suppressPackageStartupMessages({
  library(magrittr)
  library(clusterProfiler)
  library(SummarizedExperiment)
  library(GenomicSignatures)
  library(AnnotationDbi)
  library(org.Hs.eg.db)
})

clusterProfiler::enrichr for overrepresentation analysis (ORA) and clusterProfiler::GSEA for gene set enrichment analysis. ORA takes genes with a significant expression change (it doesn’t contain all the genes), while GSEA take the full gene vector ordered by direction.

‘When to subset genes’ is still an on-going issue. Currently, I’m selecting gene sets for downstream annotation, and subset training data to common genes before row-normalization. But it might be better to keep all the genes longer, so I can apply different annotation database without repeating pre-processing.

1 Load avgLoading

PCAclusters includes avgLoading calcualted from 13,570 PCs (677 refine.bio + 10 PC1s from neg.control + TCGA-COAD training dataset) using hierarchical clustering (Spearman correlation + ward.D agglomeration).

dat_dir <- "~/data2/Genomic_Super_Signature/refinebio/methods/5_Hierarchical_Clustering_with_SpikeInTCGA"
PCclusters <- readRDS(file.path(dat_dir, "PCclusters.rds"))

2 PCcluster_263

Based on validation in refinebio/methods/5_Hierarchical_Clustering_with_SpikeInTCGA.Rmd, Cl4935_263 is very highly correlated with one of the top 8 PCs of TCGA-BRCA dataset.

which(PCclusters$cluster == 263)
## ERP016798.PC2 SRP191514.PC2 
##           322         13302

2.1 Involved studies

PCcluster_263 contains two PCs, ERP016798.PC2 and SRP191514.PC2.

mesh_terms <- readRDS("~/data2/Genomic_Super_Signature/refinebio/data/MeSH_terms_889refinebio.rds")
mesh_terms_sub <- mesh_terms[which(mesh_terms$identifier %in% c("ERP016798", "SRP191514")),]
table(mesh_terms_sub$name)
## 
##                  Breast        Breast Neoplasms      Cell Proliferation 
##                       1                       2                       1 
##          Control Groups                Exercise        Exercise Therapy 
##                       1                       1                       1 
##                  Female                  Humans       Preoperative Care 
##                       1                       2                       1 
##                 RNA-Seq      Sedentary Behavior           Transcriptome 
##                       1                       1                       1 
## Transcriptome Profiling                    Utah  Whole Exome Sequencing 
##                       1                       1                       1

ERP016798 is RNA-Seq was used to profile the transcriptomes of 63 breast cancer patient tumour samples (51 x ER+, 12 x triple negative) collected from the Utah Breast Cancer Study (UBCS).

SRP191514 is RNAseq analysis of primary breast cancer samples Overall design: Inactive women with newly diagnosed breast cancer were randomized to an exercise intervention or mind-body control group, and participated in the study between enrollment and surgery (mean 29.3 days). Tumor were collected at baseline and surgery..

2.2 Format for enrichment analysis

For ORA, we need a vector of gene IDs. For GSEA, we need a ranked list of genes. Gene list for GSEA should meet three criteria: 1) numeric vector, 2) every number is named by the corresponding gene ID, and 3) sorted in decreasing order.

al <- PCclusters$avgLoading[,263]   ## feature 1: numeric vector
names(al) <- AnnotationDbi::mapIds(org.Hs.eg.db, keys=names(al), 
                                   column='ENTREZID', keytype='SYMBOL')   ## feature 2: named vector
## 'select()' returned 1:many mapping between keys and columns
al <- sort(al, decreasing = TRUE)   ## feature 3: decreasing order

geneList <- al
gene <- names(geneList)[abs(geneList) > mean(abs(geneList))]
keyword <- "breast"

3 Universal enrichment analysis

3.1 WikiPathways analysis

wpgmtfile <- "~/data2/Genomic_Super_Signature/GSEA/data/wikipathways-20200510-gmt-Homo_sapiens.gmt"
wp2gene <- read.gmt(wpgmtfile)
wp2gene <- wp2gene %>% tidyr::separate(term, c("name","version","wpid","org"), "%")
wpid2gene <- wp2gene %>% dplyr::select(wpid, gene) #TERM2GENE
wpid2name <- wp2gene %>% dplyr::select(wpid, name) #TERM2NAME

wp <- enricher(gene, TERM2GENE = wpid2gene, TERM2NAME = wpid2name)
head(wp)
##            ID                             Description GeneRatio  BgRatio
## WP3937 WP3937 Microglia Pathogen Phagocytosis Pathway   26/1582  40/7368
## WP179   WP179                              Cell Cycle   55/1582 122/7368
## WP2446 WP2446           Retinoblastoma Gene in Cancer   43/1582  88/7368
## WP3929 WP3929             Chemokine signaling pathway   64/1582 165/7368
## WP2328 WP2328                     Allograft Rejection   41/1582  90/7368
## WP619   WP619     Type II interferon signaling (IFNG)   22/1582  37/7368
##              pvalue     p.adjust       qvalue
## WP3937 3.451813e-09 9.318682e-07 7.498803e-07
## WP179  3.720033e-09 9.318682e-07 7.498803e-07
## WP2446 9.860562e-09 1.646714e-06 1.325121e-06
## WP3929 2.410516e-07 2.557582e-05 2.058103e-05
## WP2328 2.552477e-07 2.557582e-05 2.058103e-05
## WP619  5.593955e-07 4.670952e-05 3.758745e-05
##                                                                                                                                                                                                                                                                                                                                         geneID
## WP3937                                                                                                                                                                                                    10451/5777/7305/6850/27040/10095/3684/5880/7409/4689/1535/5336/1536/5294/3071/4688/3055/653361/2207/5293/4067/712/3689/713/714/54210
## WP179                                                             10912/7043/6500/7534/10971/472/7042/5591/5885/4176/9134/2810/7027/8243/5111/6502/894/11200/10459/10926/1875/4172/4175/5933/3066/1032/4173/994/8317/4171/891/4174/1871/995/983/9088/9700/1869/23594/890/1111/1021/5347/8318/990/9232/1870/4998/699/9133/7272/993/991/1029/898
## WP2446                                                                                                                     5591/8819/10592/580/4176/9134/7027/8243/3148/2956/1633/5111/6502/1786/5947/5984/6839/4172/10733/4175/4173/994/8317/891/7153/1871/983/3925/1869/890/81620/6241/1111/1021/7298/24137/8318/1870/4998/9133/7272/993/898
## WP3929 9547/10451/25759/56477/115/111/112/57580/3551/2791/4893/9844/6773/2185/5330/7852/5594/6654/109/10235/1445/4793/26230/409/2870/7454/59345/5880/23533/7409/1794/6351/53358/5294/113/3055/653361/6366/58191/6772/5293/2268/4067/6376/1230/5579/6367/1236/5613/3702/6369/6356/6364/6352/3718/2833/2921/10663/6374/2786/3627/4283/6373/10563
## WP2328                                                                                                                                 730/727/836/1459/7422/3108/10376/5156/3122/3115/3107/3133/3127/3123/3119/3111/3109/3553/3106/6366/6772/3117/3135/942/958/3134/712/713/714/3118/3105/717/50943/10578/5551/3559/3112/3002/4283/6373/10563
## WP619                                                                                                                                                                                                                            4843/9021/3433/6773/5967/3659/3459/4261/6688/3394/3553/3106/1536/6772/5698/3383/2633/6890/8651/3662/3627/4283
##        Count
## WP3937    26
## WP179     55
## WP2446    43
## WP3929    64
## WP2328    41
## WP619     22
# DT::datatable(as.data.frame(wp)[c("ID", "Description", "GeneRatio", "BgRatio", "p.adjust", "Count")])

wp2 <- GSEA(geneList, TERM2GENE = wpid2gene, TERM2NAME = wpid2name, verbose = FALSE)
head(wp2)
##            ID                                                   Description
## WP2446 WP2446                                 Retinoblastoma Gene in Cancer
## WP2328 WP2328                                           Allograft Rejection
## WP179   WP179                                                    Cell Cycle
## WP4536 WP4536 Genes related to primary cilium development (based on CRISPR)
## WP2877 WP2877                                    Vitamin D Receptor Pathway
## WP4754 WP4754                                       IL-18 signaling pathway
##        setSize enrichmentScore       NES       pvalue     p.adjust      qvalues
## WP2446      82      -0.6256003 -2.060696 5.427469e-08 1.776214e-05 1.552518e-05
## WP2328      58      -0.6819629 -2.114797 7.929527e-08 1.776214e-05 1.552518e-05
## WP179      115      -0.5591999 -1.926600 4.398817e-07 6.159687e-05 5.383937e-05
## WP4536      73       0.5936978  2.244666 5.499721e-07 6.159687e-05 5.383937e-05
## WP2877     110      -0.5475147 -1.877940 1.863276e-06 1.669496e-04 1.459240e-04
## WP4754     198      -0.4735258 -1.737448 6.748606e-06 5.038959e-04 4.404353e-04
##        rank                   leading_edge
## WP2446 1918 tags=57%, list=25%, signal=44%
## WP2328 1231 tags=55%, list=16%, signal=47%
## WP179  1759 tags=45%, list=23%, signal=36%
## WP4536 1099 tags=42%, list=14%, signal=37%
## WP2877 1394 tags=43%, list=18%, signal=36%
## WP4754 1912 tags=40%, list=25%, signal=31%
##                                                                                                                                                                                                                                                                                                                                                                                                 core_enrichment
## WP2446                                                                                                                                                                 2189/10714/5983/6117/5591/8819/10592/580/4176/9134/7027/8243/3148/2956/1633/5111/6502/1786/5947/5984/6839/4172/10733/4175/4173/994/8317/891/7153/1871/983/3925/1869/890/81620/6241/1111/1021/7298/24137/8318/1870/4998/9133/7272/993/898
## WP2328                                                                                                                                                                                                                                             3115/3107/3133/3127/3123/3119/3111/3109/3553/3106/6366/6772/3117/3135/942/958/3134/712/713/714/3118/3105/717/50943/10578/5551/3559/3112/3002/4283/6373/10563
## WP179                                                                                                                                              7534/10971/472/7042/5591/5885/4176/9134/2810/7027/8243/5111/6502/894/11200/10459/10926/1875/4172/4175/5933/3066/1032/4173/994/8317/4171/891/4174/1871/995/983/9088/9700/1869/23594/890/1111/1021/5347/8318/990/9232/1870/4998/699/9133/7272/993/991/1029/898
## WP4536                                                                                                                                                                                                                     123016/79600/8100/9742/585/79659/56912/403/79867/51626/129880/54585/80199/91147/112752/150737/23059/582/57728/28981/57545/583/11116/255758/26146/80173/55112/23288/54903/27241/84455
## WP2877                                                                                                                                                                 5734/6275/892/219855/5467/3965/3400/3663/3684/6546/240/3123/57167/215/3091/3394/10125/929/1032/7128/7292/3117/50486/639/958/25928/3294/1305/29785/3118/6696/8600/1946/54210/6273/3662/6280/1594/5588/6819/1029/838/6279/875/898/5653/768
## WP4754 22821/860/7076/29781/5905/9021/7114/56886/836/2896/58/55294/581/7422/4314/23/5594/1674/10452/2920/4791/5743/4615/8809/8078/54205/567/6004/3659/8985/274/7185/6347/3654/5337/7052/8837/3162/3553/10062/6351/84823/637/7128/2023/7913/4688/653361/58191/1051/3757/3606/10068/5578/3569/650/8698/5579/330/3925/6696/3383/8600/3801/4794/890/4050/5778/6364/3932/6352/9133/2921/4318/321/7941/3559/4312/6362
# DT::datatable(as.data.frame(wp2))

3.2 Cell Markder

cell_markers <- vroom::vroom('http://bio-bigdata.hrbmu.edu.cn/CellMarker/download/Human_cell_markers.txt') %>%
   tidyr::unite("cellMarker", tissueType, cancerType, cellName, sep=", ") %>% 
   dplyr::select(cellMarker, geneID) %>%
   dplyr::mutate(geneID = strsplit(geneID, ', '))
## Rows: 2,868
## Columns: 15
## Delimiter: "\t"
## chr [15]: speciesType, tissueType, UberonOntologyID, cancerType, cellType, cellName, CellO...
## 
## Use `spec()` to retrieve the guessed column specification
## Pass a specification to the `col_types` argument to quiet this message

cm <- enricher(gene, TERM2GENE = cell_markers, minGSSize = 1)
cm <- as.data.frame(cm)
rownames(cm) <- NULL

cm2 <- GSEA(geneList, TERM2GENE = cell_markers, verbose = FALSE)
## Warning in fgseaMultilevel(...): For some pathways, in reality P-values are less
## than 1e-10. You can set the `eps` argument to zero for better estimation.
cm2 <- as.data.frame(cm2)
rownames(cm2) <- NULL
DT::datatable(cm[c("ID", "Description", "GeneRatio", "BgRatio", "p.adjust", "Count")])
grep(keyword, cm$Description, ignore.case = TRUE)
## [1] 83
grep(keyword, cm2$Description, ignore.case = TRUE)
## integer(0)

3.3 MSigDB analysis

library(msigdbr)
m_c2 <- msigdbr(species = "Homo sapiens", category = "C2") %>% 
  dplyr::select(gs_name, entrez_gene)
head(m_c2, 3)
## # A tibble: 3 x 2
##   gs_name                  entrez_gene
##   <chr>                          <int>
## 1 ABBUD_LIF_SIGNALING_1_DN       79026
## 2 ABBUD_LIF_SIGNALING_1_DN       91369
## 3 ABBUD_LIF_SIGNALING_1_DN        8289
msC2 <- enricher(gene, TERM2GENE=m_c2)
msC2_2 <- GSEA(geneList, TERM2GENE = m_c2)
## preparing geneSet collections...
## GSEA analysis...
## Warning in fgseaMultilevel(...): For some pathways, in reality P-values are less
## than 1e-10. You can set the `eps` argument to zero for better estimation.
## leading edge analysis...
## done...
head(msC2)
##                                                                            ID
## FARMER_BREAST_CANCER_BASAL_VS_LULMINAL FARMER_BREAST_CANCER_BASAL_VS_LULMINAL
## POOLA_INVASIVE_BREAST_CANCER_UP               POOLA_INVASIVE_BREAST_CANCER_UP
## SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6     SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6
## DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP       DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP
## KOBAYASHI_EGFR_SIGNALING_24HR_DN             KOBAYASHI_EGFR_SIGNALING_24HR_DN
## VANTVEER_BREAST_CANCER_ESR1_DN                 VANTVEER_BREAST_CANCER_ESR1_DN
##                                                                   Description
## FARMER_BREAST_CANCER_BASAL_VS_LULMINAL FARMER_BREAST_CANCER_BASAL_VS_LULMINAL
## POOLA_INVASIVE_BREAST_CANCER_UP               POOLA_INVASIVE_BREAST_CANCER_UP
## SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6     SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6
## DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP       DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP
## KOBAYASHI_EGFR_SIGNALING_24HR_DN             KOBAYASHI_EGFR_SIGNALING_24HR_DN
## VANTVEER_BREAST_CANCER_ESR1_DN                 VANTVEER_BREAST_CANCER_ESR1_DN
##                                        GeneRatio   BgRatio       pvalue
## FARMER_BREAST_CANCER_BASAL_VS_LULMINAL  190/2633 328/20738 1.155881e-85
## POOLA_INVASIVE_BREAST_CANCER_UP         173/2633 292/20738 3.754383e-80
## SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6    207/2633 459/20738 2.040067e-67
## DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP     168/2633 323/20738 3.521104e-66
## KOBAYASHI_EGFR_SIGNALING_24HR_DN        145/2633 252/20738 7.268922e-65
## VANTVEER_BREAST_CANCER_ESR1_DN          148/2633 269/20738 1.238764e-62
##                                            p.adjust       qvalue
## FARMER_BREAST_CANCER_BASAL_VS_LULMINAL 5.374845e-82 2.227808e-82
## POOLA_INVASIVE_BREAST_CANCER_UP        8.728940e-77 3.618039e-77
## SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6   3.162104e-64 1.310653e-64
## DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP    4.093283e-63 1.696616e-63
## KOBAYASHI_EGFR_SIGNALING_24HR_DN       6.760098e-62 2.801978e-62
## VANTVEER_BREAST_CANCER_ESR1_DN         9.600419e-60 3.979257e-60
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            geneID
## FARMER_BREAST_CANCER_BASAL_VS_LULMINAL                                                                                                         7031/7033/57758/25803/1555/80736/9/10753/2674/7802/771/65055/8416/22977/5733/2330/4602/2593/18/9518/6337/10560/27289/25800/9254/540/2947/36/55733/11226/8800/8821/374/10610/81031/23030/23171/10916/51466/388/3572/80310/3875/2203/55614/10512/10140/51809/7357/4329/3667/596/64087/4832/23194/7466/55568/54681/7043/3315/6405/11059/5087/54894/9135/51097/200734/5914/10455/9368/2530/1728/253782/7108/5002/2194/6720/3487/51474/3856/10965/83752/7020/51181/3693/2954/582/8490/57728/11163/23600/644/4116/23198/86/55144/22929/22978/5500/9474/892/9444/4690/6502/1054/8898/60487/1736/57162/4783/8833/6632/10549/23229/6347/5621/55240/84617/4478/9957/55689/3066/10479/6251/4904/4781/10797/29967/9654/123/2744/23683/1051/1466/4174/29078/4067/6566/1871/6376/688/1183/6491/4651/6285/262/133/4281/3930/2171/8543/23590/6648/5613/5214/83439/23321/23432/1111/23650/24137/3945/2950/1824/22974/9232/9435/699/7272/10635/991/9928/1029/10403/2305/1058/5266/6374/55388/10644/26227/597/6518/898/7368/5317/1116/51083/3854/4321
## POOLA_INVASIVE_BREAST_CANCER_UP                                                                                                                                                                                                                                  4680/1048/9518/5284/26047/27132/1300/6571/90993/4016/2212/26585/6713/9935/972/4314/7852/11015/4327/9134/23213/8809/6404/55843/11010/1301/3965/4332/6004/4033/54509/3123/3059/7805/7185/91543/813/3371/8477/695/1880/3937/3687/3676/963/7083/6775/3109/57405/9938/5552/3394/1794/5788/6351/4173/113/23643/55215/4688/3669/6646/29899/962/7292/2207/51514/80896/3117/51316/1368/6402/3606/9123/7153/11339/2214/586/4085/10257/942/9837/958/3832/22797/23406/1520/983/1043/3689/1230/5329/5579/64151/5341/10859/341/10437/9056/50515/1439/6503/9332/9055/923/2633/1236/10112/4069/10288/890/701/11184/1063/8530/4751/64581/9051/3561/9787/6241/9235/3702/8140/56992/4050/641/7298/914/6790/3001/1075/332/2215/2359/7412/1824/939/22974/6356/9232/915/3932/11004/11006/9133/2833/10635/974/991/7804/3957/9582/10403/10578/1058/4318/973/7941/597/3627/27074/952/6999/3002/25975/4283/6373/27299/4312/6362/10563/4321
## SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6   8614/81621/5167/11116/4893/79677/3843/10059/55233/1841/10767/1832/25804/28998/5591/8819/23225/10592/7422/9462/790/79980/1763/23310/23141/205/112950/22948/10452/5217/22929/5898/55326/5718/9134/3556/8936/55720/3052/55055/6723/6627/7027/23160/9474/6628/11047/5686/3148/55907/2956/5690/55166/1633/23636/5467/5111/11130/5352/5230/78999/5901/2937/8767/5688/10926/10622/10096/9735/29028/64785/8851/5984/5558/10733/54892/26271/56942/4175/7083/5817/57405/5933/27338/55689/4001/4830/3066/6513/1032/11332/4173/55110/54913/3070/1678/55215/8317/675/10797/891/7004/29899/7277/10460/4860/4704/2643/51514/3159/123/29127/6715/4174/9123/7153/7849/4603/6566/11339/6182/4085/3161/9837/2597/3832/9918/2146/995/983/64151/84296/133/3925/1062/81930/3838/1978/9055/10112/79814/55839/890/701/1063/6648/5214/4751/83990/23149/55247/81620/4647/9787/6241/1111/8140/56992/54821/2491/55143/7298/6790/24137/2175/3945/332/8438/8318/22974/990/9156/9232/11004/4998/699/9133/23397/7272/79019/8836/11065/10635/993/220134/4605/991/9212/9928/9582/55355/10874/1029/146909/79733/10403/1138/2305/1058/51512/55388/875/3559/898/7368/29968/4321
## DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP                                                                                                                                                                                                          7031/123099/2674/771/8614/4602/25800/7494/11001/7869/64798/374/6584/26018/596/6478/9368/403/8204/3487/55540/9424/7374/7443/55835/84131/3251/64858/25804/10592/8914/580/79980/1763/23310/4277/2176/29893/4176/9134/3556/55526/23213/55055/55157/2289/7027/25788/9942/5111/6502/11130/1786/29089/2177/7112/51053/122769/56915/93323/64116/84930/9735/29028/64785/7164/10293/5984/6839/4172/10733/10682/54892/84515/26271/4175/7083/5933/4001/4830/5424/6513/4173/91687/3070/55215/675/4171/11113/10460/51514/3619/8208/4796/29127/4174/2237/79172/7153/4603/79723/7516/9837/3832/9918/983/29128/6491/9088/64151/3925/157570/3613/9055/9700/23590/9824/1869/3833/5888/10721/55839/890/701/83990/81620/9787/6241/1111/8140/641/2491/7298/5347/6790/24137/2175/144455/332/8438/8318/128239/22974/55789/990/9156/9232/147841/1870/11004/699/9133/23397/7272/79019/113130/8836/11065/4605/9212/79733/63967/1138/2305/51512/8645/55388/83879
## KOBAYASHI_EGFR_SIGNALING_24HR_DN                                                                                                                                                                                                                                                                                                                                                  6947/8309/374/1846/55568/8870/200734/5905/7374/7443/8771/10528/3655/10592/8914/5433/580/79980/23310/25937/29893/4176/9134/55055/8091/6723/6627/7027/3148/25788/2956/51182/10212/5111/11130/899/7398/203068/7112/2119/51053/10926/6632/5902/54517/7371/29028/64785/1163/5984/4172/10051/10733/54892/56942/4175/7083/57405/84617/27338/4233/4001/4830/84823/4173/3070/55215/4171/891/29899/1894/51514/50486/29127/4174/4953/2237/8877/7153/4603/8061/4085/3161/9837/6376/7378/3832/2146/983/6491/9088/64151/28231/2171/3838/9055/9700/1869/23594/5888/55839/890/701/4751/8638/81620/9787/6241/56992/54821/641/55143/7298/5347/6790/24137/332/8318/22974/990/9156/11004/4998/136/699/23397/7272/79019/11065/10635/993/4605/7039/991/9212/9928/55355/146909/79733/10403/1058/51512/55388/29968/2707
## VANTVEER_BREAST_CANCER_ESR1_DN                                                                                                                                                                                                                                                                                                                                           29094/51465/9019/23198/4771/440/55343/5236/9519/9749/5500/6281/892/7347/4690/2230/1054/11010/8898/483/10477/6768/9111/80727/23216/8833/274/11173/8566/7371/7388/10130/55240/5558/3091/140885/64764/10133/4175/5552/3855/3608/10397/4478/1535/8568/1827/5962/22808/1536/6251/7128/84230/51700/3455/4904/2023/1672/5360/29899/6624/4828/8291/1466/4174/1476/445/4953/1612/4067/5292/2597/6376/3601/9918/114793/1183/6948/3689/135112/6491/4651/10859/262/133/4281/3613/23175/8543/2633/51560/4794/2526/1844/6648/5214/83439/54757/84706/27242/641/84002/55143/4064/23650/11240/2175/3945/1075/81624/1824/11025/8438/6352/11004/11182/9435/699/9133/7272/25984/4605/991/1001/9582/55355/5031/3101/3783/1058/8645/26227/56938/145864/597/83879/6518/27074/7368/5317/1116/29968/25975/3620/4316/768/6362/3854
##                                        Count
## FARMER_BREAST_CANCER_BASAL_VS_LULMINAL   190
## POOLA_INVASIVE_BREAST_CANCER_UP          173
## SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6     207
## DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP      168
## KOBAYASHI_EGFR_SIGNALING_24HR_DN         145
## VANTVEER_BREAST_CANCER_ESR1_DN           148
head(msC2_2)
##                                                                                          ID
## BASAKI_YBX1_TARGETS_UP                                               BASAKI_YBX1_TARGETS_UP
## BENPORATH_CYCLING_GENES                                             BENPORATH_CYCLING_GENES
## BENPORATH_ES_1                                                               BENPORATH_ES_1
## BENPORATH_PROLIFERATION                                             BENPORATH_PROLIFERATION
## BERENJENO_TRANSFORMED_BY_RHOA_UP                           BERENJENO_TRANSFORMED_BY_RHOA_UP
## BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP
##                                                                                 Description
## BASAKI_YBX1_TARGETS_UP                                               BASAKI_YBX1_TARGETS_UP
## BENPORATH_CYCLING_GENES                                             BENPORATH_CYCLING_GENES
## BENPORATH_ES_1                                                               BENPORATH_ES_1
## BENPORATH_PROLIFERATION                                             BENPORATH_PROLIFERATION
## BERENJENO_TRANSFORMED_BY_RHOA_UP                           BERENJENO_TRANSFORMED_BY_RHOA_UP
## BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP
##                                               setSize enrichmentScore       NES
## BASAKI_YBX1_TARGETS_UP                            203      -0.6074380 -2.225255
## BENPORATH_CYCLING_GENES                           431      -0.4956352 -1.898459
## BENPORATH_ES_1                                    248      -0.5589326 -2.078097
## BENPORATH_PROLIFERATION                           110      -0.7387197 -2.535434
## BERENJENO_TRANSFORMED_BY_RHOA_UP                  404      -0.5545070 -2.122571
## BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP     129      -0.6788072 -2.374899
##                                               pvalue  p.adjust      qvalues
## BASAKI_YBX1_TARGETS_UP                         1e-10 4.282e-09 3.314737e-09
## BENPORATH_CYCLING_GENES                        1e-10 4.282e-09 3.314737e-09
## BENPORATH_ES_1                                 1e-10 4.282e-09 3.314737e-09
## BENPORATH_PROLIFERATION                        1e-10 4.282e-09 3.314737e-09
## BERENJENO_TRANSFORMED_BY_RHOA_UP               1e-10 4.282e-09 3.314737e-09
## BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP  1e-10 4.282e-09 3.314737e-09
##                                               rank
## BASAKI_YBX1_TARGETS_UP                        1475
## BENPORATH_CYCLING_GENES                       1283
## BENPORATH_ES_1                                1197
## BENPORATH_PROLIFERATION                       1340
## BERENJENO_TRANSFORMED_BY_RHOA_UP              2347
## BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP 1573
##                                                                 leading_edge
## BASAKI_YBX1_TARGETS_UP                        tags=49%, list=19%, signal=41%
## BENPORATH_CYCLING_GENES                       tags=34%, list=16%, signal=30%
## BENPORATH_ES_1                                tags=38%, list=15%, signal=33%
## BENPORATH_PROLIFERATION                       tags=75%, list=17%, signal=63%
## BERENJENO_TRANSFORMED_BY_RHOA_UP              tags=60%, list=30%, signal=45%
## BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP tags=65%, list=20%, signal=53%
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                core_enrichment
## BASAKI_YBX1_TARGETS_UP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          29893/4176/10762/348235/2810/55055/6627/84259/2316/3148/10212/2618/11130/26147/122769/4502/5694/11164/192111/10602/10189/3654/4172/7083/4501/84617/3608/84823/4173/1663/55215/4171/891/9688/7277/10785/51514/51316/2744/3918/4494/4174/2237/79172/4603/11339/4495/4085/9837/23406/9918/983/79866/29128/3838/9055/9700/10112/23594/5888/55839/890/701/4751/1111/27242/8140/2491/55143/7298/5347/6790/24137/144455/332/2950/81624/83540/22974/55789/990/9232/147841/11004/6273/699/9133/79019/11065/991/9212/55355/10874/10403/1058/51512/55388/387103/9982/3897
## BENPORATH_CYCLING_GENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                8975/3148/2619/55166/10238/5111/80308/11130/29089/11200/899/2177/7398/7112/51053/1736/1122/2870/5901/9585/93323/54972/2653/3110/84930/9712/2534/1875/29028/64785/1163/10293/5984/5558/3091/10051/3111/4973/84515/9829/4175/3608/6581/27338/8837/4233/4001/8568/1827/1032/4173/91687/994/3070/1663/51700/55215/8317/4171/891/11113/29899/10460/1894/51514/6772/100133941/1244/4828/8208/6715/5293/4174/2237/10068/7153/650/4085/3161/3832/9918/995/79866/29128/6491/9088/262/4281/3930/1062/8543/3838/9055/9700/9824/1869/3833/5888/10721/890/701/1063/4751/55247/9787/6241/55143/7298/5347/6790/2175/332/7412/8438/83540/8318/22974/55789/990/9156/9232/11004/4998/699/9133/23397/7272/79019/11065/10635/993/991/9212/84057/9928/55355/79733/10403/63967/2305/1058/51512/83879/898/3620
## BENPORATH_ES_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2618/8886/11200/10459/51599/7112/51053/22800/6091/4074/56915/9456/10622/4521/80324/54517/57167/11168/5771/6535/5984/4172/5558/54892/4175/23246/57405/2118/249/4173/8324/3070/7913/4171/10797/891/7004/1525/1894/4257/100133941/1789/3159/23683/4174/29078/2237/6566/11339/4240/11245/3161/983/262/84296/29785/347733/2171/3838/890/701/5163/5613/83439/81620/9787/6241/1111/54821/24137/1075/332/990/9232/3932/11004/4998/699/23397/113130/10635/11040/993/991/9212/7804/10874/1690/55388/10644/875/3620/51083
## BENPORATH_PROLIFERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   84079/84259/5692/3418/51182/5111/1054/2618/29089/6637/51645/7159/11164/9111/51571/10926/6632/5902/29028/64785/1163/5984/4172/5558/59345/56942/5202/3608/3066/5962/55110/7913/4171/29899/51514/8208/29127/1476/7153/79723/4085/2146/983/9088/64151/3930/3925/1062/7037/3838/9055/23590/58528/5888/55839/1063/4751/81620/6241/7298/6790/2175/332/2178/8438/83540/9156/9232/699/9133/7272/79019/113130/10635/6280/4605/84057/7804/9582/10403/1058/83879
## BERENJENO_TRANSFORMED_BY_RHOA_UP              10946/3624/5717/100287932/3692/55320/2730/8662/64425/9588/22822/6634/191/57122/7295/23082/5597/27101/10471/23649/25791/28232/10171/64981/3939/56945/10963/9994/10055/29107/2539/9097/4609/26524/27000/5693/6633/1729/5211/79902/87178/56902/4436/7965/5791/1073/5983/6117/6888/5223/7076/5905/7114/7443/3843/1841/3251/836/1459/7187/83443/25804/58/8819/3433/5691/3655/581/64432/10592/22824/7422/81/10574/86/8914/51703/1763/79101/205/8726/57819/5464/51377/10452/10054/2920/1024/4176/5743/6749/10762/55720/3329/5734/9188/8091/9446/6723/6627/7027/23160/1839/54801/7296/2091/3148/54205/51182/1633/23636/10436/5111/2618/1786/8886/29089/899/5230/7398/7112/1104/23597/483/51053/2870/5901/84844/5688/3037/6632/5902/7371/10189/6347/8407/3371/26472/1163/5984/4172/5558/10051/10733/286827/7083/5817/23246/84617/5933/4478/4830/4839/5424/286826/6513/705/11332/4173/3070/7128/2710/84230/1678/7913/8317/4171/10797/891/9688/10460/1894/51514/3619/3918/8208/29127/5321/7167/4174/29078/4953/2237/72/7153/8061/6182/586/4085/2597/3832/2146/995/983/29128/5329/133/3930/3925/6696/7037/3838/9055/3105/1869/10112/23594/3833/5888/890/6648/4751/9787/1111/55143/7298/6790/24137/332/81624/8318/128239/990/9156/9232/11004/4998/136/699/7272/113130/10635/4605/991/9212/79733/2305/1058/51512/64093/55388/83879/29968/10232
## BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_UP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                51703/5660/5464/56983/4277/4791/29780/57559/2091/5686/11331/5690/10436/5696/7097/716/130589/26147/6541/79668/4074/4200/3659/51056/29121/5699/7133/80324/1875/10384/10396/5552/5996/1535/1890/10062/4839/843/55110/5912/348/9688/5971/7004/653361/6772/2120/117289/115361/84541/101/10257/3601/1520/5698/10437/330/3695/3383/6890/3600/79814/4794/6648/64581/9235/9466/3001/7412/3902/11182/29126/11040/3594/51513/115362/2305/1058/51512/55388/56938/875/3112/952

MSigDB C2 (curated gene sets) database seems to connect the most breast-related genesets to the loading.

grep(keyword, msC2$Description, ignore.case = TRUE)
##  [1]    1    2    6    8   13   20   22   29   54   62   63   68   90  104  109
## [16]  147  174  179  193  207  232  244  252  276  299  309  317  326  331  357
## [31]  377  382  392  398  402  410  449  483  497  525  540  556  569  573  583
## [46]  598  607  609  650  685  686  705  707  709  736  823  839  928 1071 1158
## [61] 1164 1261 1366 1388 1414 1419 1473 1497 1519 1595 1654 1671 1696 1728 1771
## [76] 1775 1799 1847 1854 1879 1954 1981 1998 2012 2048 2164 2214 2225 2226 2284
## [91] 2322 2336 2388 2394 2476 2534 2552
grep(keyword, msC2_2$Description, ignore.case = TRUE)
##  [1]   6  11  12  13  14  19  20  44  58  74  75  76  77  78  79  80  81  82  83
## [20]  86  87  88  96 104 106 111 121 123 127 135 159 163 165 170 181 183 185 213
## [39] 224 241 246 265 279 297 320 327 339 348 361 392 421 466 469 482 483 524 532
## [58] 588
m_c6 <- msigdbr(species = "Homo sapiens", category = "C6") %>% 
  dplyr::select(gs_name, entrez_gene)
msC6 <- enricher(gene, TERM2GENE=m_c6)
msC6_2 <- GSEA(geneList, TERM2GENE = m_c6)
## preparing geneSet collections...
## GSEA analysis...
## Warning in fgseaMultilevel(...): For some pathways, in reality P-values are less
## than 1e-10. You can set the `eps` argument to zero for better estimation.
## leading edge analysis...
## done...

head(msC6)
##                            ID    Description GeneRatio   BgRatio       pvalue
## MEL18_DN.V1_UP MEL18_DN.V1_UP MEL18_DN.V1_UP   61/1991 140/10897 3.110028e-12
## EGFR_UP.V1_UP   EGFR_UP.V1_UP  EGFR_UP.V1_UP   73/1991 192/10897 6.778155e-11
## RPS14_DN.V1_UP RPS14_DN.V1_UP RPS14_DN.V1_UP   71/1991 190/10897 3.068284e-10
## SNF5_DN.V1_UP   SNF5_DN.V1_UP  SNF5_DN.V1_UP   66/1991 172/10897 3.529191e-10
## P53_DN.V1_UP     P53_DN.V1_UP   P53_DN.V1_UP   70/1991 193/10897 1.837635e-09
## RAF_UP.V1_UP     RAF_UP.V1_UP   RAF_UP.V1_UP   70/1991 193/10897 1.837635e-09
##                    p.adjust       qvalue
## MEL18_DN.V1_UP 5.877954e-10 3.666560e-10
## EGFR_UP.V1_UP  6.405357e-09 3.995544e-09
## RPS14_DN.V1_UP 1.667543e-08 1.040182e-08
## SNF5_DN.V1_UP  1.667543e-08 1.040182e-08
## P53_DN.V1_UP   5.788551e-08 3.610792e-08
## RAF_UP.V1_UP   5.788551e-08 3.610792e-08
##                                                                                                                                                                                                                                                                                                                                                                                                     geneID
## MEL18_DN.V1_UP                                                               771/8614/22885/5327/26018/7049/6583/25777/26585/7042/7422/3710/5045/6573/4277/54541/1839/10184/5069/1464/3914/719/5361/3037/9945/23657/55240/8876/3676/7436/3696/1663/8828/3936/23046/3117/6536/4494/3782/8061/9469/22797/1520/5329/1305/133/50515/28231/6696/8728/6890/3575/8140/81029/11182/9435/63967/2919/3604/51083/4316
## EGFR_UP.V1_UP   4680/27289/10451/2261/8835/1846/5167/6558/51097/3306/9314/9915/4128/3790/1545/2114/7042/2634/2650/4791/23433/5873/4017/22978/3437/1839/10184/9060/4217/1956/2119/6004/3659/6303/4783/5699/9456/23657/25825/6347/25816/3855/116984/1827/10479/2710/3669/6197/1525/72/5142/3601/23406/5698/6367/133/23175/3383/2633/6890/51129/27242/655/6280/1594/7804/9582/5031/6279/10644/3620/51083/4312
## RPS14_DN.V1_UP                   4680/9518/150/388/1960/54677/5205/214/10769/2201/1545/4600/5168/64393/9462/290/10346/3108/9450/3556/5734/7305/834/10457/7045/5328/4082/4332/25780/719/3684/10602/3683/6347/3119/1880/4599/8876/29992/3687/140885/3109/9938/3553/929/9934/100/23643/1475/4688/3055/1368/8013/11314/26191/5800/22797/1520/3689/330/6696/64581/2153/8942/11240/2672/9047/3604/7941/597/27299
## SNF5_DN.V1_UP                                              347/51466/2006/114899/7043/6423/481/2331/135228/23646/3433/1436/86/290/26270/57819/2224/7852/55256/9450/23760/10791/55055/6515/5696/716/1104/719/2870/4200/715/7454/968/54892/963/6688/5933/10507/5788/3669/3936/348/962/51514/84624/4174/445/3134/25928/1043/3689/5698/5341/714/6891/2633/3105/10112/8638/699/11065/9212/55355/8549/3627/25975
## P53_DN.V1_UP                   563/4680/6337/374/7433/7025/3875/90576/26018/652/629/3625/1308/1363/10873/10267/8412/7026/3880/4016/26509/4052/1832/8819/23213/3429/9734/10184/5467/7045/7525/4217/5328/4082/7398/51599/4507/1956/22800/3659/5947/2534/1404/7388/8218/1032/10656/29899/7277/1525/100133941/50486/3606/445/11339/688/7345/1305/133/1824/136/5268/10874/1029/10403/27074/7368/5646/10232/4312
## RAF_UP.V1_UP   4488/8835/2624/1846/51097/3306/58494/5274/8863/7089/10144/23092/1545/3655/22848/10577/5236/55526/5734/1839/56913/4217/8898/1956/2119/22800/4200/6303/10602/5699/9111/64781/25825/23596/2534/91543/25816/64764/10133/51191/9397/2182/10892/1827/79695/2760/2702/10656/25797/80896/8013/10257/7378/23406/1230/5698/3613/10331/51129/27242/1824/11182/6280/10874/10403/3783/827/6279/7368/3897
##                Count
## MEL18_DN.V1_UP    61
## EGFR_UP.V1_UP     73
## RPS14_DN.V1_UP    71
## SNF5_DN.V1_UP     66
## P53_DN.V1_UP      70
## RAF_UP.V1_UP      70
head(msC6_2)
##                                                          ID
## RAF_UP.V1_DN                                   RAF_UP.V1_DN
## RPS14_DN.V1_DN                               RPS14_DN.V1_DN
## KRAS.600.LUNG.BREAST_UP.V1_UP KRAS.600.LUNG.BREAST_UP.V1_UP
## KRAS.BREAST_UP.V1_UP                   KRAS.BREAST_UP.V1_UP
## KRAS.LUNG.BREAST_UP.V1_UP         KRAS.LUNG.BREAST_UP.V1_UP
## BMI1_DN_MEL18_DN.V1_UP               BMI1_DN_MEL18_DN.V1_UP
##                                                 Description setSize
## RAF_UP.V1_DN                                   RAF_UP.V1_DN     124
## RPS14_DN.V1_DN                               RPS14_DN.V1_DN     109
## KRAS.600.LUNG.BREAST_UP.V1_UP KRAS.600.LUNG.BREAST_UP.V1_UP     107
## KRAS.BREAST_UP.V1_UP                   KRAS.BREAST_UP.V1_UP      46
## KRAS.LUNG.BREAST_UP.V1_UP         KRAS.LUNG.BREAST_UP.V1_UP      65
## BMI1_DN_MEL18_DN.V1_UP               BMI1_DN_MEL18_DN.V1_UP      95
##                               enrichmentScore       NES       pvalue
## RAF_UP.V1_DN                        0.5972080  2.467707 1.000000e-10
## RPS14_DN.V1_DN                     -0.6268603 -2.146505 3.691517e-10
## KRAS.600.LUNG.BREAST_UP.V1_UP      -0.6191844 -2.115243 1.030922e-09
## KRAS.BREAST_UP.V1_UP               -0.7239233 -2.201967 5.140891e-08
## KRAS.LUNG.BREAST_UP.V1_UP          -0.6708917 -2.142749 6.099317e-08
## BMI1_DN_MEL18_DN.V1_UP             -0.5828157 -1.964062 2.522474e-07
##                                   p.adjust      qvalues rank
## RAF_UP.V1_DN                  1.860000e-08 1.147368e-08  613
## RPS14_DN.V1_DN                3.433111e-08 2.117765e-08  951
## KRAS.600.LUNG.BREAST_UP.V1_UP 6.391714e-08 3.942823e-08 1055
## KRAS.BREAST_UP.V1_UP          2.268946e-06 1.399633e-06 1055
## KRAS.LUNG.BREAST_UP.V1_UP     2.268946e-06 1.399633e-06 1055
## BMI1_DN_MEL18_DN.V1_UP        7.633291e-06 4.708708e-06 1336
##                                                 leading_edge
## RAF_UP.V1_DN                   tags=31%, list=8%, signal=29%
## RPS14_DN.V1_DN                tags=41%, list=12%, signal=37%
## KRAS.600.LUNG.BREAST_UP.V1_UP tags=45%, list=14%, signal=39%
## KRAS.BREAST_UP.V1_UP          tags=52%, list=14%, signal=45%
## KRAS.LUNG.BREAST_UP.V1_UP     tags=49%, list=14%, signal=43%
## BMI1_DN_MEL18_DN.V1_UP        tags=45%, list=17%, signal=38%
##                                                                                                                                                                                                                                                                 core_enrichment
## RAF_UP.V1_DN                                                                        7031/7033/57758/2674/6947/771/6542/8614/5507/4602/18/10560/10451/12/8821/2690/5046/3480/1960/6505/4254/27250/26018/3667/596/7358/23327/1955/3485/2353/9915/1363/403/214/863/3487/10769/7020
## RPS14_DN.V1_DN                   29028/6535/55240/7052/26271/7083/5424/705/1894/3619/4174/8877/79723/6182/586/3601/1183/347733/1062/9055/9700/10046/3574/9824/10112/9787/56992/54821/23650/5347/79094/990/9156/11004/4998/9133/23397/4605/991/10874/79733/55388/875/29968/51083
## KRAS.600.LUNG.BREAST_UP.V1_UP 3037/2113/7185/1084/3770/2118/3553/5740/7128/23643/3669/951/50856/50486/4796/3757/1240/8877/5365/639/650/101/9966/54752/3294/5329/6367/919/330/28231/8728/51129/3902/6364/9435/51561/2921/7850/55613/3290/2919/2672/9047/6374/4318/1299/5646/4312
## KRAS.BREAST_UP.V1_UP                                                                                                                                    3037/7185/1084/3770/3553/7128/51700/1240/639/3294/6367/330/5140/3561/1946/2921/7850/3290/2672/4318/1299/1297/5653/27299
## KRAS.LUNG.BREAST_UP.V1_UP                                                                                       3037/2113/7185/1084/3770/7128/3669/951/50486/1240/639/101/9966/54752/3294/919/330/28231/8728/51129/6364/51561/2921/7850/3290/2919/2672/9047/6374/4318/5646/4312
## BMI1_DN_MEL18_DN.V1_UP                            1839/10184/5069/1464/3914/719/3037/9945/23657/1404/8876/3676/7436/4045/3696/5294/8828/3936/23046/6536/4494/3782/8061/5292/9469/22797/5329/1305/133/330/50515/8728/3575/79924/8140/81029/2919/3783/3604/56938/29968/51083/4316
grep(keyword, msC6$Description, ignore.case = TRUE)
## [1] 53
grep(keyword, msC6_2$Description, ignore.case = TRUE)
## [1] 3 4 5

I tried other MSigDB categories (H,C1,C3,C4,C5,C7), but they didn’t have information on breast.

3.3.1 Visualization

barplot(msC2, showCategory = 8)

dotplot(msC2, showCategory = 8)

emapplot(msC2)

4 Disease Analysis

4.1 enrichDO (Disease Ontology)

library(DOSE)
## DOSE v3.15.0  For help: https://guangchuangyu.github.io/software/DOSE
## 
## If you use DOSE in published research, please cite:
## Guangchuang Yu, Li-Gen Wang, Guang-Rong Yan, Qing-Yu He. DOSE: an R/Bioconductor package for Disease Ontology Semantic and Enrichment analysis. Bioinformatics 2015, 31(4):608-609
edo <- enrichDO(gene          = gene,
              ont           = "DO",
              pvalueCutoff  = 0.01,
              pAdjustMethod = "BH",
              universe      = names(geneList),
              qvalueCutoff  = 0.01)
head(edo,3)
##                  ID               Description GeneRatio  BgRatio       pvalue
## DOID:3213 DOID:3213     demyelinating disease   82/1667 113/4338 9.131900e-14
## DOID:2377 DOID:2377        multiple sclerosis   78/1667 109/4338 1.266316e-12
## DOID:3342 DOID:3342 bone inflammation disease  262/1667 495/4338 2.499925e-12
##               p.adjust       qvalue
## DOID:3213 6.465385e-11 4.046873e-11
## DOID:2377 4.482758e-10 2.805889e-10
## DOID:3342 5.899822e-10 3.692871e-10
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     geneID
## DOID:3213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            6505/730/5327/183/3485/1675/4179/5777/2212/2896/4314/3028/3557/4277/2213/1636/3122/3672/3429/6404/834/965/3115/961/3107/1152/3663/3659/3127/3123/6347/3119/4599/4261/3676/3394/3162/3553/929/64127/5788/3570/3106/920/348/3117/100133941/3135/3606/64135/3569/1410/2214/6507/2597/958/6376/3689/1230/6285/330/3925/923/3383/1236/3575/3105/2215/6556/1234/6352/2833/1594/2672/4318/3627/3559/1116/3002/3620/5653/4321
## DOID:2377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                6505/730/5327/183/1675/4179/5777/2212/2896/4314/3028/3557/4277/2213/1636/3122/3672/3429/6404/834/965/3115/961/3107/1152/3663/3659/3127/3123/6347/3119/4599/4261/3676/3394/3162/3553/929/64127/5788/3570/3106/920/348/3117/100133941/3135/3606/64135/3569/1410/2214/6507/2597/958/6376/1230/330/3925/923/3383/1236/3575/3105/2215/6556/1234/6352/2833/1594/2672/4318/3627/3559/1116/3002/3620/4321
## DOID:3342 9518/7177/4488/6097/7079/9547/374/3081/2690/7432/54829/6584/4843/7433/388/10512/5327/10/10266/596/652/2487/3306/5914/2353/9368/7049/3291/8633/1958/1902/6583/1311/1191/3479/4128/3551/59307/727/862/5654/4331/7098/2064/55835/2212/1947/3251/4650/472/871/8771/2896/5591/9423/8718/5320/1436/581/7422/4314/3557/3709/6573/3108/64750/7852/5594/6590/56172/2213/22861/5743/1636/6282/5873/3329/23213/8797/5734/64221/6275/2289/3672/7099/6850/2956/567/965/3115/3680/7045/3107/811/7097/3965/4217/5328/5730/3820/1080/3663/578/3133/3459/3684/4481/64167/7133/240/3123/5947/11173/5713/7185/5371/5732/6347/2512/8793/3119/2821/3654/3937/4261/3091/54/3676/963/4851/9641/6775/3109/8837/3162/4689/3553/929/5996/1535/64127/5788/3570/728/3106/3066/843/6351/6513/637/249/5740/7128/5294/100/8828/2023/920/7913/5915/348/6366/50856/140766/58191/3117/1789/3135/126014/2357/117289/5321/7167/3606/5293/64135/9034/8877/10855/26191/9398/3569/1410/639/2214/650/101/942/1508/958/6376/9966/23406/1520/3689/1230/201294/10859/6367/919/133/9507/6696/25939/6891/3383/6890/3600/3574/1236/84868/3575/3105/8600/176/64170/6648/64581/9051/10673/9235/4050/7298/5347/3560/914/11240/6401/332/6369/2215/6556/7412/1234/655/6356/6364/54210/6352/8651/2833/29126/51561/6280/3934/50943/5008/3957/9047/5551/4318/6279/3604/50615/3627/27074/3559/1116/3002/4312/6362/10563
##           Count
## DOID:3213    82
## DOID:2377    78
## DOID:3342   262
nrow(edo)
## [1] 141
grep(keyword, edo$Description, ignore.case = TRUE)
## [1] 110

4.2 enrichNCG (Network of Cancer Gene)

gene2 <- names(geneList)[abs(geneList) < mean(abs(geneList))]
ncg <- enrichNCG(gene2)
head(ncg,3)
##                      ID Description GeneRatio BgRatio       pvalue     p.adjust
## prostate       prostate    prostate    34/516 53/1571 2.016079e-06 4.511725e-05
## breast           breast      breast    46/516 80/1571 2.819828e-06 4.511725e-05
## endometrial endometrial endometrial    31/516 53/1571 8.395634e-05 8.955343e-04
##                   qvalue
## prostate    0.0000222618
## breast      0.0000222618
## endometrial 0.0004418755
##                                                                                                                                                                                                                                               geneID
## prostate                                                                      5295/595/1105/8405/3265/463/7403/207/324/9612/8289/4292/2077/5925/7113/673/5728/51755/5290/9611/84133/1030/9968/1027/7157/81614/672/3417/1499/5894/2778/5291/4609/4436
## breast      5295/595/196528/91/861/7188/55770/677/6416/207/324/6794/4763/51135/29072/8289/57492/2874/5925/5728/5290/208/79728/8314/6602/4089/9611/23451/55193/9968/1027/7157/999/83737/171023/672/2132/545/9175/896/841/114907/2033/3845/10664/79718
## endometrial                                                                           280/5295/595/8405/54880/57721/463/7130/54989/2122/25942/27316/6872/10060/4216/8289/84159/5728/4780/6146/5518/5290/7157/1108/7812/8239/545/1499/5426/3845/10664
##             Count
## prostate       34
## breast         46
## endometrial    31
nrow(ncg)
## [1] 16
grep(keyword, ncg$Description, ignore.case = TRUE)
## [1] 2

4.3 enrichDGN (Disease-Gene Association)

dgn <- enrichDGN(gene)

head(dgn,3)
##                          ID        Description GeneRatio   BgRatio       pvalue
## umls:C3495559 umls:C3495559 Juvenile arthritis  131/2426 333/17381 5.327870e-31
## umls:C0036202 umls:C0036202        Sarcoidosis  104/2426 253/17381 1.170121e-26
## umls:C0005695 umls:C0005695   Bladder Neoplasm  149/2426 442/17381 1.195323e-26
##                   p.adjust       qvalue
## umls:C3495559 2.026722e-27 1.016782e-27
## umls:C0036202 1.515670e-23 7.603934e-24
## umls:C0005695 1.515670e-23 7.603934e-24
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     geneID
## umls:C3495559                                                                                  374/23541/3480/4929/1846/2065/2354/2353/9314/2194/1958/1191/10769/3693/2791/727/27086/3310/9790/800/8844/7422/4314/6786/3557/6573/7852/5594/22861/1636/5873/3329/7027/1839/7099/9734/51182/6515/3115/5696/5352/3663/3133/3659/3127/7133/3123/9334/7185/6347/10810/25816/3119/5771/3654/4261/3091/4973/6775/4478/3162/3553/929/5996/64127/2766/7128/113/7913/3669/84441/6366/58191/6772/3117/8013/2120/3135/8291/117289/3606/64135/1612/26191/3569/2214/1717/958/353514/5329/5698/201294/919/6696/6891/3383/6890/1236/3575/3105/8600/1844/9051/54757/1021/6401/2215/6556/2950/1234/6364/54210/6352/2833/8836/6280/1594/5588/50943/5008/926/10663/2919/9047/5551/6279/3627/3559/366/3002/6373
## umls:C0036202                                                                                                                                                                                                                     4582/23541/4843/2735/7043/183/4485/3485/2353/3487/3479/727/10998/57728/4331/7098/9531/23583/4684/7042/51715/7422/8914/3557/3108/7852/5743/1636/5718/8809/3122/7099/3115/3107/5696/7097/54739/1080/3133/3127/3459/3123/6347/3371/3119/968/4261/3091/3791/3109/10892/3682/3553/929/64127/3106/1536/3669/6646/3117/100133941/6624/3135/3606/3569/2214/942/6367/4360/6696/6891/3383/6890/3600/3574/84868/3575/3105/6648/10673/9787/3702/6401/6556/7412/1234/6352/2833/6280/1594/3594/50943/59272/3120/727897/6374/6279/3627/3559/259307/1116/4283/27299/4321
## umls:C0005695 1555/9/2947/4582/119391/2261/1154/4843/4929/2735/2065/10/596/3908/6817/3485/6423/1728/7161/2194/214/267/1191/53834/648/3479/10769/152503/2272/90993/2954/6424/23221/4016/2064/4893/1545/2114/2706/472/26986/6714/2896/5591/5447/581/7422/290/10970/6573/23604/80781/7852/5898/4176/5743/6282/8797/9446/6275/7099/3429/8243/2619/5690/5467/5111/6916/811/3400/11200/5328/54739/1956/3659/3684/4502/3683/240/3732/6347/3091/59345/10682/6581/10397/4233/1890/286826/6513/1678/7913/5915/4171/5465/10460/6772/6624/2744/3918/3135/445/10855/7153/3569/4240/4085/1871/688/2146/29128/5329/6285/864/4360/330/7037/9332/9700/3383/3105/1869/6648/6241/7298/5347/6790/2175/332/7364/2950/699/29126/5268/8836/6280/1594/9582/10874/1029/2919/117247/4318/6279/597/898/5080/5646/4312
##               Count
## umls:C3495559   131
## umls:C0036202   104
## umls:C0005695   149
nrow(dgn)
## [1] 1702
grep(keyword, dgn$Description, ignore.case = TRUE)
##  [1]    8   25   40  100  361  421  448  585  665  723  744  783  871 1078 1145
## [16] 1159 1161 1224 1225 1284 1379 1419 1702

4.4 gseDO

edo2 <- gseDO(geneList)
## preparing geneSet collections...
## GSEA analysis...
## Warning in fgseaMultilevel(...): For some pathways, in reality P-values are less
## than 1e-10. You can set the `eps` argument to zero for better estimation.
## leading edge analysis...
## done...

head(edo2,3)
##                        ID                          Description setSize
## DOID:0050161 DOID:0050161      lower respiratory tract disease     331
## DOID:0050338 DOID:0050338 primary bacterial infectious disease     150
## DOID:0060056 DOID:0060056    hypersensitivity reaction disease     428
##              enrichmentScore       NES pvalue     p.adjust      qvalues rank
## DOID:0050161      -0.5145600 -1.964878  1e-10 4.164706e-09 2.352941e-09 1646
## DOID:0050338      -0.6059806 -2.151627  1e-10 4.164706e-09 2.352941e-09 1624
## DOID:0060056      -0.5138929 -1.982878  1e-10 4.164706e-09 2.352941e-09 1231
##                                leading_edge
## DOID:0050161 tags=41%, list=21%, signal=34%
## DOID:0050338 tags=55%, list=21%, signal=44%
## DOID:0060056 tags=36%, list=16%, signal=32%
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        core_enrichment
## DOID:0050161                                                                                    581/10592/7422/10630/10875/4314/3557/80781/7852/6590/3631/6446/22861/5743/1636/3329/8797/8091/9446/8809/2627/2294/57016/7099/3429/6404/5111/7097/3965/5328/1080/3663/719/3659/3459/3684/7498/3683/4481/3123/5270/2534/6347/3371/3119/50506/3091/10051/3676/3791/8837/3162/3682/3553/929/4233/64127/728/6338/3779/5294/3587/100/1475/51393/4688/1672/3055/348/653361/6366/6772/3918/3606/5293/59341/64135/3569/101/942/958/6376/1520/3689/5329/6367/6285/133/1439/6696/81930/6891/3383/6890/3574/4794/6648/3702/3001/6369/2215/6556/925/2950/7412/1234/990/6356/3932/54210/6352/8651/136/2833/29126/6280/3594/7039/50943/59272/1029/10663/1138/727897/5266/6374/4318/3627/1116/4283/3620/6373/27299/4316/4312/6362/4321
## DOID:0050338                                                                                                                                                                                                                                                                                                                                                                                     7422/79139/4314/3557/8717/7852/5743/1636/5236/3329/1839/7099/7296/834/3115/5696/7097/3659/3459/3683/7133/240/3123/5028/6347/3371/3119/3687/7096/3553/929/64127/728/3106/6351/100/23643/1672/348/6402/3606/1510/26191/3569/639/942/5329/5698/6367/919/4360/6891/3383/6890/1236/3105/7535/9235/3001/6556/1234/30835/939/6356/6364/3932/54210/6352/8651/29126/3934/3594/5551/4318/26227/597/3627/3559/952/3620/6373/4312
## DOID:0060056 3115/961/81567/3107/5696/6916/7097/5328/5352/1080/3663/578/3133/3659/3459/3684/7498/3683/7512/7133/9043/3123/5270/7185/5954/6347/3371/11168/3119/4599/3654/4261/3091/3791/140885/7052/6775/10892/3162/3682/3553/929/4233/64127/10062/5788/3570/3106/843/7128/3587/100/3455/920/8784/1672/675/348/653361/5465/7292/6366/58191/6772/3117/100133941/3135/1051/117289/6402/3606/7293/64135/79172/10068/6614/26191/4067/3569/2214/10257/942/958/6376/23406/5329/5698/6367/6285/919/10437/133/4360/3930/6696/43/7037/923/6891/8989/3383/6890/3600/3574/1236/84868/3575/3105/6648/1131/10673/4064/6401/332/2215/6556/925/2950/1234/30835/939/6356/54210/6352/2833/29126/6280/1594/3934/50943/926/59272/10663/10578/1058/6374/4318/6279/3604/26227/3627/3559/1116/3002/4283/3620/27299/10537/4312/6362/10563/4321
nrow(edo2)
## [1] 274
grep(keyword, edo2$Description, ignore.case = TRUE)
## [1] 255

4.5 gseNCG

ncg2 <- gseNCG(geneList)
## preparing geneSet collections...
## GSEA analysis...
## no term enriched under specific pvalueCutoff...

head(ncg2,3)
## [1] ID              Description     setSize         enrichmentScore
## [5] NES             pvalue          p.adjust        qvalues        
## <0 rows> (or 0-length row.names)
nrow(ncg2)
## [1] 0
grep(keyword, ncg2$Description, ignore.case = TRUE)
## integer(0)

4.6 gseDGN

dgn2 <- gseDGN(geneList)
## preparing geneSet collections...
## GSEA analysis...
## Warning in fgseaMultilevel(...): For some pathways, in reality P-values are less
## than 1e-10. You can set the `eps` argument to zero for better estimation.
## leading edge analysis...
## done...
head(dgn2,3)
##                          ID         Description setSize enrichmentScore
## umls:C0003864 umls:C0003864           Arthritis     340      -0.4916472
## umls:C0004364 umls:C0004364 Autoimmune Diseases     478      -0.5180893
## umls:C0011615 umls:C0011615  Dermatitis, Atopic     250      -0.5815581
##                     NES pvalue     p.adjust      qvalues rank
## umls:C0003864 -1.876806  1e-10 1.477895e-08 1.057618e-08 1231
## umls:C0004364 -2.014219  1e-10 1.477895e-08 1.057618e-08 1541
## umls:C0011615 -2.172049  1e-10 1.477895e-08 1.057618e-08 1364
##                                 leading_edge
## umls:C0003864 tags=35%, list=16%, signal=31%
## umls:C0004364 tags=42%, list=20%, signal=36%
## umls:C0011615 tags=46%, list=17%, signal=39%
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   core_enrichment
## umls:C0003864                                                                                                                                                                                                                                                                                                                                                                                                                                                             3115/961/81567/7097/3965/409/4217/6223/3133/3659/3684/3683/7133/240/3123/11173/7185/91543/6347/3371/3119/5771/2821/3654/7454/8856/54/284/3791/5337/6775/7096/3553/929/64127/2048/728/3106/10849/1536/7128/5294/3587/2023/51393/3669/6646/653361/6366/2643/3117/1051/126014/5321/6402/3606/445/9034/9123/8877/26191/3569/2214/650/1508/958/9966/3689/5698/201294/6285/9507/4360/3118/6696/9055/6891/8989/3383/6890/3600/3574/3105/8600/7535/176/4069/6648/10673/51129/9235/4050/11240/9466/2215/6556/2950/7412/1234/939/54210/6352/51561/6280/50943/5008/1029/10663/2305/4318/146433/6279/50615/3627/3559/1116/4312/4321
## umls:C0004364 57819/7852/5594/6654/10461/2213/9377/22861/5743/6749/1636/29933/3329/64221/7305/8809/7099/9474/9734/2091/56913/7873/9170/51182/567/10457/3115/55697/961/3107/5696/811/7097/1786/716/3820/26147/3663/719/84876/122769/578/3133/3127/3684/4783/5699/3683/64167/8833/7133/2113/3123/7185/5371/6347/11168/3119/215/5771/3654/7454/8856/4261/3111/140885/5337/7052/963/6775/5817/10892/3394/3162/3553/929/5996/64127/5788/3570/728/3106/1032/55824/7128/5294/113/4904/2023/920/7913/3669/1672/6646/653361/5465/23046/7292/6366/4860/50856/3117/10993/100133941/8013/3135/117289/7167/6402/3606/5293/7293/445/64135/9034/23250/10855/26191/3569/10320/5292/2214/4240/650/942/1508/958/3134/9966/23406/2146/1043/3689/5698/10859/6285/919/133/864/4360/330/3118/6696/10603/25939/6891/3383/2633/3600/3574/1236/84868/3575/3105/8600/6648/64581/9051/10673/2153/3561/340348/9235/8140/10870/2491/916/3560/914/2215/6556/717/939/6352/8651/3718/11006/2833/29126/3662/51561/6280/1594/7850/50943/3120/1029/10663/2919/5551/6374/4318/8645/6279/3604/50615/1299/3627/3559/3112/3002/3620/4312
## umls:C0011615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    9882/6275/8809/7099/63940/7296/6281/6404/834/706/1593/5696/7097/1786/5328/5730/1956/84876/3133/3459/3684/7903/7133/3123/3059/5713/6347/3371/11168/3119/7454/8856/4261/8876/3111/4851/7096/84433/3162/4689/3553/929/64127/3106/1475/8784/3669/1672/5971/5465/962/25797/2207/80896/3117/2744/29127/3606/1510/9034/3569/1508/958/6376/9966/5329/5698/6367/341/4360/3930/6891/3383/6890/3600/3574/3575/3105/64581/79924/5140/9235/3560/6401/6369/6556/2950/7412/1234/30835/939/6356/6364/54210/6352/8651/6273/2833/51561/6280/1594/3594/50943/5008/3120/2919/6279/50615/597/3627/3559/4283/5653/6362
nrow(dgn2)
## [1] 518
grep(keyword, dgn2$Description, ignore.case = TRUE)
## [1]  53 134 335 341 449

5 Gene Ontology Analysis

5.1 GO over-representation test

5.2 GO GSEA

library(clusterProfiler)
ego2 <- gseGO(geneList     = geneList,
              OrgDb        = org.Hs.eg.db,
              ont          = "MF",
              nPerm        = 1000,
              minGSSize    = 50,
              maxGSSize    = 500,
              pvalueCutoff = 0.05,
              verbose      = FALSE)
## Warning in .GSEA(geneList = geneList, exponent = exponent, minGSSize =
## minGSSize, : We do not recommend using nPerm parameter incurrent and future
## releases
## Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize
## = minGSSize, : You are trying to run fgseaSimple. It is recommended to use
## fgseaMultilevel. To run fgseaMultilevel, you need to remove the nperm argument
## in the fgsea function call.

head(ego2,3)
##                    ID                               Description setSize
## GO:0038023 GO:0038023               signaling receptor activity     435
## GO:0060089 GO:0060089             molecular transducer activity     435
## GO:0004888 GO:0004888 transmembrane signaling receptor activity     323
##            enrichmentScore       NES      pvalue   p.adjust    qvalues rank
## GO:0038023      -0.4592867 -1.761631 0.001036269 0.03532835 0.03135436 1135
## GO:0060089      -0.4592867 -1.761631 0.001036269 0.03532835 0.03135436 1135
## GO:0004888      -0.4829783 -1.819230 0.001069519 0.03532835 0.03135436 1135
##                              leading_edge
## GO:0038023 tags=33%, list=15%, signal=30%
## GO:0060089 tags=33%, list=15%, signal=30%
## GO:0004888 tags=37%, list=15%, signal=33%
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            core_enrichment
## GO:0038023 5789/3820/1956/719/6091/5361/4074/6608/3459/29121/3683/7133/23596/5732/5028/2049/5621/8477/8793/3119/132014/1880/8856/10682/3687/3676/3791/3111/4851/2906/5817/10990/7096/5796/10507/929/4233/10062/5788/3570/2048/9934/728/8324/7436/3696/3587/8828/3455/5724/23643/920/8784/5915/2564/1944/5465/10082/962/50856/2207/150372/3117/8013/5727/126014/2357/11314/2047/7293/59341/9034/1240/8877/5365/5800/7849/11245/54756/942/958/3601/25928/8698/3689/1230/5329/10859/919/4360/1439/3695/3118/3383/6693/1236/165140/3575/65078/59352/971/10288/1131/23432/3561/916/3560/914/9466/921/6401/925/2359/56963/3902/1234/11025/939/915/54210/136/11006/2833/974/10913/3594/7850/7804/926/924/3120/5031/10663/8549/1138/3872/973/3604/50615/3559/3112/3897/51083/27199
## GO:0060089 5789/3820/1956/719/6091/5361/4074/6608/3459/29121/3683/7133/23596/5732/5028/2049/5621/8477/8793/3119/132014/1880/8856/10682/3687/3676/3791/3111/4851/2906/5817/10990/7096/5796/10507/929/4233/10062/5788/3570/2048/9934/728/8324/7436/3696/3587/8828/3455/5724/23643/920/8784/5915/2564/1944/5465/10082/962/50856/2207/150372/3117/8013/5727/126014/2357/11314/2047/7293/59341/9034/1240/8877/5365/5800/7849/11245/54756/942/958/3601/25928/8698/3689/1230/5329/10859/919/4360/1439/3695/3118/3383/6693/1236/165140/3575/65078/59352/971/10288/1131/23432/3561/916/3560/914/9466/921/6401/925/2359/56963/3902/1234/11025/939/915/54210/136/11006/2833/974/10913/3594/7850/7804/926/924/3120/5031/10663/8549/1138/3872/973/3604/50615/3559/3112/3897/51083/27199
## GO:0004888                                                                                                                                   5789/3820/1956/719/6091/5361/4074/6608/3459/29121/3683/7133/23596/5732/5028/2049/8477/8793/3119/132014/1880/10682/3791/3111/4851/2906/10990/7096/5796/10507/929/4233/5788/3570/2048/9934/728/8324/7436/3587/8828/3455/5724/920/8784/2564/1944/50856/2207/150372/3117/5727/126014/2357/2047/7293/59341/9034/1240/8877/5365/5800/7849/11245/54756/3601/25928/8698/3689/1230/10859/919/4360/1439/3118/3383/6693/1236/165140/3575/65078/59352/971/10288/1131/23432/3561/916/3560/9466/921/6401/2359/3902/1234/11025/939/915/136/2833/974/10913/3594/7850/7804/3120/5031/10663/8549/1138/3872/973/50615/3559/3112/3897/51083/27199
nrow(ego2)
## [1] 9
grep(keyword, ego2$Description, ignore.case = TRUE)
## integer(0)

5.3 GO semantic similarity analysis

6 KEGG analysis

6.1 KEGG ORA

kk <- enrichKEGG(gene         = gene,
                 organism     = 'hsa',
                 pvalueCutoff = 0.05)
## Reading KEGG annotation online:
## 
## Reading KEGG annotation online:

head(kk,3)
##                ID                             Description GeneRatio  BgRatio
## hsa05166 hsa05166 Human T-cell leukemia virus 1 infection   88/1685 219/8040
## hsa05169 hsa05169            Epstein-Barr virus infection   81/1685 201/8040
## hsa04110 hsa04110                              Cell cycle   57/1685 124/8040
##                pvalue     p.adjust       qvalue
## hsa05166 4.285444e-11 1.384198e-08 9.473087e-09
## hsa05169 2.190592e-10 3.248737e-08 2.223350e-08
## hsa04110 3.017403e-10 3.248737e-08 2.223350e-08
##                                                                                                                                                                                                                                                                                                                                                                                                                                              geneID
## hsa05166 4488/148327/115/7043/111/4776/2353/4214/112/1958/3551/90993/4893/2114/472/7042/581/3108/2224/8295/5594/4791/109/4775/9134/9519/3122/567/706/3115/55697/3107/894/811/11200/3133/5901/3127/3683/2113/3123/5902/3119/3111/64764/6688/3109/3106/6513/113/920/5971/3117/3135/5293/8061/3569/4085/1871/958/3601/3134/3689/3118/9700/3383/3600/3105/1869/890/701/3561/1111/916/3560/9232/915/3932/1870/3718/9133/991/7850/1029/3559/898/3112/4316
## hsa05169                                  377841/10912/596/3551/4940/836/7187/5708/7186/8819/6773/581/5704/8717/3108/10213/4791/5718/9134/4615/4793/3122/11047/6850/54205/567/965/4939/3115/3107/6502/894/811/7097/578/3133/3127/3683/3123/5713/3119/695/3654/3111/9641/3109/5336/3106/3066/637/7128/3455/5971/6772/3117/3135/6300/5293/4067/3569/1871/958/3134/919/864/3118/6891/3383/6890/3105/1869/4794/890/1021/916/915/1870/3718/3627/898/3112
## hsa04110                                                                                                                                                      10912/7043/6500/7534/10971/472/7042/5591/5885/4176/9134/2810/7027/8243/5111/6502/894/11200/10459/10926/1875/4172/4175/5933/3066/1032/4173/994/8317/4171/891/4174/4085/1871/995/983/9088/9700/1869/23594/890/701/1111/1021/5347/8318/990/9232/1870/4998/699/9133/7272/993/991/1029/898
##          Count
## hsa05166    88
## hsa05169    81
## hsa04110    57
nrow(kk)
## [1] 79
grep(keyword, kk$Description, ignore.case = TRUE)
## integer(0)

6.2 KEGG GSEA

kk2 <- gseKEGG(geneList     = geneList,
               organism     = 'hsa',
               nPerm        = 1000,
               minGSSize    = 120,
               pvalueCutoff = 0.05,
               verbose      = FALSE)
## Warning in .GSEA(geneList = geneList, exponent = exponent, minGSSize =
## minGSSize, : We do not recommend using nPerm parameter incurrent and future
## releases
## Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize
## = minGSSize, : You are trying to run fgseaSimple. It is recommended to use
## fgseaMultilevel. To run fgseaMultilevel, you need to remove the nperm argument
## in the fgsea function call.

head(kk2,3)
##                ID                             Description setSize
## hsa05166 hsa05166 Human T-cell leukemia virus 1 infection     196
## hsa05169 hsa05169            Epstein-Barr virus infection     173
## hsa04062 hsa04062             Chemokine signaling pathway     136
##          enrichmentScore       NES      pvalue    p.adjust     qvalues rank
## hsa05166      -0.4802437 -1.752611 0.001119821 0.006898873 0.004782274 1550
## hsa05169      -0.5024881 -1.811147 0.001129944 0.006898873 0.004782274 2115
## hsa04062      -0.5286815 -1.851880 0.001166861 0.006898873 0.004782274  905
##                            leading_edge
## hsa05166 tags=36%, list=20%, signal=30%
## hsa05169 tags=50%, list=27%, signal=37%
## hsa04062 tags=30%, list=12%, signal=27%
##                                                                                                                                                                                                                                                                                                                                                                                                                               core_enrichment
## hsa05166                                                                              3108/2224/8295/5594/4791/109/4775/9134/9519/3122/567/706/3115/55697/3107/894/811/11200/3133/5901/3127/3683/2113/3123/5902/3119/3111/64764/6688/3109/3106/6513/113/920/5971/3117/3135/5293/8061/3569/4085/1871/958/3601/3134/3689/3118/9700/3383/3600/3105/1869/890/701/3561/1111/916/3560/9232/915/3932/1870/3718/9133/991/7850/1029/3559/898/3112/4316
## hsa05169 5291/3113/7431/5707/355/6892/4609/5702/5600/5606/4940/836/7187/5708/7186/8819/6773/581/5704/8717/3108/10213/4791/5718/9134/4615/4793/3122/11047/6850/54205/567/965/4939/3115/3107/6502/894/811/7097/578/3133/3127/3683/3123/5713/3119/695/3654/3111/9641/3109/5336/3106/3066/637/7128/3455/5971/6772/3117/3135/6300/5293/4067/3569/1871/958/3134/919/864/3118/6891/3383/6890/3105/1869/4794/890/1021/916/915/1870/3718/3627/898/3112
## hsa04062                                                                                                                                                                                                                  7454/59345/5880/23533/7409/1794/6351/53358/5294/113/3055/653361/6366/58191/6772/5293/2268/4067/6376/1230/5579/6367/1236/3702/6369/1234/6356/6364/6352/3718/2833/2921/10663/2919/6374/2786/3627/4283/6373/6362/10563
nrow(kk2)
## [1] 12
grep(keyword, kk2$Description, ignore.case = TRUE)
## integer(0)

6.3 KEGG Module over-representation test

mkk <- enrichMKEGG(gene = gene,
                   organism = 'hsa')
## Reading KEGG annotation online:
## 
## Reading KEGG annotation online:
head(mkk,3)
## [1] ID          Description GeneRatio   BgRatio     pvalue      p.adjust   
## [7] qvalue      geneID      Count      
## <0 rows> (or 0-length row.names)
nrow(mkk)
## [1] 0
grep(keyword, mkk$Description, ignore.case = TRUE)
## integer(0)

6.4 KEGG Module GSEA

mkk2 <- gseMKEGG(geneList = geneList,
                 organism = 'hsa')
## preparing geneSet collections...
## GSEA analysis...
## leading edge analysis...
## done...
head(mkk2,3)
##            ID              Description setSize enrichmentScore      NES
## M00099 M00099 Sphingosine biosynthesis      12       0.8334802 2.178786
## M00094 M00094    Ceramide biosynthesis      10       0.8362049 2.084306
##              pvalue    p.adjust     qvalues rank                  leading_edge
## M00099 0.0001856406 0.003668212 0.003146224  634 tags=42%, list=8%, signal=38%
## M00094 0.0002717194 0.003668212 0.003146224  634 tags=40%, list=8%, signal=37%
##                         core_enrichment
## M00099 123099/79603/340485/253782/29956
## M00094        123099/79603/253782/29956
nrow(mkk2)
## [1] 2
grep(keyword, mkk2$Description, ignore.case = TRUE)
## integer(0)

7 Reactome pathway analysis

7.1 Pathway Enrichment Analysis

library(ReactomePA)
## ReactomePA v1.33.0  For help: https://guangchuangyu.github.io/ReactomePA
## 
## If you use ReactomePA in published research, please cite:
## Guangchuang Yu, Qing-Yu He. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Molecular BioSystems 2016, 12(2):477-479
rp <- enrichPathway(gene = gene, pvalueCutoff = 0.05, readable = TRUE)

head(rp,3)
##                        ID                Description GeneRatio   BgRatio
## R-HSA-877300 R-HSA-877300 Interferon gamma signaling   48/2402  92/10654
## R-HSA-453279 R-HSA-453279     Mitotic G1-G1/S phases   65/2402 149/10654
## R-HSA-194315 R-HSA-194315   Signaling by Rho GTPases  151/2402 455/10654
##                    pvalue     p.adjust       qvalue
## R-HSA-877300 4.834203e-10 6.685703e-07 5.887551e-07
## R-HSA-453279 7.143124e-09 4.939470e-06 4.349787e-06
## R-HSA-194315 6.891989e-08 2.669242e-05 2.350583e-05
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            geneID
## R-HSA-877300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          TRIM45/TRIM3/SOCS3/NCAM1/PTPN6/OAS3/GBP2/CAMK2D/TRIM22/HLA-DRA/B2M/OAS2/HLA-DPB1/HLA-C/IRF5/HLA-E/IRF1/HLA-DRB5/IFNGR1/MT2A/HLA-DRB1/PML/HLA-DQB1/PTPN2/CIITA/IRF8/HLA-B/PTAFR/STAT1/HLA-DQA1/HLA-G/GBP4/TRIM10/HLA-F/IFI30/MID1/HLA-DQA2/ICAM1/GBP1/HLA-A/TRIM2/OASL/TRIM29/VCAM1/SOCS1/IRF4/HLA-DQB2/GBP5
## R-HSA-453279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PTK6/CABLES1/SKP1/MNAT1/PSMA2/PSMD2/SRC/PSMB3/PSMC4/PSMD14/PSMA4/MCM7/PSMD12/CCNE2/TFDP1/PSMB4/PSMA5/PSMB2/PCNA/PSMB8/SKP2/CCND2/GMNN/PSMB6/PSMA7/PSMB10/DBF4/PSMD7/E2F5/CKS1B/MCM3/PRIM2/MCM8/FBXO5/MCM6/TK1/RBL1/LIN9/CDKN2D/MCM4/CDC7/MCM2/CCNB1/MCM5/TOP2A/LYN/E2F3/CDK1/PSMB9/E2F1/ORC6/CCNA2/CDT1/RRM2/CDK6/TYMS/CDC45/CDC6/E2F2/ORC1/CDC25A/MYBL2/CDKN2A/MCM10/CCNE1
## R-HSA-194315 ARHGEF38/TUBAL3/VAV3/FGD3/EVL/RHOB/SYDE2/MYH11/ARHGEF16/ARHGAP6/STARD13/ARHGEF37/ARHGEF26/CENPP/NOXA1/RHOD/PPP2R5A/ARHGEF15/ARHGAP32/PREX1/RHOBTB2/RHOH/GDI2/RANGAP1/FAM13A/ARHGAP26/CKAP5/RTKN/SEH1L/FGD4/ARHGEF10L/SRGAP2/ACTR2/YWHAZ/MYO9B/YWHAQ/BCR/RHOG/DIAPH2/SRC/ARPC2/ARHGAP18/ACTB/NF2/FGD1/DSN1/TUBA1B/MAPK1/SOS1/DEPDC7/PFN2/ARHGAP21/LIMK2/LIMK1/RHOQ/SKA2/SEC13/WASF1/SFN/CENPK/ZWILCH/TIAM2/PPP1CB/FLNA/GMIP/CENPQ/NCK1/RHOV/PFN1/ARHGAP15/ZWINT/ARPC5/KLC3/ARHGAP4/CFTR/ARPC1B/RHOF/ARHGEF9/FMNL1/ACTR3/KNTC1/WASF3/ARHGAP27/BTK/WAS/WIPF1/PLEKHG2/RAC2/SPC25/ARHGAP25/TUBB6/VAV1/TUBA1C/TUBA8/NCF4/ARAP2/CYBA/ARHGAP9/KALRN/CYBB/CENPL/NCKAP1L/NCF2/CIT/NCF1/TUBA4A/ECT2/INCENP/ARHGAP30/RACGAP1/TAGAP/CENPO/ARHGAP22/PRKCA/MAD2L1/FGD2/NOXO1/CDC25C/FMNL2/PRKCB/TUBB2B/CENPE/KIF18A/PRC1/ARHGAP11A/CENPN/BUB1B/CENPF/ERCC6L/CENPI/CDCA8/PLK1/BIRC5/DIAPH3/NUF2/IQGAP3/DEPDC1B/ARHGEF4/SPC24/KIF2C/BUB1/CENPM/S100A9/SKA1/CDC20/AURKB/KIF14/NDC80/TUBB3/CENPA/S100A8
##              Count
## R-HSA-877300    48
## R-HSA-453279    65
## R-HSA-194315   151
nrow(rp)
## [1] 84
grep(keyword, rp$Description, ignore.case = TRUE)
## integer(0)

7.2 Gene Set Enrichment Analysis

rp2 <- gsePathway(geneList, nPerm = 10000, pvalueCutoff = 0.05, pAdjustMethod = "BH", verbose = FALSE)
## Warning in .GSEA(geneList = geneList, exponent = exponent, minGSSize =
## minGSSize, : We do not recommend using nPerm parameter incurrent and future
## releases
## Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize
## = minGSSize, : You are trying to run fgseaSimple. It is recommended to use
## fgseaMultilevel. To run fgseaMultilevel, you need to remove the nperm argument
## in the fgsea function call.
rp2 <- as.data.frame(rp2)

head(rp2,3)
##                          ID              Description setSize enrichmentScore
## R-HSA-69278     R-HSA-69278      Cell Cycle, Mitotic     446      -0.4881128
## R-HSA-6798695 R-HSA-6798695 Neutrophil degranulation     389      -0.4226073
## R-HSA-194315   R-HSA-194315 Signaling by Rho GTPases     360      -0.4154017
##                     NES       pvalue    p.adjust     qvalues rank
## R-HSA-69278   -1.883439 0.0001037237 0.004134591 0.003556713 2008
## R-HSA-6798695 -1.620113 0.0001046244 0.004134591 0.003556713 2154
## R-HSA-194315  -1.587254 0.0001051635 0.004134591 0.003556713 1958
##                                 leading_edge
## R-HSA-69278   tags=40%, list=26%, signal=32%
## R-HSA-6798695 tags=41%, list=28%, signal=31%
## R-HSA-194315  tags=38%, list=25%, signal=30%
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        core_enrichment
## R-HSA-69278   3796/4609/5693/51529/1874/79902/5702/5048/5982/10714/5983/6117/55920/29781/5905/5683/9793/81929/7443/55835/84131/1459/5708/6714/23165/23225/23198/5691/10592/5885/5704/9663/79980/1763/23310/10376/23141/5594/10213/5685/4176/23354/10762/348235/5718/9134/6396/55722/64105/55055/7027/5500/5692/54801/8243/5686/55559/5690/55166/23636/5111/5696/6502/894/11130/203068/7112/51053/93323/5694/5688/5699/10926/84930/5713/9735/1875/64785/1163/5984/4172/5558/10051/10733/22995/54892/84515/26271/10133/4175/7083/57405/84617/5933/84790/51807/4001/5424/286826/1032/4173/91687/994/8317/4171/891/9688/7277/3619/4174/2237/79172/7153/4067/5578/4085/3161/1871/9837/9918/995/983/79866/9088/5579/5698/64151/84296/157570/347733/23175/1062/81930/9700/1869/10112/23594/55839/890/701/1063/4751/81620/6241/54821/1021/2491/55143/7298/5347/6790/332/83540/8318/22974/990/9232/147841/1870/11004/4998/699/9133/23397/79019/113130/11065/993/220134/4605/991/9212/1029/10403/10381/2305/1058/51512/55388/898
## R-HSA-6798695                                                                                                                                     5795/10043/10312/10694/5834/23071/2547/5707/6386/8907/683/2992/81619/23593/1729/121260/5211/55754/2519/5702/4831/2720/1509/1512/64386/5223/4893/2665/5683/5777/3310/2212/1832/10097/5708/391/2896/10875/290/79980/10970/56888/5660/5594/6590/10213/7226/25798/6282/5873/5718/10577/5236/7305/51071/3482/11322/4125/5686/567/6515/965/961/81567/3107/9535/11010/7097/84329/10092/80301/5328/4332/203068/719/4033/54509/3684/6793/3683/7133/240/10549/1522/5713/8566/2512/2821/1084/272/968/8876/3687/4973/140885/5337/411/10396/963/3608/51411/23114/1794/929/1535/5788/728/64333/3106/8514/23200/1536/2760/5912/5724/79930/3071/3903/25797/4860/2207/150372/4257/51316/126014/2357/11314/6402/1476/23250/10855/2268/374403/101/1508/23406/1520/3689/5329/201294/230/2171/4069/11240/1075/2215/6556/2950/8836/6280/3934/10326/2919/3101/4318/6279/6518/5317/5646/1116
## R-HSA-194315                                                                                                                                                                                                                    1729/79902/10093/5048/4627/10006/5600/55920/2665/5905/10144/23092/9793/6242/81929/121512/55160/23380/10097/7534/4650/10971/613/391/1730/6714/10109/93663/60/4771/2245/79980/10376/5594/6654/91614/5217/57584/3985/3984/23433/348235/6396/8936/2810/64105/55055/26230/5500/2316/51291/55166/4690/171177/5216/55843/11130/10092/147700/393/1080/10095/54509/23229/752/10096/9735/10810/201176/695/7454/7456/64857/5880/57405/9938/84617/7409/84790/51807/4689/116984/1535/64333/8997/1536/91687/3071/4688/11113/653361/7277/1894/3619/257106/29127/117289/79172/58504/5578/4085/221472/124056/995/114793/5579/347733/1062/81930/9055/9824/55839/701/1063/54821/2491/55143/5347/332/81624/83540/128239/55789/50649/147841/11004/699/79019/6280/220134/991/9212/9928/10403/10381/1058/6279
nrow(rp2)
## [1] 95
grep(keyword, rp2$Description, ignore.case = TRUE)
## integer(0)

8 MeSH enrichment analysis

8.1 Over representation analysis

library(meshes)
## meshes v1.15.0  
## 
## If you use meshes in published research, please cite the most appropriate paper(s):
## 
## Guangchuang Yu.Using meshes for MeSH term enrichment and semantic analyses.Bioinformatics 2018, 34(21):3766-3767, doi:10.1093/bioinformatics/bty410
## 
## Attaching package: 'meshes'
## The following object is masked from 'package:DOSE':
## 
##     geneSim
library(MeSH.Hsa.eg.db)
## Loading required package: MeSHDbi
## 
## Attaching package: 'MeSHDbi'
## The following object is masked from 'package:utils':
## 
##     packageName
emesh <- enrichMeSH(gene, MeSHDb = "MeSH.Hsa.eg.db", database = 'gendoo', category = 'C')
head(emesh)
##              ID                     Description GeneRatio   BgRatio
## D016399 D016399                Lymphoma, T-Cell  159/2371 391/16528
## D016403 D016403 Lymphoma, Large B-Cell, Diffuse  173/2371 459/16528
## D003093 D003093             Colitis, Ulcerative  172/2371 474/16528
## D007239 D007239                       Infection  149/2371 385/16528
## D015459 D015459 Leukemia-Lymphoma, Adult T-Cell  156/2371 419/16528
## D019698 D019698            Hepatitis C, Chronic  130/2371 317/16528
##               pvalue     p.adjust       qvalue
## D016399 4.042133e-38 9.026083e-35 3.497509e-35
## D016403 2.496510e-36 2.787354e-33 1.080069e-33
## D003093 1.049215e-33 7.809656e-31 3.026156e-31
## D007239 7.143407e-33 3.987807e-30 1.545232e-30
## D015459 4.211671e-32 1.880932e-29 7.288407e-30
## D019698 9.557356e-32 3.556929e-29 1.378271e-29
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           geneID
## D016399                                                                                6947/10560/638/2261/5618/4843/10/2057/596/10840/2042/1728/7161/3708/1191/6927/3164/10588/9021/5777/2734/836/472/613/8771/5591/6773/581/2280/7422/3710/790/3557/3709/6573/8726/2650/5594/5156/5743/3556/8797/4793/26230/6404/11047/867/27040/567/706/5111/5696/894/1786/11200/578/3659/3459/5699/2113/752/2534/10863/3119/7454/968/4261/3091/3676/3791/4851/6775/6688/84433/7409/4478/8837/10125/3682/3553/5788/4830/6513/10849/637/2242/100/5272/920/8784/5971/7277/962/6772/2120/3135/7293/29078/1612/6614/7153/639/6566/942/3601/1043/6491/5698/6932/10859/919/3695/43/7037/6891/6890/6693/3600/1236/5452/1869/971/7535/83439/3561/3702/4050/1021/7298/916/3560/914/332/1234/9232/3932/8651/3718/2833/29126/3662/974/5588/7850/50943/5008/51513/2672/9047/973/838/875/3559/898/952/3002/4283/6373/10563
## D016403     1287/4843/5327/596/1728/7161/1191/648/3551/6430/2272/27086/399/5777/2212/1832/836/472/8771/7186/57019/581/7422/3557/6573/2213/4791/5743/6282/3329/8797/5734/6480/241/8809/6627/7099/892/6850/2956/567/5111/894/3400/11200/5328/4082/1282/1080/1956/7159/4033/578/3133/54509/3659/1284/3459/2113/3123/7805/60489/3732/3119/5771/7454/968/4261/3091/54/10682/3687/4851/9641/6688/3855/10892/84433/7409/4478/8837/3553/4233/64127/5336/5788/4830/6513/1032/705/637/55824/994/5294/3587/100/5272/2023/4171/891/6772/6624/1051/7293/6614/7153/4067/5578/3569/10320/5292/639/2214/942/958/5142/3601/712/1043/6491/5329/5579/3925/7037/1978/9055/3383/6693/3600/1236/3575/5452/1869/8600/7535/10673/1111/916/5347/6790/3001/921/6401/332/6556/2950/2178/7412/1234/9232/6352/8651/3718/7272/2833/3662/993/974/50943/5008/1029/10663/4318/973/10644/50615/898/259307/952/3002/4283/4316/10563
## D003093 7031/7033/9/1811/7494/7432/4583/6584/4843/3480/3572/10/4485/3306/79148/3382/3485/6423/4214/9863/7122/3291/2169/6583/3856/3479/3551/8639/79589/2272/83998/7098/23600/6550/9021/836/4650/10109/7042/8718/5320/581/6789/4314/5967/3557/4277/6590/2920/5743/6749/1636/3556/3122/2289/3672/7099/2956/5111/3107/7097/3914/3820/1080/1956/3659/8767/3683/7133/2113/3123/7185/6347/3119/5771/7454/8856/968/4261/3091/3687/9641/6688/3855/7096/3162/4689/3682/3553/929/56667/1535/4233/64127/6338/3106/3384/4585/4904/8784/1672/7292/6366/6772/3117/1244/3135/3606/7293/26191/3569/4085/942/2597/958/9966/6948/3689/5329/5579/6367/864/330/6696/9332/6891/3383/6890/6693/3600/1236/3105/8600/890/64170/2153/1111/4050/3560/332/6369/2215/6556/2950/1234/30835/6356/6364/54210/8651/699/2833/8836/51561/3934/50943/1029/2919/5266/6374/4318/321/7941/3627/952/3002/4283/11254/4316/4312/10563/4321
## D007239                                                                                                                        9/5733/6337/7079/126/7432/4843/3480/30061/3875/5327/10/3315/125/3306/2053/2157/3479/3551/51478/727/116835/4179/7098/9021/5777/23210/3310/2212/836/871/8771/7186/60/7422/4314/3557/55343/6590/22861/5743/1636/3556/8797/7305/4615/8809/7099/51182/567/5216/3107/7097/2177/3820/1080/3659/3459/8767/4502/7133/5732/6347/3119/695/968/3091/9641/6688/7096/3394/3162/3553/929/64127/10062/3570/2048/3106/1536/3587/100/3455/348/5971/7292/6366/6772/3117/3135/5321/3606/7293/26191/3569/2214/942/3601/995/1043/6948/133/9332/6891/3383/6890/6693/3600/3574/1236/3105/7535/4794/5888/6648/10673/2153/1111/4050/81030/3560/1946/332/2215/6556/2950/717/30835/6356/54210/6352/8651/29126/3662/51561/6280/3934/7850/50943/3290/2919/4318/6279/875/3627/3559/952/3002/4312
## D015459                                                                                        4680/4602/10560/8912/4582/1154/3214/4843/3213/1960/3667/596/3315/5167/21/9314/1728/267/3708/648/10401/3551/3727/3164/3977/4363/9021/9793/5777/1947/8660/836/472/613/8771/55294/6773/581/7422/10875/3709/10461/1024/4791/8797/5734/4793/6597/867/3635/2956/1633/3115/55697/5111/894/3965/2177/4507/1956/578/5150/3459/7133/2113/3123/2534/1084/272/968/4851/9641/6688/84433/7409/8837/5996/4233/5788/3106/843/637/100/8784/7913/84441/5971/7292/6366/6772/8013/2120/3606/7293/1612/7153/4067/10320/5292/2214/942/2597/5142/3601/995/1043/6491/5329/6367/919/3925/1439/7037/1978/6693/3574/1236/84868/3575/65078/3105/1869/8600/7535/5888/83439/5140/3561/1021/916/3001/332/2950/30835/915/3932/6352/8651/3718/699/2833/10225/3662/114836/50943/5008/924/1029/4318/973/3604/3627/3559/952/3002/6362
## D019698                                                                                                                                                                                                                      2674/2705/4582/9547/2690/4843/3480/30061/3875/3667/2719/7043/183/3315/5950/3856/3479/10401/727/4179/7098/399/9021/836/5168/7042/23225/6773/581/7422/4314/3557/55502/4277/5743/1636/3556/8797/8809/7099/3429/5111/3107/5696/7097/4082/3820/1080/3659/3459/7133/3123/91543/6347/3119/4599/968/7036/7052/3855/3394/3553/929/3106/100/3455/8784/4171/348/5465/6366/58191/6772/3117/3606/64135/3569/5292/2214/942/2597/958/983/1230/5698/341/133/3925/6696/7037/9332/6891/6890/3600/1236/3575/3105/8600/6648/8638/10673/2153/916/332/2215/6556/2950/7412/1234/6364/6352/8651/2833/29126/3594/7850/50943/10663/4318/838/3627/952/1116/3002/4283/3620/6373/4312/6362/10563
##         Count
## D016399   159
## D016403   173
## D003093   172
## D007239   149
## D015459   156
## D019698   130
nrow(emesh)
## [1] 1310
grep(keyword, emesh$Description, ignore.case = TRUE)
## [1] 237 358 503

8.2 GSEA

emesh2 <- gseMeSH(geneList, MeSHDb = "MeSH.Hsa.eg.db", database = 'gene2pubmed', category = "G")
## preparing geneSet collections...
## GSEA analysis...
## Warning in .GSEA(geneList = geneList, exponent = exponent, minGSSize =
## minGSSize, : We do not recommend using nPerm parameter incurrent and future
## releases
## Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize
## = minGSSize, : You are trying to run fgseaSimple. It is recommended to use
## fgseaMultilevel. To run fgseaMultilevel, you need to remove the nperm argument
## in the fgsea function call.
## leading edge analysis...
## done...
## Loading required package: MeSH.db
head(emesh2)
##              ID               Description setSize enrichmentScore       NES
## D003602 D003602 Cytotoxicity, Immunologic     479      -0.5171097 -2.003974
## D005720 D005720                Gamma Rays     481      -0.3762177 -1.458614
## D017951 D017951      Antigen Presentation     478      -0.4828499 -1.870471
## D000705 D000705                  Anaphase     464      -0.4094642 -1.585418
## D016192 D016192 Resting Phase, Cell Cycle     467      -0.4062869 -1.572549
## D009336 D009336                  Necrosis     436      -0.4094364 -1.579894
##              pvalue   p.adjust     qvalues rank                   leading_edge
## D003602 0.001024590 0.01114076 0.007477986 1549 tags=41%, list=20%, signal=35%
## D005720 0.001025641 0.01114076 0.007477986 2042 tags=33%, list=26%, signal=26%
## D017951 0.001026694 0.01114076 0.007477986 1610 tags=39%, list=21%, signal=33%
## D000705 0.001027749 0.01114076 0.007477986 2460 tags=38%, list=32%, signal=28%
## D016192 0.001029866 0.01114076 0.007477986 2065 tags=37%, list=26%, signal=29%
## D009336 0.001033058 0.01114076 0.007477986 1742 tags=33%, list=22%, signal=27%
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 core_enrichment
## D003602 10376/64750/26270/7852/5594/81704/4277/6590/2176/2213/127544/5898/6452/5743/5873/84937/3329/55666/7305/4615/8809/3122/7099/29940/5069/3482/6850/867/27040/567/965/1464/4690/3115/5216/89845/961/5111/10525/3107/6502/811/7097/3965/4217/11200/899/432/3820/203068/1956/55008/84876/3133/3127/3459/4502/29121/3683/7133/3123/2534/10096/60489/3371/8793/7454/3937/3091/29992/3687/7036/3791/5880/963/6775/6688/5817/51191/5552/10892/84433/7409/3394/8837/10125/3162/10507/3682/3553/5336/5788/3106/115290/3384/6351/637/7128/5294/5272/2023/920/3936/3903/962/7292/6366/2207/6772/3135/2357/5321/6402/3606/197259/79626/3569/639/2214/4248/8676/1508/3161/83706/958/6376/3601/3134/9966/1043/3689/201294/10859/6367/919/3383/6890/6693/3600/3574/84868/3575/3105/1869/971/7535/2526/10288/1844/64170/1131/10673/9235/3702/8140/10870/3560/914/6790/3001/921/2215/925/2359/11025/939/9232/915/3932/6352/8651/11006/7272/29126/10225/3662/57823/114836/50943/1029/10578/5551/3783/4318/8645/3604/50615/3627/3559/952/3002/3620/10537/10232/768/6362/10563
## D005720                                                                                                                                                                                                          5052/3658/355/4609/26524/10200/1072/4691/23350/87178/1509/2189/4436/860/10449/6117/64782/10059/5757/3251/836/10097/8525/7486/472/26986/8771/7186/6598/64393/5591/55294/23198/5691/581/835/7422/6477/580/10376/5594/22948/2176/6446/7226/4176/5743/2810/9188/8091/6275/5500/8243/6597/834/25788/1633/5111/11010/7097/11200/2177/10885/1956/578/5901/3659/348654/5688/3037/10926/23657/2678/5902/84930/5371/4521/5954/10096/813/8407/695/5984/3091/8876/140885/26271/4851/7083/5933/7409/8837/3162/3553/4233/4001/5424/10849/637/64421/994/2023/920/55215/675/891/9688/5971/51514/6772/1789/3135/6300/3606/2237/8877/7153/1410/650/7516/958/995/983/29128/6615/262/330/3930/3383/1869/7535/5888/6648/83990/55247/9787/1111/146956/1021/641/5347/6790/10481/2175/332/2950/8438/22974/25984/10635/993/1029/5031/2672/2305/4318/55388/898/1116/3897
## D017951                                                                                972/6477/80176/290/5704/5660/3108/10376/64750/8726/26270/7852/5594/4277/2213/5685/127544/5873/5718/84937/3329/1445/4615/3122/5692/7099/9474/2091/11047/5686/5690/567/965/10457/3115/3107/5696/6502/811/7097/3965/899/1080/55008/4033/3133/3659/3127/7498/5694/5688/5699/23657/64167/2113/6632/3123/3059/5713/5371/5641/6347/3119/2821/4261/7456/3687/3111/4973/140885/7052/963/4851/6688/3109/51191/5796/7409/3394/3162/4689/1794/3553/929/64127/5788/3106/115290/6351/637/1536/3587/920/951/5971/1525/7292/6366/50856/2207/6772/3117/27071/2120/3135/126014/7167/5293/1510/7293/6614/26191/9398/3569/639/942/1508/221472/3161/84166/958/6376/3601/3134/9966/1520/2146/983/5698/6932/10859/341/919/10437/4360/3118/25939/7037/9332/923/6891/3383/6890/3600/3574/1236/3575/3105/7535/176/10288/64581/10673/916/914/332/925/2359/3902/1234/30835/11025/6364/915/3932/6352/29126/3662/51561/6280/974/50943/9582/926/3120/10578/3783/4318/973/3604/3112/1116/3002/3620/10537
## D000705                                                                      5714/23279/7280/1994/27097/1019/10000/11117/57520/5049/5689/22919/1783/5717/9985/5687/191/57122/7532/5479/9690/8454/5721/22944/301/9183/7321/2313/54464/51144/10171/10426/7431/9972/5707/23173/6629/3796/4609/23381/1072/5693/51529/9136/8555/170506/55183/5702/154810/6117/55920/5683/81929/55233/23481/5708/7486/10973/2896/1159/5591/55294/23198/5691/5885/86/55131/5704/79980/64750/5464/10213/5685/3984/348235/5718/3607/3329/55666/55055/7027/84259/5692/7296/2037/8243/6597/5686/25788/54205/5690/8986/10436/5696/6502/11130/11200/10459/203068/51053/5901/5694/5688/5699/84930/5713/9735/10293/10940/10051/26271/57405/2182/27338/4001/285643/675/891/11113/29899/4860/1894/3619/8291/29127/7153/4085/25902/3832/983/5698/230/3930/3925/1062/81930/9055/9700/10112/3801/3833/5888/890/701/1063/4751/81620/6241/1111/54821/641/5347/6790/24137/332/8438/83540/128239/22974/990/9232/147841/11004/699/7272/113130/11065/220134/991/9212/9928/10403/2305/1058/51512/898/10232
## D016192                                                                                                                                                      3269/9150/1906/5707/355/912/9097/4609/1072/5693/51529/1874/292/5702/22821/5982/6612/5983/3301/4363/5683/5777/836/1459/7187/84108/5708/472/6714/7186/6598/7042/51379/5691/581/4771/440/3710/6786/5704/5594/3631/10213/5685/5743/3985/5718/29933/91582/8797/7027/5692/11047/892/5686/867/9170/2619/5690/10212/961/5111/5696/6502/894/7097/1786/11200/1956/7112/51053/3659/5694/5688/5699/5713/7185/10189/1875/8477/5984/6839/3937/8856/3091/5880/4851/4175/10397/5933/7409/3394/3162/3553/9934/3106/843/5424/5997/1032/4173/7128/5294/5724/920/8784/7913/5915/675/891/6197/5465/100133941/3159/5727/50486/84879/29127/3757/1612/7153/5800/5578/3569/1508/1871/9966/995/983/7345/5329/5698/6932/330/3838/3574/3575/3105/1869/971/2526/890/9046/6648/1131/5214/3561/81620/1021/914/6790/332/925/1234/655/939/22974/990/1870/3718/29126/11065/993/51561/4605/991/50943/1029/5031/5551/3783/898/952/3002
## D009336                                                                                                                                                                                                                                                                                               7486/837/6714/7186/2896/7042/5591/58/8718/5320/2542/581/835/7422/10630/4314/3557/8717/25937/7852/5594/10461/2920/6446/7226/24145/5743/6749/4017/29933/8797/4615/7099/1317/5069/255738/7873/834/8260/2956/23636/961/5111/10525/7097/4217/1080/1152/1956/7112/3663/719/578/57162/192111/6472/7133/240/3123/5954/6347/11168/8477/8856/3091/284/8542/4973/7096/8837/3162/3553/4233/64127/3570/3106/843/6513/4173/7128/4904/675/84441/348/6646/5465/100133941/1244/123/2120/1051/2357/3606/59341/197259/10855/7153/5578/3569/6566/101/942/1508/958/2146/7345/29128/6615/133/6696/60386/3383/1063/6648/2153/27242/81030/89790/7298/5347/6790/3945/332/717/11025/6364/6352/29126/6280/7850/1029/2919/10578/5551/2305/4318/6279/7941/3627/5080/3002/2707/4316/768
nrow(emesh2)
## [1] 220
grep(keyword, emesh2$Description, ignore.case = TRUE)
## [1] 196

9 Visualization of functional enrichment result