Generar distribución de Poisson y determianar probabildiades dadas sus medias iniciales
\[ 8 = 100\] entonces \[ x = 25\] * Regla de tres
media <- 25 * 8 / 100
media
## [1] 2
prob.x <- round(dpois(0:9, lambda = media),4)
prob.x
## [1] 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361 0.0120 0.0034 0.0009 0.0002
prob.acum.x <- round(ppois(q = 0:9, lambda = media),4)
prob.acum.x
## [1] 0.1353 0.4060 0.6767 0.8571 0.9473 0.9834 0.9955 0.9989 0.9998 1.0000
tabla <- data.frame(1:10, 0:9, prob.x, prob.acum.x)
colnames(tabla) <- c("pos","x", "prob.x", "prob.acum.x")
tabla
## pos x prob.x prob.acum.x
## 1 1 0 0.1353 0.1353
## 2 2 1 0.2707 0.4060
## 3 3 2 0.2707 0.6767
## 4 4 3 0.1804 0.8571
## 5 5 4 0.0902 0.9473
## 6 6 5 0.0361 0.9834
## 7 7 6 0.0120 0.9955
## 8 8 7 0.0034 0.9989
## 9 9 8 0.0009 0.9998
## 10 10 9 0.0002 1.0000
i=2
tabla$prob.x[i] # i es el valor del vector
## [1] 0.2707
# ó
dpois(x=1, media)
## [1] 0.2706706
\[1 - f(x=2)\]
i=2
1 - tabla$prob.acum.x[i]
## [1] 0.594
# ó
1 - ppois(1, media)
## [1] 0.5939942
\[f(x=5) - f(x=2)\]
media <- 125*8/100
media
## [1] 10
ppois(5,media) - ppois(2, media)
## [1] 0.06431657