/9688/10460/1894/51514/3619/3918/8208/29127/5321/7167/4174/29078/4953/2237/72/7153/8061/6182/586/4085/2597/3832/2146/995/983/29128/5329/133/3930/3925/6696/7037/3838/9055/3105/1869/10112/23594/3833/5888/890/6648/4751/9787/1111/55143/7298/6790/24137/332/81624/8318/128239/990/9156/9232/11004/4998/136/699/7272/113130/10635/4605/991/9212/79733/2305/1058/51512/64093/55388/83879/29968/10232
## BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP 51703/5660/5464/56983/4277/4791/29780/57559/2091/5686/11331/5690/10436/5696/7097/716/130589/26147/6541/79668/4074/4200/3659/51056/29121/5699/7133/80324/1875/10384/10396/5552/5996/1535/1890/10062/4839/843/55110/5912/348/9688/5971/7004/653361/6772/2120/117289/115361/84541/101/10257/3601/1520/5698/10437/330/3695/3383/6890/3600/79814/4794/6648/64581/9235/9466/3001/7412/3902/11182/29126/11040/3594/51513/115362/2305/1058/51512/55388/56938/875/3112/952
MSigDB C2 (curated gene sets) database seems to connect the most breast-related genesets to the loading.
grep(keyword, msC2$Description, ignore.case = TRUE)
## [1] 1 2 6 8 13 20 22 29 54 62 63 68 90 104 109
## [16] 147 174 179 193 207 232 244 252 276 299 309 317 326 331 357
## [31] 377 382 392 398 402 410 449 483 497 525 540 556 569 573 583
## [46] 598 607 609 650 685 686 705 707 709 736 823 839 928 1071 1158
## [61] 1164 1261 1366 1388 1414 1419 1473 1497 1519 1595 1654 1671 1696 1728 1771
## [76] 1775 1799 1847 1854 1879 1954 1981 1998 2012 2048 2164 2214 2225 2226 2284
## [91] 2322 2336 2388 2394 2476 2534 2552
grep(keyword, msC2_2$Description, ignore.case = TRUE)
## [1] 6 11 12 13 14 19 20 44 58 74 75 76 77 78 79 80 81 82 83
## [20] 86 87 88 96 104 106 111 121 123 127 135 159 163 165 170 181 183 185 213
## [39] 224 241 246 265 279 297 320 327 339 348 361 392 421 466 469 482 483 524 532
## [58] 588
m_c6 <- msigdbr(species = "Homo sapiens", category = "C6") %>%
dplyr::select(gs_name, entrez_gene)
msC6 <- enricher(gene, TERM2GENE=m_c6)
msC6_2 <- GSEA(geneList, TERM2GENE = m_c6)
## preparing geneSet collections...
## GSEA analysis...
## Warning in fgseaMultilevel(...): For some pathways, in reality P-values are less
## than 1e-10. You can set the `eps` argument to zero for better estimation.
## leading edge analysis...
## done...
head(msC6)
## ID Description GeneRatio BgRatio pvalue
## MEL18_DN.V1_UP MEL18_DN.V1_UP MEL18_DN.V1_UP 61/1991 140/10897 3.110028e-12
## EGFR_UP.V1_UP EGFR_UP.V1_UP EGFR_UP.V1_UP 73/1991 192/10897 6.778155e-11
## RPS14_DN.V1_UP RPS14_DN.V1_UP RPS14_DN.V1_UP 71/1991 190/10897 3.068284e-10
## SNF5_DN.V1_UP SNF5_DN.V1_UP SNF5_DN.V1_UP 66/1991 172/10897 3.529191e-10
## P53_DN.V1_UP P53_DN.V1_UP P53_DN.V1_UP 70/1991 193/10897 1.837635e-09
## RAF_UP.V1_UP RAF_UP.V1_UP RAF_UP.V1_UP 70/1991 193/10897 1.837635e-09
## p.adjust qvalue
## MEL18_DN.V1_UP 5.877954e-10 3.666560e-10
## EGFR_UP.V1_UP 6.405357e-09 3.995544e-09
## RPS14_DN.V1_UP 1.667543e-08 1.040182e-08
## SNF5_DN.V1_UP 1.667543e-08 1.040182e-08
## P53_DN.V1_UP 5.788551e-08 3.610792e-08
## RAF_UP.V1_UP 5.788551e-08 3.610792e-08
## geneID
## MEL18_DN.V1_UP 771/8614/22885/5327/26018/7049/6583/25777/26585/7042/7422/3710/5045/6573/4277/54541/1839/10184/5069/1464/3914/719/5361/3037/9945/23657/55240/8876/3676/7436/3696/1663/8828/3936/23046/3117/6536/4494/3782/8061/9469/22797/1520/5329/1305/133/50515/28231/6696/8728/6890/3575/8140/81029/11182/9435/63967/2919/3604/51083/4316
## EGFR_UP.V1_UP 4680/27289/10451/2261/8835/1846/5167/6558/51097/3306/9314/9915/4128/3790/1545/2114/7042/2634/2650/4791/23433/5873/4017/22978/3437/1839/10184/9060/4217/1956/2119/6004/3659/6303/4783/5699/9456/23657/25825/6347/25816/3855/116984/1827/10479/2710/3669/6197/1525/72/5142/3601/23406/5698/6367/133/23175/3383/2633/6890/51129/27242/655/6280/1594/7804/9582/5031/6279/10644/3620/51083/4312
## RPS14_DN.V1_UP 4680/9518/150/388/1960/54677/5205/214/10769/2201/1545/4600/5168/64393/9462/290/10346/3108/9450/3556/5734/7305/834/10457/7045/5328/4082/4332/25780/719/3684/10602/3683/6347/3119/1880/4599/8876/29992/3687/140885/3109/9938/3553/929/9934/100/23643/1475/4688/3055/1368/8013/11314/26191/5800/22797/1520/3689/330/6696/64581/2153/8942/11240/2672/9047/3604/7941/597/27299
## SNF5_DN.V1_UP 347/51466/2006/114899/7043/6423/481/2331/135228/23646/3433/1436/86/290/26270/57819/2224/7852/55256/9450/23760/10791/55055/6515/5696/716/1104/719/2870/4200/715/7454/968/54892/963/6688/5933/10507/5788/3669/3936/348/962/51514/84624/4174/445/3134/25928/1043/3689/5698/5341/714/6891/2633/3105/10112/8638/699/11065/9212/55355/8549/3627/25975
## P53_DN.V1_UP 563/4680/6337/374/7433/7025/3875/90576/26018/652/629/3625/1308/1363/10873/10267/8412/7026/3880/4016/26509/4052/1832/8819/23213/3429/9734/10184/5467/7045/7525/4217/5328/4082/7398/51599/4507/1956/22800/3659/5947/2534/1404/7388/8218/1032/10656/29899/7277/1525/100133941/50486/3606/445/11339/688/7345/1305/133/1824/136/5268/10874/1029/10403/27074/7368/5646/10232/4312
## RAF_UP.V1_UP 4488/8835/2624/1846/51097/3306/58494/5274/8863/7089/10144/23092/1545/3655/22848/10577/5236/55526/5734/1839/56913/4217/8898/1956/2119/22800/4200/6303/10602/5699/9111/64781/25825/23596/2534/91543/25816/64764/10133/51191/9397/2182/10892/1827/79695/2760/2702/10656/25797/80896/8013/10257/7378/23406/1230/5698/3613/10331/51129/27242/1824/11182/6280/10874/10403/3783/827/6279/7368/3897
## Count
## MEL18_DN.V1_UP 61
## EGFR_UP.V1_UP 73
## RPS14_DN.V1_UP 71
## SNF5_DN.V1_UP 66
## P53_DN.V1_UP 70
## RAF_UP.V1_UP 70
head(msC6_2)
## ID
## RAF_UP.V1_DN RAF_UP.V1_DN
## RPS14_DN.V1_DN RPS14_DN.V1_DN
## KRAS.600.LUNG.BREAST_UP.V1_UP KRAS.600.LUNG.BREAST_UP.V1_UP
## KRAS.BREAST_UP.V1_UP KRAS.BREAST_UP.V1_UP
## KRAS.LUNG.BREAST_UP.V1_UP KRAS.LUNG.BREAST_UP.V1_UP
## BMI1_DN_MEL18_DN.V1_UP BMI1_DN_MEL18_DN.V1_UP
## Description setSize
## RAF_UP.V1_DN RAF_UP.V1_DN 124
## RPS14_DN.V1_DN RPS14_DN.V1_DN 109
## KRAS.600.LUNG.BREAST_UP.V1_UP KRAS.600.LUNG.BREAST_UP.V1_UP 107
## KRAS.BREAST_UP.V1_UP KRAS.BREAST_UP.V1_UP 46
## KRAS.LUNG.BREAST_UP.V1_UP KRAS.LUNG.BREAST_UP.V1_UP 65
## BMI1_DN_MEL18_DN.V1_UP BMI1_DN_MEL18_DN.V1_UP 95
## enrichmentScore NES pvalue
## RAF_UP.V1_DN 0.5972080 2.467707 1.000000e-10
## RPS14_DN.V1_DN -0.6268603 -2.146505 3.691517e-10
## KRAS.600.LUNG.BREAST_UP.V1_UP -0.6191844 -2.115243 1.030922e-09
## KRAS.BREAST_UP.V1_UP -0.7239233 -2.201967 5.140891e-08
## KRAS.LUNG.BREAST_UP.V1_UP -0.6708917 -2.142749 6.099317e-08
## BMI1_DN_MEL18_DN.V1_UP -0.5828157 -1.964062 2.522474e-07
## p.adjust qvalues rank
## RAF_UP.V1_DN 1.860000e-08 1.147368e-08 613
## RPS14_DN.V1_DN 3.433111e-08 2.117765e-08 951
## KRAS.600.LUNG.BREAST_UP.V1_UP 6.391714e-08 3.942823e-08 1055
## KRAS.BREAST_UP.V1_UP 2.268946e-06 1.399633e-06 1055
## KRAS.LUNG.BREAST_UP.V1_UP 2.268946e-06 1.399633e-06 1055
## BMI1_DN_MEL18_DN.V1_UP 7.633291e-06 4.708708e-06 1336
## leading_edge
## RAF_UP.V1_DN tags=31%, list=8%, signal=29%
## RPS14_DN.V1_DN tags=41%, list=12%, signal=37%
## KRAS.600.LUNG.BREAST_UP.V1_UP tags=45%, list=14%, signal=39%
## KRAS.BREAST_UP.V1_UP tags=52%, list=14%, signal=45%
## KRAS.LUNG.BREAST_UP.V1_UP tags=49%, list=14%, signal=43%
## BMI1_DN_MEL18_DN.V1_UP tags=45%, list=17%, signal=38%
## core_enrichment
## RAF_UP.V1_DN 7031/7033/57758/2674/6947/771/6542/8614/5507/4602/18/10560/10451/12/8821/2690/5046/3480/1960/6505/4254/27250/26018/3667/596/7358/23327/1955/3485/2353/9915/1363/403/214/863/3487/10769/7020
## RPS14_DN.V1_DN 29028/6535/55240/7052/26271/7083/5424/705/1894/3619/4174/8877/79723/6182/586/3601/1183/347733/1062/9055/9700/10046/3574/9824/10112/9787/56992/54821/23650/5347/79094/990/9156/11004/4998/9133/23397/4605/991/10874/79733/55388/875/29968/51083
## KRAS.600.LUNG.BREAST_UP.V1_UP 3037/2113/7185/1084/3770/2118/3553/5740/7128/23643/3669/951/50856/50486/4796/3757/1240/8877/5365/639/650/101/9966/54752/3294/5329/6367/919/330/28231/8728/51129/3902/6364/9435/51561/2921/7850/55613/3290/2919/2672/9047/6374/4318/1299/5646/4312
## KRAS.BREAST_UP.V1_UP 3037/7185/1084/3770/3553/7128/51700/1240/639/3294/6367/330/5140/3561/1946/2921/7850/3290/2672/4318/1299/1297/5653/27299
## KRAS.LUNG.BREAST_UP.V1_UP 3037/2113/7185/1084/3770/7128/3669/951/50486/1240/639/101/9966/54752/3294/919/330/28231/8728/51129/6364/51561/2921/7850/3290/2919/2672/9047/6374/4318/5646/4312
## BMI1_DN_MEL18_DN.V1_UP 1839/10184/5069/1464/3914/719/3037/9945/23657/1404/8876/3676/7436/4045/3696/5294/8828/3936/23046/6536/4494/3782/8061/5292/9469/22797/5329/1305/133/330/50515/8728/3575/79924/8140/81029/2919/3783/3604/56938/29968/51083/4316
grep(keyword, msC6$Description, ignore.case = TRUE)
## [1] 53
grep(keyword, msC6_2$Description, ignore.case = TRUE)
## [1] 3 4 5
I tried other MSigDB categories (H,C1,C3,C4,C5,C7), but they didn’t
have information on breast.
barplot(msC2, showCategory = 8)
dotplot(msC2, showCategory = 8)
emapplot(msC2)
enrichDO (Disease Ontology)library(DOSE)
## DOSE v3.15.0 For help: https://guangchuangyu.github.io/software/DOSE
##
## If you use DOSE in published research, please cite:
## Guangchuang Yu, Li-Gen Wang, Guang-Rong Yan, Qing-Yu He. DOSE: an R/Bioconductor package for Disease Ontology Semantic and Enrichment analysis. Bioinformatics 2015, 31(4):608-609
edo <- enrichDO(gene = gene,
ont = "DO",
pvalueCutoff = 0.01,
pAdjustMethod = "BH",
universe = names(geneList),
qvalueCutoff = 0.01)
head(edo,3)
## ID Description GeneRatio BgRatio pvalue
## DOID:3213 DOID:3213 demyelinating disease 82/1667 113/4338 9.131900e-14
## DOID:2377 DOID:2377 multiple sclerosis 78/1667 109/4338 1.266316e-12
## DOID:3342 DOID:3342 bone inflammation disease 262/1667 495/4338 2.499925e-12
## p.adjust qvalue
## DOID:3213 6.465385e-11 4.046873e-11
## DOID:2377 4.482758e-10 2.805889e-10
## DOID:3342 5.899822e-10 3.692871e-10
## geneID
## DOID:3213 6505/730/5327/183/3485/1675/4179/5777/2212/2896/4314/3028/3557/4277/2213/1636/3122/3672/3429/6404/834/965/3115/961/3107/1152/3663/3659/3127/3123/6347/3119/4599/4261/3676/3394/3162/3553/929/64127/5788/3570/3106/920/348/3117/100133941/3135/3606/64135/3569/1410/2214/6507/2597/958/6376/3689/1230/6285/330/3925/923/3383/1236/3575/3105/2215/6556/1234/6352/2833/1594/2672/4318/3627/3559/1116/3002/3620/5653/4321
## DOID:2377 6505/730/5327/183/1675/4179/5777/2212/2896/4314/3028/3557/4277/2213/1636/3122/3672/3429/6404/834/965/3115/961/3107/1152/3663/3659/3127/3123/6347/3119/4599/4261/3676/3394/3162/3553/929/64127/5788/3570/3106/920/348/3117/100133941/3135/3606/64135/3569/1410/2214/6507/2597/958/6376/1230/330/3925/923/3383/1236/3575/3105/2215/6556/1234/6352/2833/1594/2672/4318/3627/3559/1116/3002/3620/4321
## DOID:3342 9518/7177/4488/6097/7079/9547/374/3081/2690/7432/54829/6584/4843/7433/388/10512/5327/10/10266/596/652/2487/3306/5914/2353/9368/7049/3291/8633/1958/1902/6583/1311/1191/3479/4128/3551/59307/727/862/5654/4331/7098/2064/55835/2212/1947/3251/4650/472/871/8771/2896/5591/9423/8718/5320/1436/581/7422/4314/3557/3709/6573/3108/64750/7852/5594/6590/56172/2213/22861/5743/1636/6282/5873/3329/23213/8797/5734/64221/6275/2289/3672/7099/6850/2956/567/965/3115/3680/7045/3107/811/7097/3965/4217/5328/5730/3820/1080/3663/578/3133/3459/3684/4481/64167/7133/240/3123/5947/11173/5713/7185/5371/5732/6347/2512/8793/3119/2821/3654/3937/4261/3091/54/3676/963/4851/9641/6775/3109/8837/3162/4689/3553/929/5996/1535/64127/5788/3570/728/3106/3066/843/6351/6513/637/249/5740/7128/5294/100/8828/2023/920/7913/5915/348/6366/50856/140766/58191/3117/1789/3135/126014/2357/117289/5321/7167/3606/5293/64135/9034/8877/10855/26191/9398/3569/1410/639/2214/650/101/942/1508/958/6376/9966/23406/1520/3689/1230/201294/10859/6367/919/133/9507/6696/25939/6891/3383/6890/3600/3574/1236/84868/3575/3105/8600/176/64170/6648/64581/9051/10673/9235/4050/7298/5347/3560/914/11240/6401/332/6369/2215/6556/7412/1234/655/6356/6364/54210/6352/8651/2833/29126/51561/6280/3934/50943/5008/3957/9047/5551/4318/6279/3604/50615/3627/27074/3559/1116/3002/4312/6362/10563
## Count
## DOID:3213 82
## DOID:2377 78
## DOID:3342 262
nrow(edo)
## [1] 141
grep(keyword, edo$Description, ignore.case = TRUE)
## [1] 110
enrichNCG (Network of Cancer Gene)gene2 <- names(geneList)[abs(geneList) < mean(abs(geneList))]
ncg <- enrichNCG(gene2)
head(ncg,3)
## ID Description GeneRatio BgRatio pvalue p.adjust
## prostate prostate prostate 34/516 53/1571 2.016079e-06 4.511725e-05
## breast breast breast 46/516 80/1571 2.819828e-06 4.511725e-05
## endometrial endometrial endometrial 31/516 53/1571 8.395634e-05 8.955343e-04
## qvalue
## prostate 0.0000222618
## breast 0.0000222618
## endometrial 0.0004418755
## geneID
## prostate 5295/595/1105/8405/3265/463/7403/207/324/9612/8289/4292/2077/5925/7113/673/5728/51755/5290/9611/84133/1030/9968/1027/7157/81614/672/3417/1499/5894/2778/5291/4609/4436
## breast 5295/595/196528/91/861/7188/55770/677/6416/207/324/6794/4763/51135/29072/8289/57492/2874/5925/5728/5290/208/79728/8314/6602/4089/9611/23451/55193/9968/1027/7157/999/83737/171023/672/2132/545/9175/896/841/114907/2033/3845/10664/79718
## endometrial 280/5295/595/8405/54880/57721/463/7130/54989/2122/25942/27316/6872/10060/4216/8289/84159/5728/4780/6146/5518/5290/7157/1108/7812/8239/545/1499/5426/3845/10664
## Count
## prostate 34
## breast 46
## endometrial 31
nrow(ncg)
## [1] 16
grep(keyword, ncg$Description, ignore.case = TRUE)
## [1] 2
enrichDGN (Disease-Gene Association)dgn <- enrichDGN(gene)
head(dgn,3)
## ID Description GeneRatio BgRatio pvalue
## umls:C3495559 umls:C3495559 Juvenile arthritis 131/2426 333/17381 5.327870e-31
## umls:C0036202 umls:C0036202 Sarcoidosis 104/2426 253/17381 1.170121e-26
## umls:C0005695 umls:C0005695 Bladder Neoplasm 149/2426 442/17381 1.195323e-26
## p.adjust qvalue
## umls:C3495559 2.026722e-27 1.016782e-27
## umls:C0036202 1.515670e-23 7.603934e-24
## umls:C0005695 1.515670e-23 7.603934e-24
## geneID
## umls:C3495559 374/23541/3480/4929/1846/2065/2354/2353/9314/2194/1958/1191/10769/3693/2791/727/27086/3310/9790/800/8844/7422/4314/6786/3557/6573/7852/5594/22861/1636/5873/3329/7027/1839/7099/9734/51182/6515/3115/5696/5352/3663/3133/3659/3127/7133/3123/9334/7185/6347/10810/25816/3119/5771/3654/4261/3091/4973/6775/4478/3162/3553/929/5996/64127/2766/7128/113/7913/3669/84441/6366/58191/6772/3117/8013/2120/3135/8291/117289/3606/64135/1612/26191/3569/2214/1717/958/353514/5329/5698/201294/919/6696/6891/3383/6890/1236/3575/3105/8600/1844/9051/54757/1021/6401/2215/6556/2950/1234/6364/54210/6352/2833/8836/6280/1594/5588/50943/5008/926/10663/2919/9047/5551/6279/3627/3559/366/3002/6373
## umls:C0036202 4582/23541/4843/2735/7043/183/4485/3485/2353/3487/3479/727/10998/57728/4331/7098/9531/23583/4684/7042/51715/7422/8914/3557/3108/7852/5743/1636/5718/8809/3122/7099/3115/3107/5696/7097/54739/1080/3133/3127/3459/3123/6347/3371/3119/968/4261/3091/3791/3109/10892/3682/3553/929/64127/3106/1536/3669/6646/3117/100133941/6624/3135/3606/3569/2214/942/6367/4360/6696/6891/3383/6890/3600/3574/84868/3575/3105/6648/10673/9787/3702/6401/6556/7412/1234/6352/2833/6280/1594/3594/50943/59272/3120/727897/6374/6279/3627/3559/259307/1116/4283/27299/4321
## umls:C0005695 1555/9/2947/4582/119391/2261/1154/4843/4929/2735/2065/10/596/3908/6817/3485/6423/1728/7161/2194/214/267/1191/53834/648/3479/10769/152503/2272/90993/2954/6424/23221/4016/2064/4893/1545/2114/2706/472/26986/6714/2896/5591/5447/581/7422/290/10970/6573/23604/80781/7852/5898/4176/5743/6282/8797/9446/6275/7099/3429/8243/2619/5690/5467/5111/6916/811/3400/11200/5328/54739/1956/3659/3684/4502/3683/240/3732/6347/3091/59345/10682/6581/10397/4233/1890/286826/6513/1678/7913/5915/4171/5465/10460/6772/6624/2744/3918/3135/445/10855/7153/3569/4240/4085/1871/688/2146/29128/5329/6285/864/4360/330/7037/9332/9700/3383/3105/1869/6648/6241/7298/5347/6790/2175/332/7364/2950/699/29126/5268/8836/6280/1594/9582/10874/1029/2919/117247/4318/6279/597/898/5080/5646/4312
## Count
## umls:C3495559 131
## umls:C0036202 104
## umls:C0005695 149
nrow(dgn)
## [1] 1702
grep(keyword, dgn$Description, ignore.case = TRUE)
## [1] 8 25 40 100 361 421 448 585 665 723 744 783 871 1078 1145
## [16] 1159 1161 1224 1225 1284 1379 1419 1702
gseDOedo2 <- gseDO(geneList)
## preparing geneSet collections...
## GSEA analysis...
## Warning in fgseaMultilevel(...): For some pathways, in reality P-values are less
## than 1e-10. You can set the `eps` argument to zero for better estimation.
## leading edge analysis...
## done...
head(edo2,3)
## ID Description setSize
## DOID:0050161 DOID:0050161 lower respiratory tract disease 331
## DOID:0050338 DOID:0050338 primary bacterial infectious disease 150
## DOID:0060056 DOID:0060056 hypersensitivity reaction disease 428
## enrichmentScore NES pvalue p.adjust qvalues rank
## DOID:0050161 -0.5145600 -1.964878 1e-10 4.164706e-09 2.352941e-09 1646
## DOID:0050338 -0.6059806 -2.151627 1e-10 4.164706e-09 2.352941e-09 1624
## DOID:0060056 -0.5138929 -1.982878 1e-10 4.164706e-09 2.352941e-09 1231
## leading_edge
## DOID:0050161 tags=41%, list=21%, signal=34%
## DOID:0050338 tags=55%, list=21%, signal=44%
## DOID:0060056 tags=36%, list=16%, signal=32%
## core_enrichment
## DOID:0050161 581/10592/7422/10630/10875/4314/3557/80781/7852/6590/3631/6446/22861/5743/1636/3329/8797/8091/9446/8809/2627/2294/57016/7099/3429/6404/5111/7097/3965/5328/1080/3663/719/3659/3459/3684/7498/3683/4481/3123/5270/2534/6347/3371/3119/50506/3091/10051/3676/3791/8837/3162/3682/3553/929/4233/64127/728/6338/3779/5294/3587/100/1475/51393/4688/1672/3055/348/653361/6366/6772/3918/3606/5293/59341/64135/3569/101/942/958/6376/1520/3689/5329/6367/6285/133/1439/6696/81930/6891/3383/6890/3574/4794/6648/3702/3001/6369/2215/6556/925/2950/7412/1234/990/6356/3932/54210/6352/8651/136/2833/29126/6280/3594/7039/50943/59272/1029/10663/1138/727897/5266/6374/4318/3627/1116/4283/3620/6373/27299/4316/4312/6362/4321
## DOID:0050338 7422/79139/4314/3557/8717/7852/5743/1636/5236/3329/1839/7099/7296/834/3115/5696/7097/3659/3459/3683/7133/240/3123/5028/6347/3371/3119/3687/7096/3553/929/64127/728/3106/6351/100/23643/1672/348/6402/3606/1510/26191/3569/639/942/5329/5698/6367/919/4360/6891/3383/6890/1236/3105/7535/9235/3001/6556/1234/30835/939/6356/6364/3932/54210/6352/8651/29126/3934/3594/5551/4318/26227/597/3627/3559/952/3620/6373/4312
## DOID:0060056 3115/961/81567/3107/5696/6916/7097/5328/5352/1080/3663/578/3133/3659/3459/3684/7498/3683/7512/7133/9043/3123/5270/7185/5954/6347/3371/11168/3119/4599/3654/4261/3091/3791/140885/7052/6775/10892/3162/3682/3553/929/4233/64127/10062/5788/3570/3106/843/7128/3587/100/3455/920/8784/1672/675/348/653361/5465/7292/6366/58191/6772/3117/100133941/3135/1051/117289/6402/3606/7293/64135/79172/10068/6614/26191/4067/3569/2214/10257/942/958/6376/23406/5329/5698/6367/6285/919/10437/133/4360/3930/6696/43/7037/923/6891/8989/3383/6890/3600/3574/1236/84868/3575/3105/6648/1131/10673/4064/6401/332/2215/6556/925/2950/1234/30835/939/6356/54210/6352/2833/29126/6280/1594/3934/50943/926/59272/10663/10578/1058/6374/4318/6279/3604/26227/3627/3559/1116/3002/4283/3620/27299/10537/4312/6362/10563/4321
nrow(edo2)
## [1] 274
grep(keyword, edo2$Description, ignore.case = TRUE)
## [1] 255
gseNCGncg2 <- gseNCG(geneList)
## preparing geneSet collections...
## GSEA analysis...
## no term enriched under specific pvalueCutoff...
head(ncg2,3)
## [1] ID Description setSize enrichmentScore
## [5] NES pvalue p.adjust qvalues
## <0 rows> (or 0-length row.names)
nrow(ncg2)
## [1] 0
grep(keyword, ncg2$Description, ignore.case = TRUE)
## integer(0)
gseDGNdgn2 <- gseDGN(geneList)
## preparing geneSet collections...
## GSEA analysis...
## Warning in fgseaMultilevel(...): For some pathways, in reality P-values are less
## than 1e-10. You can set the `eps` argument to zero for better estimation.
## leading edge analysis...
## done...
head(dgn2,3)
## ID Description setSize enrichmentScore
## umls:C0003864 umls:C0003864 Arthritis 340 -0.4916472
## umls:C0004364 umls:C0004364 Autoimmune Diseases 478 -0.5180893
## umls:C0011615 umls:C0011615 Dermatitis, Atopic 250 -0.5815581
## NES pvalue p.adjust qvalues rank
## umls:C0003864 -1.876806 1e-10 1.477895e-08 1.057618e-08 1231
## umls:C0004364 -2.014219 1e-10 1.477895e-08 1.057618e-08 1541
## umls:C0011615 -2.172049 1e-10 1.477895e-08 1.057618e-08 1364
## leading_edge
## umls:C0003864 tags=35%, list=16%, signal=31%
## umls:C0004364 tags=42%, list=20%, signal=36%
## umls:C0011615 tags=46%, list=17%, signal=39%
## core_enrichment
## umls:C0003864 3115/961/81567/7097/3965/409/4217/6223/3133/3659/3684/3683/7133/240/3123/11173/7185/91543/6347/3371/3119/5771/2821/3654/7454/8856/54/284/3791/5337/6775/7096/3553/929/64127/2048/728/3106/10849/1536/7128/5294/3587/2023/51393/3669/6646/653361/6366/2643/3117/1051/126014/5321/6402/3606/445/9034/9123/8877/26191/3569/2214/650/1508/958/9966/3689/5698/201294/6285/9507/4360/3118/6696/9055/6891/8989/3383/6890/3600/3574/3105/8600/7535/176/4069/6648/10673/51129/9235/4050/11240/9466/2215/6556/2950/7412/1234/939/54210/6352/51561/6280/50943/5008/1029/10663/2305/4318/146433/6279/50615/3627/3559/1116/4312/4321
## umls:C0004364 57819/7852/5594/6654/10461/2213/9377/22861/5743/6749/1636/29933/3329/64221/7305/8809/7099/9474/9734/2091/56913/7873/9170/51182/567/10457/3115/55697/961/3107/5696/811/7097/1786/716/3820/26147/3663/719/84876/122769/578/3133/3127/3684/4783/5699/3683/64167/8833/7133/2113/3123/7185/5371/6347/11168/3119/215/5771/3654/7454/8856/4261/3111/140885/5337/7052/963/6775/5817/10892/3394/3162/3553/929/5996/64127/5788/3570/728/3106/1032/55824/7128/5294/113/4904/2023/920/7913/3669/1672/6646/653361/5465/23046/7292/6366/4860/50856/3117/10993/100133941/8013/3135/117289/7167/6402/3606/5293/7293/445/64135/9034/23250/10855/26191/3569/10320/5292/2214/4240/650/942/1508/958/3134/9966/23406/2146/1043/3689/5698/10859/6285/919/133/864/4360/330/3118/6696/10603/25939/6891/3383/2633/3600/3574/1236/84868/3575/3105/8600/6648/64581/9051/10673/2153/3561/340348/9235/8140/10870/2491/916/3560/914/2215/6556/717/939/6352/8651/3718/11006/2833/29126/3662/51561/6280/1594/7850/50943/3120/1029/10663/2919/5551/6374/4318/8645/6279/3604/50615/1299/3627/3559/3112/3002/3620/4312
## umls:C0011615 9882/6275/8809/7099/63940/7296/6281/6404/834/706/1593/5696/7097/1786/5328/5730/1956/84876/3133/3459/3684/7903/7133/3123/3059/5713/6347/3371/11168/3119/7454/8856/4261/8876/3111/4851/7096/84433/3162/4689/3553/929/64127/3106/1475/8784/3669/1672/5971/5465/962/25797/2207/80896/3117/2744/29127/3606/1510/9034/3569/1508/958/6376/9966/5329/5698/6367/341/4360/3930/6891/3383/6890/3600/3574/3575/3105/64581/79924/5140/9235/3560/6401/6369/6556/2950/7412/1234/30835/939/6356/6364/54210/6352/8651/6273/2833/51561/6280/1594/3594/50943/5008/3120/2919/6279/50615/597/3627/3559/4283/5653/6362
nrow(dgn2)
## [1] 518
grep(keyword, dgn2$Description, ignore.case = TRUE)
## [1] 53 134 335 341 449
library(clusterProfiler)
ego2 <- gseGO(geneList = geneList,
OrgDb = org.Hs.eg.db,
ont = "MF",
nPerm = 1000,
minGSSize = 50,
maxGSSize = 500,
pvalueCutoff = 0.05,
verbose = FALSE)
## Warning in .GSEA(geneList = geneList, exponent = exponent, minGSSize =
## minGSSize, : We do not recommend using nPerm parameter incurrent and future
## releases
## Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize
## = minGSSize, : You are trying to run fgseaSimple. It is recommended to use
## fgseaMultilevel. To run fgseaMultilevel, you need to remove the nperm argument
## in the fgsea function call.
head(ego2,3)
## ID Description setSize
## GO:0038023 GO:0038023 signaling receptor activity 435
## GO:0060089 GO:0060089 molecular transducer activity 435
## GO:0004888 GO:0004888 transmembrane signaling receptor activity 323
## enrichmentScore NES pvalue p.adjust qvalues rank
## GO:0038023 -0.4592867 -1.761631 0.001036269 0.03532835 0.03135436 1135
## GO:0060089 -0.4592867 -1.761631 0.001036269 0.03532835 0.03135436 1135
## GO:0004888 -0.4829783 -1.819230 0.001069519 0.03532835 0.03135436 1135
## leading_edge
## GO:0038023 tags=33%, list=15%, signal=30%
## GO:0060089 tags=33%, list=15%, signal=30%
## GO:0004888 tags=37%, list=15%, signal=33%
## core_enrichment
## GO:0038023 5789/3820/1956/719/6091/5361/4074/6608/3459/29121/3683/7133/23596/5732/5028/2049/5621/8477/8793/3119/132014/1880/8856/10682/3687/3676/3791/3111/4851/2906/5817/10990/7096/5796/10507/929/4233/10062/5788/3570/2048/9934/728/8324/7436/3696/3587/8828/3455/5724/23643/920/8784/5915/2564/1944/5465/10082/962/50856/2207/150372/3117/8013/5727/126014/2357/11314/2047/7293/59341/9034/1240/8877/5365/5800/7849/11245/54756/942/958/3601/25928/8698/3689/1230/5329/10859/919/4360/1439/3695/3118/3383/6693/1236/165140/3575/65078/59352/971/10288/1131/23432/3561/916/3560/914/9466/921/6401/925/2359/56963/3902/1234/11025/939/915/54210/136/11006/2833/974/10913/3594/7850/7804/926/924/3120/5031/10663/8549/1138/3872/973/3604/50615/3559/3112/3897/51083/27199
## GO:0060089 5789/3820/1956/719/6091/5361/4074/6608/3459/29121/3683/7133/23596/5732/5028/2049/5621/8477/8793/3119/132014/1880/8856/10682/3687/3676/3791/3111/4851/2906/5817/10990/7096/5796/10507/929/4233/10062/5788/3570/2048/9934/728/8324/7436/3696/3587/8828/3455/5724/23643/920/8784/5915/2564/1944/5465/10082/962/50856/2207/150372/3117/8013/5727/126014/2357/11314/2047/7293/59341/9034/1240/8877/5365/5800/7849/11245/54756/942/958/3601/25928/8698/3689/1230/5329/10859/919/4360/1439/3695/3118/3383/6693/1236/165140/3575/65078/59352/971/10288/1131/23432/3561/916/3560/914/9466/921/6401/925/2359/56963/3902/1234/11025/939/915/54210/136/11006/2833/974/10913/3594/7850/7804/926/924/3120/5031/10663/8549/1138/3872/973/3604/50615/3559/3112/3897/51083/27199
## GO:0004888 5789/3820/1956/719/6091/5361/4074/6608/3459/29121/3683/7133/23596/5732/5028/2049/8477/8793/3119/132014/1880/10682/3791/3111/4851/2906/10990/7096/5796/10507/929/4233/5788/3570/2048/9934/728/8324/7436/3587/8828/3455/5724/920/8784/2564/1944/50856/2207/150372/3117/5727/126014/2357/2047/7293/59341/9034/1240/8877/5365/5800/7849/11245/54756/3601/25928/8698/3689/1230/10859/919/4360/1439/3118/3383/6693/1236/165140/3575/65078/59352/971/10288/1131/23432/3561/916/3560/9466/921/6401/2359/3902/1234/11025/939/915/136/2833/974/10913/3594/7850/7804/3120/5031/10663/8549/1138/3872/973/50615/3559/3112/3897/51083/27199
nrow(ego2)
## [1] 9
grep(keyword, ego2$Description, ignore.case = TRUE)
## integer(0)
kk <- enrichKEGG(gene = gene,
organism = 'hsa',
pvalueCutoff = 0.05)
## Reading KEGG annotation online:
##
## Reading KEGG annotation online:
head(kk,3)
## ID Description GeneRatio BgRatio
## hsa05166 hsa05166 Human T-cell leukemia virus 1 infection 88/1685 219/8040
## hsa05169 hsa05169 Epstein-Barr virus infection 81/1685 201/8040
## hsa04110 hsa04110 Cell cycle 57/1685 124/8040
## pvalue p.adjust qvalue
## hsa05166 4.285444e-11 1.384198e-08 9.473087e-09
## hsa05169 2.190592e-10 3.248737e-08 2.223350e-08
## hsa04110 3.017403e-10 3.248737e-08 2.223350e-08
## geneID
## hsa05166 4488/148327/115/7043/111/4776/2353/4214/112/1958/3551/90993/4893/2114/472/7042/581/3108/2224/8295/5594/4791/109/4775/9134/9519/3122/567/706/3115/55697/3107/894/811/11200/3133/5901/3127/3683/2113/3123/5902/3119/3111/64764/6688/3109/3106/6513/113/920/5971/3117/3135/5293/8061/3569/4085/1871/958/3601/3134/3689/3118/9700/3383/3600/3105/1869/890/701/3561/1111/916/3560/9232/915/3932/1870/3718/9133/991/7850/1029/3559/898/3112/4316
## hsa05169 377841/10912/596/3551/4940/836/7187/5708/7186/8819/6773/581/5704/8717/3108/10213/4791/5718/9134/4615/4793/3122/11047/6850/54205/567/965/4939/3115/3107/6502/894/811/7097/578/3133/3127/3683/3123/5713/3119/695/3654/3111/9641/3109/5336/3106/3066/637/7128/3455/5971/6772/3117/3135/6300/5293/4067/3569/1871/958/3134/919/864/3118/6891/3383/6890/3105/1869/4794/890/1021/916/915/1870/3718/3627/898/3112
## hsa04110 10912/7043/6500/7534/10971/472/7042/5591/5885/4176/9134/2810/7027/8243/5111/6502/894/11200/10459/10926/1875/4172/4175/5933/3066/1032/4173/994/8317/4171/891/4174/4085/1871/995/983/9088/9700/1869/23594/890/701/1111/1021/5347/8318/990/9232/1870/4998/699/9133/7272/993/991/1029/898
## Count
## hsa05166 88
## hsa05169 81
## hsa04110 57
nrow(kk)
## [1] 79
grep(keyword, kk$Description, ignore.case = TRUE)
## integer(0)
kk2 <- gseKEGG(geneList = geneList,
organism = 'hsa',
nPerm = 1000,
minGSSize = 120,
pvalueCutoff = 0.05,
verbose = FALSE)
## Warning in .GSEA(geneList = geneList, exponent = exponent, minGSSize =
## minGSSize, : We do not recommend using nPerm parameter incurrent and future
## releases
## Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize
## = minGSSize, : You are trying to run fgseaSimple. It is recommended to use
## fgseaMultilevel. To run fgseaMultilevel, you need to remove the nperm argument
## in the fgsea function call.
head(kk2,3)
## ID Description setSize
## hsa05166 hsa05166 Human T-cell leukemia virus 1 infection 196
## hsa05169 hsa05169 Epstein-Barr virus infection 173
## hsa04062 hsa04062 Chemokine signaling pathway 136
## enrichmentScore NES pvalue p.adjust qvalues rank
## hsa05166 -0.4802437 -1.752611 0.001119821 0.006898873 0.004782274 1550
## hsa05169 -0.5024881 -1.811147 0.001129944 0.006898873 0.004782274 2115
## hsa04062 -0.5286815 -1.851880 0.001166861 0.006898873 0.004782274 905
## leading_edge
## hsa05166 tags=36%, list=20%, signal=30%
## hsa05169 tags=50%, list=27%, signal=37%
## hsa04062 tags=30%, list=12%, signal=27%
## core_enrichment
## hsa05166 3108/2224/8295/5594/4791/109/4775/9134/9519/3122/567/706/3115/55697/3107/894/811/11200/3133/5901/3127/3683/2113/3123/5902/3119/3111/64764/6688/3109/3106/6513/113/920/5971/3117/3135/5293/8061/3569/4085/1871/958/3601/3134/3689/3118/9700/3383/3600/3105/1869/890/701/3561/1111/916/3560/9232/915/3932/1870/3718/9133/991/7850/1029/3559/898/3112/4316
## hsa05169 5291/3113/7431/5707/355/6892/4609/5702/5600/5606/4940/836/7187/5708/7186/8819/6773/581/5704/8717/3108/10213/4791/5718/9134/4615/4793/3122/11047/6850/54205/567/965/4939/3115/3107/6502/894/811/7097/578/3133/3127/3683/3123/5713/3119/695/3654/3111/9641/3109/5336/3106/3066/637/7128/3455/5971/6772/3117/3135/6300/5293/4067/3569/1871/958/3134/919/864/3118/6891/3383/6890/3105/1869/4794/890/1021/916/915/1870/3718/3627/898/3112
## hsa04062 7454/59345/5880/23533/7409/1794/6351/53358/5294/113/3055/653361/6366/58191/6772/5293/2268/4067/6376/1230/5579/6367/1236/3702/6369/1234/6356/6364/6352/3718/2833/2921/10663/2919/6374/2786/3627/4283/6373/6362/10563
nrow(kk2)
## [1] 12
grep(keyword, kk2$Description, ignore.case = TRUE)
## integer(0)
mkk <- enrichMKEGG(gene = gene,
organism = 'hsa')
## Reading KEGG annotation online:
##
## Reading KEGG annotation online:
head(mkk,3)
## [1] ID Description GeneRatio BgRatio pvalue p.adjust
## [7] qvalue geneID Count
## <0 rows> (or 0-length row.names)
nrow(mkk)
## [1] 0
grep(keyword, mkk$Description, ignore.case = TRUE)
## integer(0)
mkk2 <- gseMKEGG(geneList = geneList,
organism = 'hsa')
## preparing geneSet collections...
## GSEA analysis...
## leading edge analysis...
## done...
head(mkk2,3)
## ID Description setSize enrichmentScore NES
## M00099 M00099 Sphingosine biosynthesis 12 0.8334802 2.178786
## M00094 M00094 Ceramide biosynthesis 10 0.8362049 2.084306
## pvalue p.adjust qvalues rank leading_edge
## M00099 0.0001856406 0.003668212 0.003146224 634 tags=42%, list=8%, signal=38%
## M00094 0.0002717194 0.003668212 0.003146224 634 tags=40%, list=8%, signal=37%
## core_enrichment
## M00099 123099/79603/340485/253782/29956
## M00094 123099/79603/253782/29956
nrow(mkk2)
## [1] 2
grep(keyword, mkk2$Description, ignore.case = TRUE)
## integer(0)
library(ReactomePA)
## ReactomePA v1.33.0 For help: https://guangchuangyu.github.io/ReactomePA
##
## If you use ReactomePA in published research, please cite:
## Guangchuang Yu, Qing-Yu He. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Molecular BioSystems 2016, 12(2):477-479
rp <- enrichPathway(gene = gene, pvalueCutoff = 0.05, readable = TRUE)
head(rp,3)
## ID Description GeneRatio BgRatio
## R-HSA-877300 R-HSA-877300 Interferon gamma signaling 48/2402 92/10654
## R-HSA-453279 R-HSA-453279 Mitotic G1-G1/S phases 65/2402 149/10654
## R-HSA-194315 R-HSA-194315 Signaling by Rho GTPases 151/2402 455/10654
## pvalue p.adjust qvalue
## R-HSA-877300 4.834203e-10 6.685703e-07 5.887551e-07
## R-HSA-453279 7.143124e-09 4.939470e-06 4.349787e-06
## R-HSA-194315 6.891989e-08 2.669242e-05 2.350583e-05
## geneID
## R-HSA-877300 TRIM45/TRIM3/SOCS3/NCAM1/PTPN6/OAS3/GBP2/CAMK2D/TRIM22/HLA-DRA/B2M/OAS2/HLA-DPB1/HLA-C/IRF5/HLA-E/IRF1/HLA-DRB5/IFNGR1/MT2A/HLA-DRB1/PML/HLA-DQB1/PTPN2/CIITA/IRF8/HLA-B/PTAFR/STAT1/HLA-DQA1/HLA-G/GBP4/TRIM10/HLA-F/IFI30/MID1/HLA-DQA2/ICAM1/GBP1/HLA-A/TRIM2/OASL/TRIM29/VCAM1/SOCS1/IRF4/HLA-DQB2/GBP5
## R-HSA-453279 PTK6/CABLES1/SKP1/MNAT1/PSMA2/PSMD2/SRC/PSMB3/PSMC4/PSMD14/PSMA4/MCM7/PSMD12/CCNE2/TFDP1/PSMB4/PSMA5/PSMB2/PCNA/PSMB8/SKP2/CCND2/GMNN/PSMB6/PSMA7/PSMB10/DBF4/PSMD7/E2F5/CKS1B/MCM3/PRIM2/MCM8/FBXO5/MCM6/TK1/RBL1/LIN9/CDKN2D/MCM4/CDC7/MCM2/CCNB1/MCM5/TOP2A/LYN/E2F3/CDK1/PSMB9/E2F1/ORC6/CCNA2/CDT1/RRM2/CDK6/TYMS/CDC45/CDC6/E2F2/ORC1/CDC25A/MYBL2/CDKN2A/MCM10/CCNE1
## R-HSA-194315 ARHGEF38/TUBAL3/VAV3/FGD3/EVL/RHOB/SYDE2/MYH11/ARHGEF16/ARHGAP6/STARD13/ARHGEF37/ARHGEF26/CENPP/NOXA1/RHOD/PPP2R5A/ARHGEF15/ARHGAP32/PREX1/RHOBTB2/RHOH/GDI2/RANGAP1/FAM13A/ARHGAP26/CKAP5/RTKN/SEH1L/FGD4/ARHGEF10L/SRGAP2/ACTR2/YWHAZ/MYO9B/YWHAQ/BCR/RHOG/DIAPH2/SRC/ARPC2/ARHGAP18/ACTB/NF2/FGD1/DSN1/TUBA1B/MAPK1/SOS1/DEPDC7/PFN2/ARHGAP21/LIMK2/LIMK1/RHOQ/SKA2/SEC13/WASF1/SFN/CENPK/ZWILCH/TIAM2/PPP1CB/FLNA/GMIP/CENPQ/NCK1/RHOV/PFN1/ARHGAP15/ZWINT/ARPC5/KLC3/ARHGAP4/CFTR/ARPC1B/RHOF/ARHGEF9/FMNL1/ACTR3/KNTC1/WASF3/ARHGAP27/BTK/WAS/WIPF1/PLEKHG2/RAC2/SPC25/ARHGAP25/TUBB6/VAV1/TUBA1C/TUBA8/NCF4/ARAP2/CYBA/ARHGAP9/KALRN/CYBB/CENPL/NCKAP1L/NCF2/CIT/NCF1/TUBA4A/ECT2/INCENP/ARHGAP30/RACGAP1/TAGAP/CENPO/ARHGAP22/PRKCA/MAD2L1/FGD2/NOXO1/CDC25C/FMNL2/PRKCB/TUBB2B/CENPE/KIF18A/PRC1/ARHGAP11A/CENPN/BUB1B/CENPF/ERCC6L/CENPI/CDCA8/PLK1/BIRC5/DIAPH3/NUF2/IQGAP3/DEPDC1B/ARHGEF4/SPC24/KIF2C/BUB1/CENPM/S100A9/SKA1/CDC20/AURKB/KIF14/NDC80/TUBB3/CENPA/S100A8
## Count
## R-HSA-877300 48
## R-HSA-453279 65
## R-HSA-194315 151
nrow(rp)
## [1] 84
grep(keyword, rp$Description, ignore.case = TRUE)
## integer(0)
rp2 <- gsePathway(geneList, nPerm = 10000, pvalueCutoff = 0.05, pAdjustMethod = "BH", verbose = FALSE)
## Warning in .GSEA(geneList = geneList, exponent = exponent, minGSSize =
## minGSSize, : We do not recommend using nPerm parameter incurrent and future
## releases
## Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize
## = minGSSize, : You are trying to run fgseaSimple. It is recommended to use
## fgseaMultilevel. To run fgseaMultilevel, you need to remove the nperm argument
## in the fgsea function call.
rp2 <- as.data.frame(rp2)
head(rp2,3)
## ID Description setSize enrichmentScore
## R-HSA-69278 R-HSA-69278 Cell Cycle, Mitotic 446 -0.4881128
## R-HSA-6798695 R-HSA-6798695 Neutrophil degranulation 389 -0.4226073
## R-HSA-194315 R-HSA-194315 Signaling by Rho GTPases 360 -0.4154017
## NES pvalue p.adjust qvalues rank
## R-HSA-69278 -1.883439 0.0001037237 0.004134591 0.003556713 2008
## R-HSA-6798695 -1.620113 0.0001046244 0.004134591 0.003556713 2154
## R-HSA-194315 -1.587254 0.0001051635 0.004134591 0.003556713 1958
## leading_edge
## R-HSA-69278 tags=40%, list=26%, signal=32%
## R-HSA-6798695 tags=41%, list=28%, signal=31%
## R-HSA-194315 tags=38%, list=25%, signal=30%
## core_enrichment
## R-HSA-69278 3796/4609/5693/51529/1874/79902/5702/5048/5982/10714/5983/6117/55920/29781/5905/5683/9793/81929/7443/55835/84131/1459/5708/6714/23165/23225/23198/5691/10592/5885/5704/9663/79980/1763/23310/10376/23141/5594/10213/5685/4176/23354/10762/348235/5718/9134/6396/55722/64105/55055/7027/5500/5692/54801/8243/5686/55559/5690/55166/23636/5111/5696/6502/894/11130/203068/7112/51053/93323/5694/5688/5699/10926/84930/5713/9735/1875/64785/1163/5984/4172/5558/10051/10733/22995/54892/84515/26271/10133/4175/7083/57405/84617/5933/84790/51807/4001/5424/286826/1032/4173/91687/994/8317/4171/891/9688/7277/3619/4174/2237/79172/7153/4067/5578/4085/3161/1871/9837/9918/995/983/79866/9088/5579/5698/64151/84296/157570/347733/23175/1062/81930/9700/1869/10112/23594/55839/890/701/1063/4751/81620/6241/54821/1021/2491/55143/7298/5347/6790/332/83540/8318/22974/990/9232/147841/1870/11004/4998/699/9133/23397/79019/113130/11065/993/220134/4605/991/9212/1029/10403/10381/2305/1058/51512/55388/898
## R-HSA-6798695 5795/10043/10312/10694/5834/23071/2547/5707/6386/8907/683/2992/81619/23593/1729/121260/5211/55754/2519/5702/4831/2720/1509/1512/64386/5223/4893/2665/5683/5777/3310/2212/1832/10097/5708/391/2896/10875/290/79980/10970/56888/5660/5594/6590/10213/7226/25798/6282/5873/5718/10577/5236/7305/51071/3482/11322/4125/5686/567/6515/965/961/81567/3107/9535/11010/7097/84329/10092/80301/5328/4332/203068/719/4033/54509/3684/6793/3683/7133/240/10549/1522/5713/8566/2512/2821/1084/272/968/8876/3687/4973/140885/5337/411/10396/963/3608/51411/23114/1794/929/1535/5788/728/64333/3106/8514/23200/1536/2760/5912/5724/79930/3071/3903/25797/4860/2207/150372/4257/51316/126014/2357/11314/6402/1476/23250/10855/2268/374403/101/1508/23406/1520/3689/5329/201294/230/2171/4069/11240/1075/2215/6556/2950/8836/6280/3934/10326/2919/3101/4318/6279/6518/5317/5646/1116
## R-HSA-194315 1729/79902/10093/5048/4627/10006/5600/55920/2665/5905/10144/23092/9793/6242/81929/121512/55160/23380/10097/7534/4650/10971/613/391/1730/6714/10109/93663/60/4771/2245/79980/10376/5594/6654/91614/5217/57584/3985/3984/23433/348235/6396/8936/2810/64105/55055/26230/5500/2316/51291/55166/4690/171177/5216/55843/11130/10092/147700/393/1080/10095/54509/23229/752/10096/9735/10810/201176/695/7454/7456/64857/5880/57405/9938/84617/7409/84790/51807/4689/116984/1535/64333/8997/1536/91687/3071/4688/11113/653361/7277/1894/3619/257106/29127/117289/79172/58504/5578/4085/221472/124056/995/114793/5579/347733/1062/81930/9055/9824/55839/701/1063/54821/2491/55143/5347/332/81624/83540/128239/55789/50649/147841/11004/699/79019/6280/220134/991/9212/9928/10403/10381/1058/6279
nrow(rp2)
## [1] 95
grep(keyword, rp2$Description, ignore.case = TRUE)
## integer(0)
library(meshes)
## meshes v1.15.0
##
## If you use meshes in published research, please cite the most appropriate paper(s):
##
## Guangchuang Yu.Using meshes for MeSH term enrichment and semantic analyses.Bioinformatics 2018, 34(21):3766-3767, doi:10.1093/bioinformatics/bty410
##
## Attaching package: 'meshes'
## The following object is masked from 'package:DOSE':
##
## geneSim
library(MeSH.Hsa.eg.db)
## Loading required package: MeSHDbi
##
## Attaching package: 'MeSHDbi'
## The following object is masked from 'package:utils':
##
## packageName
emesh <- enrichMeSH(gene, MeSHDb = "MeSH.Hsa.eg.db", database = 'gendoo', category = 'C')
head(emesh)
## ID Description GeneRatio BgRatio
## D016399 D016399 Lymphoma, T-Cell 159/2371 391/16528
## D016403 D016403 Lymphoma, Large B-Cell, Diffuse 173/2371 459/16528
## D003093 D003093 Colitis, Ulcerative 172/2371 474/16528
## D007239 D007239 Infection 149/2371 385/16528
## D015459 D015459 Leukemia-Lymphoma, Adult T-Cell 156/2371 419/16528
## D019698 D019698 Hepatitis C, Chronic 130/2371 317/16528
## pvalue p.adjust qvalue
## D016399 4.042133e-38 9.026083e-35 3.497509e-35
## D016403 2.496510e-36 2.787354e-33 1.080069e-33
## D003093 1.049215e-33 7.809656e-31 3.026156e-31
## D007239 7.143407e-33 3.987807e-30 1.545232e-30
## D015459 4.211671e-32 1.880932e-29 7.288407e-30
## D019698 9.557356e-32 3.556929e-29 1.378271e-29
## geneID
## D016399 6947/10560/638/2261/5618/4843/10/2057/596/10840/2042/1728/7161/3708/1191/6927/3164/10588/9021/5777/2734/836/472/613/8771/5591/6773/581/2280/7422/3710/790/3557/3709/6573/8726/2650/5594/5156/5743/3556/8797/4793/26230/6404/11047/867/27040/567/706/5111/5696/894/1786/11200/578/3659/3459/5699/2113/752/2534/10863/3119/7454/968/4261/3091/3676/3791/4851/6775/6688/84433/7409/4478/8837/10125/3682/3553/5788/4830/6513/10849/637/2242/100/5272/920/8784/5971/7277/962/6772/2120/3135/7293/29078/1612/6614/7153/639/6566/942/3601/1043/6491/5698/6932/10859/919/3695/43/7037/6891/6890/6693/3600/1236/5452/1869/971/7535/83439/3561/3702/4050/1021/7298/916/3560/914/332/1234/9232/3932/8651/3718/2833/29126/3662/974/5588/7850/50943/5008/51513/2672/9047/973/838/875/3559/898/952/3002/4283/6373/10563
## D016403 1287/4843/5327/596/1728/7161/1191/648/3551/6430/2272/27086/399/5777/2212/1832/836/472/8771/7186/57019/581/7422/3557/6573/2213/4791/5743/6282/3329/8797/5734/6480/241/8809/6627/7099/892/6850/2956/567/5111/894/3400/11200/5328/4082/1282/1080/1956/7159/4033/578/3133/54509/3659/1284/3459/2113/3123/7805/60489/3732/3119/5771/7454/968/4261/3091/54/10682/3687/4851/9641/6688/3855/10892/84433/7409/4478/8837/3553/4233/64127/5336/5788/4830/6513/1032/705/637/55824/994/5294/3587/100/5272/2023/4171/891/6772/6624/1051/7293/6614/7153/4067/5578/3569/10320/5292/639/2214/942/958/5142/3601/712/1043/6491/5329/5579/3925/7037/1978/9055/3383/6693/3600/1236/3575/5452/1869/8600/7535/10673/1111/916/5347/6790/3001/921/6401/332/6556/2950/2178/7412/1234/9232/6352/8651/3718/7272/2833/3662/993/974/50943/5008/1029/10663/4318/973/10644/50615/898/259307/952/3002/4283/4316/10563
## D003093 7031/7033/9/1811/7494/7432/4583/6584/4843/3480/3572/10/4485/3306/79148/3382/3485/6423/4214/9863/7122/3291/2169/6583/3856/3479/3551/8639/79589/2272/83998/7098/23600/6550/9021/836/4650/10109/7042/8718/5320/581/6789/4314/5967/3557/4277/6590/2920/5743/6749/1636/3556/3122/2289/3672/7099/2956/5111/3107/7097/3914/3820/1080/1956/3659/8767/3683/7133/2113/3123/7185/6347/3119/5771/7454/8856/968/4261/3091/3687/9641/6688/3855/7096/3162/4689/3682/3553/929/56667/1535/4233/64127/6338/3106/3384/4585/4904/8784/1672/7292/6366/6772/3117/1244/3135/3606/7293/26191/3569/4085/942/2597/958/9966/6948/3689/5329/5579/6367/864/330/6696/9332/6891/3383/6890/6693/3600/1236/3105/8600/890/64170/2153/1111/4050/3560/332/6369/2215/6556/2950/1234/30835/6356/6364/54210/8651/699/2833/8836/51561/3934/50943/1029/2919/5266/6374/4318/321/7941/3627/952/3002/4283/11254/4316/4312/10563/4321
## D007239 9/5733/6337/7079/126/7432/4843/3480/30061/3875/5327/10/3315/125/3306/2053/2157/3479/3551/51478/727/116835/4179/7098/9021/5777/23210/3310/2212/836/871/8771/7186/60/7422/4314/3557/55343/6590/22861/5743/1636/3556/8797/7305/4615/8809/7099/51182/567/5216/3107/7097/2177/3820/1080/3659/3459/8767/4502/7133/5732/6347/3119/695/968/3091/9641/6688/7096/3394/3162/3553/929/64127/10062/3570/2048/3106/1536/3587/100/3455/348/5971/7292/6366/6772/3117/3135/5321/3606/7293/26191/3569/2214/942/3601/995/1043/6948/133/9332/6891/3383/6890/6693/3600/3574/1236/3105/7535/4794/5888/6648/10673/2153/1111/4050/81030/3560/1946/332/2215/6556/2950/717/30835/6356/54210/6352/8651/29126/3662/51561/6280/3934/7850/50943/3290/2919/4318/6279/875/3627/3559/952/3002/4312
## D015459 4680/4602/10560/8912/4582/1154/3214/4843/3213/1960/3667/596/3315/5167/21/9314/1728/267/3708/648/10401/3551/3727/3164/3977/4363/9021/9793/5777/1947/8660/836/472/613/8771/55294/6773/581/7422/10875/3709/10461/1024/4791/8797/5734/4793/6597/867/3635/2956/1633/3115/55697/5111/894/3965/2177/4507/1956/578/5150/3459/7133/2113/3123/2534/1084/272/968/4851/9641/6688/84433/7409/8837/5996/4233/5788/3106/843/637/100/8784/7913/84441/5971/7292/6366/6772/8013/2120/3606/7293/1612/7153/4067/10320/5292/2214/942/2597/5142/3601/995/1043/6491/5329/6367/919/3925/1439/7037/1978/6693/3574/1236/84868/3575/65078/3105/1869/8600/7535/5888/83439/5140/3561/1021/916/3001/332/2950/30835/915/3932/6352/8651/3718/699/2833/10225/3662/114836/50943/5008/924/1029/4318/973/3604/3627/3559/952/3002/6362
## D019698 2674/2705/4582/9547/2690/4843/3480/30061/3875/3667/2719/7043/183/3315/5950/3856/3479/10401/727/4179/7098/399/9021/836/5168/7042/23225/6773/581/7422/4314/3557/55502/4277/5743/1636/3556/8797/8809/7099/3429/5111/3107/5696/7097/4082/3820/1080/3659/3459/7133/3123/91543/6347/3119/4599/968/7036/7052/3855/3394/3553/929/3106/100/3455/8784/4171/348/5465/6366/58191/6772/3117/3606/64135/3569/5292/2214/942/2597/958/983/1230/5698/341/133/3925/6696/7037/9332/6891/6890/3600/1236/3575/3105/8600/6648/8638/10673/2153/916/332/2215/6556/2950/7412/1234/6364/6352/8651/2833/29126/3594/7850/50943/10663/4318/838/3627/952/1116/3002/4283/3620/6373/4312/6362/10563
## Count
## D016399 159
## D016403 173
## D003093 172
## D007239 149
## D015459 156
## D019698 130
nrow(emesh)
## [1] 1310
grep(keyword, emesh$Description, ignore.case = TRUE)
## [1] 237 358 503
emesh2 <- gseMeSH(geneList, MeSHDb = "MeSH.Hsa.eg.db", database = 'gene2pubmed', category = "G")
## preparing geneSet collections...
## GSEA analysis...
## Warning in .GSEA(geneList = geneList, exponent = exponent, minGSSize =
## minGSSize, : We do not recommend using nPerm parameter incurrent and future
## releases
## Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize
## = minGSSize, : You are trying to run fgseaSimple. It is recommended to use
## fgseaMultilevel. To run fgseaMultilevel, you need to remove the nperm argument
## in the fgsea function call.
## leading edge analysis...
## done...
## Loading required package: MeSH.db
head(emesh2)
## ID Description setSize enrichmentScore NES
## D003602 D003602 Cytotoxicity, Immunologic 479 -0.5171097 -2.003974
## D005720 D005720 Gamma Rays 481 -0.3762177 -1.458614
## D017951 D017951 Antigen Presentation 478 -0.4828499 -1.870471
## D000705 D000705 Anaphase 464 -0.4094642 -1.585418
## D016192 D016192 Resting Phase, Cell Cycle 467 -0.4062869 -1.572549
## D009336 D009336 Necrosis 436 -0.4094364 -1.579894
## pvalue p.adjust qvalues rank leading_edge
## D003602 0.001024590 0.01114076 0.007477986 1549 tags=41%, list=20%, signal=35%
## D005720 0.001025641 0.01114076 0.007477986 2042 tags=33%, list=26%, signal=26%
## D017951 0.001026694 0.01114076 0.007477986 1610 tags=39%, list=21%, signal=33%
## D000705 0.001027749 0.01114076 0.007477986 2460 tags=38%, list=32%, signal=28%
## D016192 0.001029866 0.01114076 0.007477986 2065 tags=37%, list=26%, signal=29%
## D009336 0.001033058 0.01114076 0.007477986 1742 tags=33%, list=22%, signal=27%
## core_enrichment
## D003602 10376/64750/26270/7852/5594/81704/4277/6590/2176/2213/127544/5898/6452/5743/5873/84937/3329/55666/7305/4615/8809/3122/7099/29940/5069/3482/6850/867/27040/567/965/1464/4690/3115/5216/89845/961/5111/10525/3107/6502/811/7097/3965/4217/11200/899/432/3820/203068/1956/55008/84876/3133/3127/3459/4502/29121/3683/7133/3123/2534/10096/60489/3371/8793/7454/3937/3091/29992/3687/7036/3791/5880/963/6775/6688/5817/51191/5552/10892/84433/7409/3394/8837/10125/3162/10507/3682/3553/5336/5788/3106/115290/3384/6351/637/7128/5294/5272/2023/920/3936/3903/962/7292/6366/2207/6772/3135/2357/5321/6402/3606/197259/79626/3569/639/2214/4248/8676/1508/3161/83706/958/6376/3601/3134/9966/1043/3689/201294/10859/6367/919/3383/6890/6693/3600/3574/84868/3575/3105/1869/971/7535/2526/10288/1844/64170/1131/10673/9235/3702/8140/10870/3560/914/6790/3001/921/2215/925/2359/11025/939/9232/915/3932/6352/8651/11006/7272/29126/10225/3662/57823/114836/50943/1029/10578/5551/3783/4318/8645/3604/50615/3627/3559/952/3002/3620/10537/10232/768/6362/10563
## D005720 5052/3658/355/4609/26524/10200/1072/4691/23350/87178/1509/2189/4436/860/10449/6117/64782/10059/5757/3251/836/10097/8525/7486/472/26986/8771/7186/6598/64393/5591/55294/23198/5691/581/835/7422/6477/580/10376/5594/22948/2176/6446/7226/4176/5743/2810/9188/8091/6275/5500/8243/6597/834/25788/1633/5111/11010/7097/11200/2177/10885/1956/578/5901/3659/348654/5688/3037/10926/23657/2678/5902/84930/5371/4521/5954/10096/813/8407/695/5984/3091/8876/140885/26271/4851/7083/5933/7409/8837/3162/3553/4233/4001/5424/10849/637/64421/994/2023/920/55215/675/891/9688/5971/51514/6772/1789/3135/6300/3606/2237/8877/7153/1410/650/7516/958/995/983/29128/6615/262/330/3930/3383/1869/7535/5888/6648/83990/55247/9787/1111/146956/1021/641/5347/6790/10481/2175/332/2950/8438/22974/25984/10635/993/1029/5031/2672/2305/4318/55388/898/1116/3897
## D017951 972/6477/80176/290/5704/5660/3108/10376/64750/8726/26270/7852/5594/4277/2213/5685/127544/5873/5718/84937/3329/1445/4615/3122/5692/7099/9474/2091/11047/5686/5690/567/965/10457/3115/3107/5696/6502/811/7097/3965/899/1080/55008/4033/3133/3659/3127/7498/5694/5688/5699/23657/64167/2113/6632/3123/3059/5713/5371/5641/6347/3119/2821/4261/7456/3687/3111/4973/140885/7052/963/4851/6688/3109/51191/5796/7409/3394/3162/4689/1794/3553/929/64127/5788/3106/115290/6351/637/1536/3587/920/951/5971/1525/7292/6366/50856/2207/6772/3117/27071/2120/3135/126014/7167/5293/1510/7293/6614/26191/9398/3569/639/942/1508/221472/3161/84166/958/6376/3601/3134/9966/1520/2146/983/5698/6932/10859/341/919/10437/4360/3118/25939/7037/9332/923/6891/3383/6890/3600/3574/1236/3575/3105/7535/176/10288/64581/10673/916/914/332/925/2359/3902/1234/30835/11025/6364/915/3932/6352/29126/3662/51561/6280/974/50943/9582/926/3120/10578/3783/4318/973/3604/3112/1116/3002/3620/10537
## D000705 5714/23279/7280/1994/27097/1019/10000/11117/57520/5049/5689/22919/1783/5717/9985/5687/191/57122/7532/5479/9690/8454/5721/22944/301/9183/7321/2313/54464/51144/10171/10426/7431/9972/5707/23173/6629/3796/4609/23381/1072/5693/51529/9136/8555/170506/55183/5702/154810/6117/55920/5683/81929/55233/23481/5708/7486/10973/2896/1159/5591/55294/23198/5691/5885/86/55131/5704/79980/64750/5464/10213/5685/3984/348235/5718/3607/3329/55666/55055/7027/84259/5692/7296/2037/8243/6597/5686/25788/54205/5690/8986/10436/5696/6502/11130/11200/10459/203068/51053/5901/5694/5688/5699/84930/5713/9735/10293/10940/10051/26271/57405/2182/27338/4001/285643/675/891/11113/29899/4860/1894/3619/8291/29127/7153/4085/25902/3832/983/5698/230/3930/3925/1062/81930/9055/9700/10112/3801/3833/5888/890/701/1063/4751/81620/6241/1111/54821/641/5347/6790/24137/332/8438/83540/128239/22974/990/9232/147841/11004/699/7272/113130/11065/220134/991/9212/9928/10403/2305/1058/51512/898/10232
## D016192 3269/9150/1906/5707/355/912/9097/4609/1072/5693/51529/1874/292/5702/22821/5982/6612/5983/3301/4363/5683/5777/836/1459/7187/84108/5708/472/6714/7186/6598/7042/51379/5691/581/4771/440/3710/6786/5704/5594/3631/10213/5685/5743/3985/5718/29933/91582/8797/7027/5692/11047/892/5686/867/9170/2619/5690/10212/961/5111/5696/6502/894/7097/1786/11200/1956/7112/51053/3659/5694/5688/5699/5713/7185/10189/1875/8477/5984/6839/3937/8856/3091/5880/4851/4175/10397/5933/7409/3394/3162/3553/9934/3106/843/5424/5997/1032/4173/7128/5294/5724/920/8784/7913/5915/675/891/6197/5465/100133941/3159/5727/50486/84879/29127/3757/1612/7153/5800/5578/3569/1508/1871/9966/995/983/7345/5329/5698/6932/330/3838/3574/3575/3105/1869/971/2526/890/9046/6648/1131/5214/3561/81620/1021/914/6790/332/925/1234/655/939/22974/990/1870/3718/29126/11065/993/51561/4605/991/50943/1029/5031/5551/3783/898/952/3002
## D009336 7486/837/6714/7186/2896/7042/5591/58/8718/5320/2542/581/835/7422/10630/4314/3557/8717/25937/7852/5594/10461/2920/6446/7226/24145/5743/6749/4017/29933/8797/4615/7099/1317/5069/255738/7873/834/8260/2956/23636/961/5111/10525/7097/4217/1080/1152/1956/7112/3663/719/578/57162/192111/6472/7133/240/3123/5954/6347/11168/8477/8856/3091/284/8542/4973/7096/8837/3162/3553/4233/64127/3570/3106/843/6513/4173/7128/4904/675/84441/348/6646/5465/100133941/1244/123/2120/1051/2357/3606/59341/197259/10855/7153/5578/3569/6566/101/942/1508/958/2146/7345/29128/6615/133/6696/60386/3383/1063/6648/2153/27242/81030/89790/7298/5347/6790/3945/332/717/11025/6364/6352/29126/6280/7850/1029/2919/10578/5551/2305/4318/6279/7941/3627/5080/3002/2707/4316/768
nrow(emesh2)
## [1] 220
grep(keyword, emesh2$Description, ignore.case = TRUE)
## [1] 196