Generar distribución de Poisson y determianar probabildiades dadas sus medias iniciales
\(8=100\) entonces \(x=25\) *Regla de tres
media <- 25 * 8 / 100
media
## [1] 2
prob.x <- round(dpois(0:9, lambda = media),4)
prob.x
## [1] 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361 0.0120 0.0034 0.0009 0.0002
prob.acum.x <- round(ppois(q = 0:9, lambda = media),4)
prob.acum.x
## [1] 0.1353 0.4060 0.6767 0.8571 0.9473 0.9834 0.9955 0.9989 0.9998 1.0000
tabla <- data.frame(1:10, 0:9, prob.x, prob.acum.x)
colnames(tabla) <- c("pos","x", "prob.x", "prob.acum.x")
tabla
## pos x prob.x prob.acum.x
## 1 1 0 0.1353 0.1353
## 2 2 1 0.2707 0.4060
## 3 3 2 0.2707 0.6767
## 4 4 3 0.1804 0.8571
## 5 5 4 0.0902 0.9473
## 6 6 5 0.0361 0.9834
## 7 7 6 0.0120 0.9955
## 8 8 7 0.0034 0.9989
## 9 9 8 0.0009 0.9998
## 10 10 9 0.0002 1.0000
i=2
tabla$prob.x[i] # i es el valor del vector
## [1] 0.2707
dpois(x=1, media)
## [1] 0.2706706
\(1−f(x=2)\)
i=2
1 - tabla$prob.acum.x[i]
## [1] 0.594
1 - ppois(1, media)
## [1] 0.5939942
med <- 50 * 8 / 100
med
## [1] 4
pro.x= round(dpois(0:9, lambda = med),4)
pro.x
## [1] 0.0183 0.0733 0.1465 0.1954 0.1954 0.1563 0.1042 0.0595 0.0298 0.0132
p.acum.x= round(ppois(q=0:9, lambda = med),4)
p.acum.x
## [1] 0.0183 0.0916 0.2381 0.4335 0.6288 0.7851 0.8893 0.9489 0.9786 0.9919
tabla = data.frame(1:10,0:9, pro.x, p.acum.x)
colnames(tabla)= c("pos","x","prob.x","prob.acum.x")
tabla
## pos x prob.x prob.acum.x
## 1 1 0 0.0183 0.0183
## 2 2 1 0.0733 0.0916
## 3 3 2 0.1465 0.2381
## 4 4 3 0.1954 0.4335
## 5 5 4 0.1954 0.6288
## 6 6 5 0.1563 0.7851
## 7 7 6 0.1042 0.8893
## 8 8 7 0.0595 0.9489
## 9 9 8 0.0298 0.9786
## 10 10 9 0.0132 0.9919
dpois(x=2,med)
## [1] 0.1465251
1- ppois(2,med)
## [1] 0.7618967
med = 125 * 8 / 100
med
## [1] 10
pro.x= round(dpois(0:9, lambda = med),4)
pro.x
## [1] 0.0000 0.0005 0.0023 0.0076 0.0189 0.0378 0.0631 0.0901 0.1126 0.1251
p.acum.x= round(ppois(q=0:9, lambda = med),4)
p.acum.x
## [1] 0.0000 0.0005 0.0028 0.0103 0.0293 0.0671 0.1301 0.2202 0.3328 0.4579
tabla = data.frame(1:10,0:9, pro.x, p.acum.x)
colnames(tabla)= c("pos","x","prob.x","prob.acum.x")
tabla
## pos x prob.x prob.acum.x
## 1 1 0 0.0000 0.0000
## 2 2 1 0.0005 0.0005
## 3 3 2 0.0023 0.0028
## 4 4 3 0.0076 0.0103
## 5 5 4 0.0189 0.0293
## 6 6 5 0.0378 0.0671
## 7 7 6 0.0631 0.1301
## 8 8 7 0.0901 0.2202
## 9 9 8 0.1126 0.3328
## 10 10 9 0.1251 0.4579
dpois(2,med)
## [1] 0.002269996
1- ppois(2,med)
## [1] 0.9972306
\(f(x=5)−f(x=2)\)
media <- 125*8/100
media
## [1] 10
ppois(5,media) - ppois(2, media)
## [1] 0.06431657