read in data

setwd("~/Google Drive/Research/Bernd")
c<-read.csv ("heal conscious x HL v2.csv", header=T, sep=",")

creating DVs and IVs, excluding people who failed attention check

c$uncanny<-(c$uncanny_4 + c$uncanny_5 + c$uncanny_6)/3
c$comfort<-(11-c$uncanny) #reverse coding

c$useful<-(c$competent_1+c$useful_1)/2

#mind condition
c$mind[c$yes==1]<-1
c$mind[c$no==1]<-0

#body condition
c$body[c$loHL==1]<-0
c$body[c$hiHL==1]<-1

c$mind<-as.factor(c$mind)
c$body<-as.factor(c$body)

c<-subset(c, exclude==0)

2x2 ANOVA, usefulness DV

library(car)
## Loading required package: carData
mod <- lm(useful ~ body*mind, data=c, contrasts=list(body=contr.sum, mind=contr.sum))
Anova(mod, type="III")
## Anova Table (Type III tests)
## 
## Response: useful
##             Sum Sq  Df   F value    Pr(>F)    
## (Intercept) 8785.3   1 1914.4434 < 2.2e-16 ***
## body           2.7   1    0.5878 0.4439004    
## mind          52.2   1   11.3680 0.0008483 ***
## body:mind      1.6   1    0.3571 0.5505633    
## Residuals   1335.4 291                        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

main effect of mind on usefulness

mod <- lm(useful ~ mind, data=c, contrasts=list(mind=contr.sum))

library(emmeans)
em <- emmeans(mod, "mind")
em
##  mind emmean    SE  df lower.CL upper.CL
##  0      5.08 0.180 293     4.72     5.43
##  1      5.91 0.172 293     5.57     6.24
## 
## Confidence level used: 0.95
pairs(em)
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1      -0.828 0.249 293 -3.322  0.0010

2x2 ANOVA, comfort DV

mod <- lm(comfort ~ body*mind, data=c, contrasts=list(body=contr.sum, mind=contr.sum))
Anova(mod, type="III")
## Anova Table (Type III tests)
## 
## Response: comfort
##              Sum Sq  Df   F value    Pr(>F)    
## (Intercept) 10578.1   1 1556.6675 < 2.2e-16 ***
## body          253.9   1   37.3611 3.183e-09 ***
## mind           11.4   1    1.6786  0.196154    
## body:mind      73.4   1   10.7963  0.001143 ** 
## Residuals    1957.1 288                        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

means, then planned contrasts for comfort DV. first broken down by body, then by mind

em <- emmeans(mod, "mind", "body")
em
## body = 0:
##  mind emmean    SE  df lower.CL upper.CL
##  0      7.69 0.295 288     7.11     8.27
##  1      6.28 0.291 288     5.71     6.86
## 
## body = 1:
##  mind emmean    SE  df lower.CL upper.CL
##  0      4.81 0.331 288     4.15     5.46
##  1      5.42 0.307 288     4.81     6.02
## 
## Confidence level used: 0.95
pairs(em, by="body")
## body = 0:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1        1.40 0.415 288  3.386  0.0008 
## 
## body = 1:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1       -0.61 0.452 288 -1.351  0.1777
pairs(em, by="mind")
## mind = 0:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1       2.882 0.444 288 6.497   <.0001 
## 
## mind = 1:
##  contrast estimate    SE  df t.ratio p.value
##  0 - 1       0.867 0.423 288 2.047   0.0416