Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.
This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.
This report will provide a better insight into Storms and severe weather events in United States and the Fatalities, Injuries and property damages left behind, and mainly focus on two questions
setwd("E:/datasciencecoursera")
library(plyr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(R.utils)
## Loading required package: R.oo
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.0 (2020-02-14 07:10:20 UTC) successfully loaded. See ?R.methodsS3 for help.
## R.oo v1.23.0 successfully loaded. See ?R.oo for help.
##
## Attaching package: 'R.oo'
## The following object is masked from 'package:R.methodsS3':
##
## throw
## The following objects are masked from 'package:methods':
##
## getClasses, getMethods
## The following objects are masked from 'package:base':
##
## attach, detach, load, save
## R.utils v2.9.2 successfully loaded. See ?R.utils for help.
##
## Attaching package: 'R.utils'
## The following object is masked from 'package:utils':
##
## timestamp
## The following objects are masked from 'package:base':
##
## cat, commandArgs, getOption, inherits, isOpen, nullfile, parse,
## warnings
stormdata <- read.csv("StormData.csv")
dim(stormdata)
## [1] 902297 37
str(stormdata)
## 'data.frame': 902297 obs. of 37 variables:
## $ STATE__ : num 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_DATE : chr "4/18/1950 0:00:00" "4/18/1950 0:00:00" "2/20/1951 0:00:00" "6/8/1951 0:00:00" ...
## $ BGN_TIME : chr "0130" "0145" "1600" "0900" ...
## $ TIME_ZONE : chr "CST" "CST" "CST" "CST" ...
## $ COUNTY : num 97 3 57 89 43 77 9 123 125 57 ...
## $ COUNTYNAME: chr "MOBILE" "BALDWIN" "FAYETTE" "MADISON" ...
## $ STATE : chr "AL" "AL" "AL" "AL" ...
## $ EVTYPE : chr "TORNADO" "TORNADO" "TORNADO" "TORNADO" ...
## $ BGN_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ BGN_AZI : chr "" "" "" "" ...
## $ BGN_LOCATI: chr "" "" "" "" ...
## $ END_DATE : chr "" "" "" "" ...
## $ END_TIME : chr "" "" "" "" ...
## $ COUNTY_END: num 0 0 0 0 0 0 0 0 0 0 ...
## $ COUNTYENDN: logi NA NA NA NA NA NA ...
## $ END_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ END_AZI : chr "" "" "" "" ...
## $ END_LOCATI: chr "" "" "" "" ...
## $ LENGTH : num 14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
## $ WIDTH : num 100 150 123 100 150 177 33 33 100 100 ...
## $ F : int 3 2 2 2 2 2 2 1 3 3 ...
## $ MAG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ FATALITIES: num 0 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num 15 0 2 2 2 6 1 0 14 0 ...
## $ PROPDMG : num 25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
## $ PROPDMGEXP: chr "K" "K" "K" "K" ...
## $ CROPDMG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ CROPDMGEXP: chr "" "" "" "" ...
## $ WFO : chr "" "" "" "" ...
## $ STATEOFFIC: chr "" "" "" "" ...
## $ ZONENAMES : chr "" "" "" "" ...
## $ LATITUDE : num 3040 3042 3340 3458 3412 ...
## $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
## $ LATITUDE_E: num 3051 0 0 0 0 ...
## $ LONGITUDE_: num 8806 0 0 0 0 ...
## $ REMARKS : chr "" "" "" "" ...
## $ REFNUM : num 1 2 3 4 5 6 7 8 9 10 ...
Total fatalities and total injuries are to be estimated calamity wise so as to evaluate health impact. The R code for the same is given below
stormdata.fatalities <- stormdata %>% select(EVTYPE, FATALITIES) %>% group_by(EVTYPE) %>% summarise(total.fatalities = sum(FATALITIES)) %>% arrange(-total.fatalities)
head(stormdata.fatalities, 10)
## # A tibble: 10 x 2
## EVTYPE total.fatalities
## <chr> <dbl>
## 1 TORNADO 5633
## 2 EXCESSIVE HEAT 1903
## 3 FLASH FLOOD 978
## 4 HEAT 937
## 5 LIGHTNING 816
## 6 TSTM WIND 504
## 7 FLOOD 470
## 8 RIP CURRENT 368
## 9 HIGH WIND 248
## 10 AVALANCHE 224
stormdata.injuries <- stormdata %>% select(EVTYPE, INJURIES) %>% group_by(EVTYPE) %>% summarise(total.injuries = sum(INJURIES)) %>% arrange(-total.injuries)
head(stormdata.injuries, 10)
## # A tibble: 10 x 2
## EVTYPE total.injuries
## <chr> <dbl>
## 1 TORNADO 91346
## 2 TSTM WIND 6957
## 3 FLOOD 6789
## 4 EXCESSIVE HEAT 6525
## 5 LIGHTNING 5230
## 6 HEAT 2100
## 7 ICE STORM 1975
## 8 FLASH FLOOD 1777
## 9 THUNDERSTORM WIND 1488
## 10 HAIL 1361
The economic impact can be classified into two types namely, property damage and crop damage. The damages are estimated in $USD. The R code to calculate calamity wise total damages is given below.
stormdata.damage <- stormdata %>% select(EVTYPE, PROPDMG,PROPDMGEXP,CROPDMG,CROPDMGEXP)
Symbol <- sort(unique(as.character(stormdata.damage$PROPDMGEXP)))
Multiplier <- c(0,0,0,1,10,10,10,10,10,10,10,10,10,10^9,10^2,10^2,10^3,10^6,10^6)
convert.Multiplier <- data.frame(Symbol, Multiplier)
stormdata.damage$Prop.Multiplier <- convert.Multiplier$Multiplier[match(stormdata.damage$PROPDMGEXP, convert.Multiplier$Symbol)]
stormdata.damage$Crop.Multiplier <- convert.Multiplier$Multiplier[match(stormdata.damage$CROPDMGEXP, convert.Multiplier$Symbol)]
stormdata.damage <- stormdata.damage %>% mutate(PROPDMG = PROPDMG*Prop.Multiplier) %>% mutate(CROPDMG = CROPDMG*Crop.Multiplier) %>% mutate(TOTAL.DMG = PROPDMG+CROPDMG)
stormdatadamagetotal <- stormdata.damage %>% group_by(EVTYPE) %>% summarize(TOTAL.DMG.EVTYPE = sum(TOTAL.DMG))%>% arrange(-TOTAL.DMG.EVTYPE)
head(stormdatadamagetotal,10)
## # A tibble: 10 x 2
## EVTYPE TOTAL.DMG.EVTYPE
## <chr> <dbl>
## 1 FLOOD 150319678250
## 2 HURRICANE/TYPHOON 71913712800
## 3 TORNADO 57352117607
## 4 STORM SURGE 43323541000
## 5 FLASH FLOOD 17562132111
## 6 DROUGHT 15018672000
## 7 HURRICANE 14610229010
## 8 RIVER FLOOD 10148404500
## 9 ICE STORM 8967041810
## 10 TROPICAL STORM 8382236550
All the final results are conveyed through graphs for an easy and better understanding.
The impact on health can be graphically divided into two parts namely the top 10 calamities with highest total fatalities and top 10 calamities with highest total injuries. The R code for the same is given below.
a <- ggplot(stormdata.fatalities[1:10,], aes(x=reorder(EVTYPE, -total.fatalities), y=total.fatalities))+geom_bar(stat="identity") + theme(axis.text.x = element_text(angle=90, vjust=0.5, hjust=1))+ggtitle("Top 10 calamities with Highest Total Fatalities") +labs(x="CALAMITY TYPE", y="Total Fatalities")
a
b <- ggplot(stormdata.injuries[1:10,], aes(x=reorder(EVTYPE, -total.injuries), y=total.injuries))+geom_bar(stat="identity") + theme(axis.text.x = element_text(angle=90, vjust=0.5, hjust=1))+ggtitle("Top 10 calamities with Highest Total Injuries") +labs(x="CALAMITY TYPE", y="Total Injuries")
b
Observing the graphs we can conclude that Tornado calamity is the cause of major health impact in both total fatalities and injury counts.
The impact on economy can be graphically illustrated by top 10 calamitites with highest economic impact. The code for the same is given below
a <- ggplot(stormdatadamagetotal[1:10,], aes(x=reorder(EVTYPE, -TOTAL.DMG.EVTYPE), y=TOTAL.DMG.EVTYPE))+geom_bar(stat="identity") + theme(axis.text.x = element_text(angle=90, vjust=0.5, hjust=1))+ggtitle("Top 10 Calamities with Highest Economic Impact") +labs(x="EVENT TYPE", y="Total Economic Impact ($USD)")
a
Observing the graph we can conclude that flood calamity is the cause of major economic impact.