Objetivo

Realizar al algunos cálculos de probabilidad haciendo uso de la Distribución Normal Estándard y mediante la función pnorm()

Propiedades

\[F(z)=1(√2pi)e−z2/2\]

Las librerías

library(mosaic)
## Warning: package 'mosaic' was built under R version 3.6.3
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Loading required package: lattice
## Loading required package: ggformula
## Warning: package 'ggformula' was built under R version 3.6.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.6.3
## Loading required package: ggstance
## Warning: package 'ggstance' was built under R version 3.6.3
## 
## Attaching package: 'ggstance'
## The following objects are masked from 'package:ggplot2':
## 
##     geom_errorbarh, GeomErrorbarh
## 
## New to ggformula?  Try the tutorials: 
##  learnr::run_tutorial("introduction", package = "ggformula")
##  learnr::run_tutorial("refining", package = "ggformula")
## Loading required package: mosaicData
## Warning: package 'mosaicData' was built under R version 3.6.3
## Loading required package: Matrix
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Note: If you use the Matrix package, be sure to load it BEFORE loading mosaic.
## 
## Have you tried the ggformula package for your plots?
## 
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following object is masked from 'package:ggplot2':
## 
##     stat
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum

1. Encontar la probabildiad para cuando \(p(z≤1)\) con \(μ=0\) y \(σ=1\). Se usa pnorm() para encontrar probabilidad acumulada.

pnorm(1, mean = 0, sd= 1)
## [1] 0.8413447

Visualizar la distribución de probabilidad normal estándard para cuando \(μ=0\) y \(σ=1\)

plotDist("norm", mean = 0, sd = 1, groups = x < 1, type = "h")

2. Encontar la probabilidad para cuando \(p(−0.50≤x≤1.25)\) con \(μ=0\) y \(σ=1\). Se usa pnorm() para encontrar probabilidad acumulada y restando \(p(1.25)−p(−0.50)\)

pnorm(1.25, mean = 0, sd= 1) -pnorm(-0.50, mean = 0, sd= 1)
## [1] 0.5858127

Visualizar la distribución de probabilidad normal estándard para cuando \(μ=0\) y \(σ=1\)

plotDist("norm", mean = 0, sd = 1, groups = x > -0.50 & x < 1.25, type = "h")

3. Encontar la probabilidad para cuando \(p(z≥1.58)\) con \(μ=0\) y \(σ=1\). Se usa pnorm() para encontrar probabilidad acumulada y restando \(p(x>1.58)=1−p(x≤1.58)\).

1 - pnorm(c(1.58), mean = 0, sd= 1)
## [1] 0.05705343
# ó

pnorm(c(1.58), mean = 0, sd= 1, lower.tail= F)
## [1] 0.05705343

Visualizar la distribución de probabilidad normal estándard para cuando \(μ=0\) y \(σ=1\)

plotDist("norm", mean = 0, sd = 1, groups = x > 1.58, type ="h")

Visualizar la distribución de probabilidad normal estándard para cuando \(μ=0\) y \(σ=1\)

plotDist("norm", mean = 10, sd = 2, groups = x > 10 & x < 14, type ="h")

\[p(10≤x≤14)\]

\[p(x≤14)−p(x≤10)\]

pnorm(14, mean = 10, sd = 2) - pnorm(10, mean = 10, sd = 2)
## [1] 0.4772499

¿Cual es la probabilidad de que sea mayor que 12?

\[p(x≥12)\] \[1−p(x≤12)\] \[p(x≥12)\] * Por la derecha

Visualizando

plotDist("norm", mean = 10, sd = 2, groups = x > 12, type ="h")

Opción 1

1 - pnorm(q=12, mean = 10, sd = 2)
## [1] 0.1586553

Opción 2

pnorm(q=12, mean = 10, sd = 2, lower.tail = FALSE)
## [1] 0.1586553