Determinar probabilidades para la distribución binomial CASO Considere las decisiones de compra de los próximos tres clientes que lleguen a la tienda de ropa Martin Clothing Store. De acuerdo con la experiencia, el gerente de la tienda estima que la probabilidad de que un cliente realice una compra es 0.30.

Objetivo

Las librerías

library(knitr)

Identificar las variables, probabilidad y n para caso Binomial

n <- 3
prob <- 0.30

1. Se calculará ahora la probabilidad de que ningún cliente realice una compra

x <- 0
n <- 3
p <- prob
q = 1 - p
(factorial(n) / (factorial(x) * factorial(n-x))) * p^x * (1-p)^(n-x)
## [1] 0.343

Tambien de la siguiente manera

dbinom(x = 0, size = n, prob = prob)
## [1] 0.343

2. De que sea dos o menos clientes

x <- 2
dbinom(x-2,n,prob) + dbinom(x-1,n,prob) + dbinom(x,n,prob)
## [1] 0.973
pbinom(x,n,prob)
## [1] 0.973

3. De que exactamente sean dos clientes realicen una compra

x<-2
dbinom(x,n,prob)
## [1] 0.189
#o
pbinom(2,n,prob) - pbinom(1,n,prob)
## [1] 0.189

4. De mas de dos o sea de tres en adelante

x<-2
1 - pbinom(x,n,prob)
## [1] 0.027

5. Genera tabla de distribución con x, prob y prob acumulada

tabla <- data.frame(c(0:3),dbinom(0:3,n,prob), pbinom(0:3,n,prob))

colnames(tabla) <- c("x", "prob.x", "prob.acum.x")
tabla
##   x prob.x prob.acum.x
## 1 0  0.343       0.343
## 2 1  0.441       0.784
## 3 2  0.189       0.973
## 4 3  0.027       1.000

6. Gráfica de barra para variables discretas 0:3

barplot(height = tabla$prob.x, names.arg = tabla$x,
        xlab = "Valores de x",
        ylab = "Probabilidades")

7. Gráfica Acumulada

plot(tabla$x, tabla$prob.acum.x, type = "b",
     xlab = "Valores de x",
        ylab = "Probabilidad acumulada")

Estadísticos

8. Valor esperado o media en distribución binomial

v.e <- n * prob
v.e
## [1] 0.9

9. Varianza en distribución binomial

vari <- n * p * q
vari
## [1] 0.63

11. Desviación std en distribución binomial

desv.std <- sqrt(vari)
desv.std
## [1] 0.7937254