Determinar probabilidades para la distribución binomial

CASO:

Considere las decisiones de compra de los próximos tres clientes que lleguen a la tienda de ropa Martin Clothing Store. De acuerdo con la experiencia, el gerente de la tienda estima que la probabilidad de que un cliente realice una compra es 0.30.

¿Cuál es la probabilidad de que dos de los próximos tres clientes realicen una compra?

Objetivo
  • 1.- Identificar las variables, probabilidad y n para caso Binomial
  • 2.- Se calculará ahora la probabilidad de que ningún cliente realice una compra,
  • 3.- De que sea dos o menos clientes,
  • 4.- De que exactamente sean dos clientes realicen una compra
  • 4.- De mas de dos o sea de tres en adelante
  • 5.- Genera tabla de distribución con x, prob y prob acumulada
  • 6.- Gráfica de barra para variables discretas 0:3
  • 7.- Gráfica acumulada
  • 8.- Valor esperado o media
  • 9.- Varianza
  • 10.- Desviación std
Las librerías:
library(knitr)
Identificar las variables, probabilidad y n para caso binomial.
n <- 3
prob <- 0.30
La fórmula de la Distribución binomial:

p(x;n;p)=(n/x)pxq(n−x);x=0,1,2…n

Fórmula de Combinaciones:

(n/x)=n!x!(n−x)!

1. Se calculará ahora la probabilidad de que ningún cliente realice una compra
  • Para cuando x=0
  • Se determina la función o probabilidad para cuando x=0 confome a la fórmla y luego conforme a la funcion de R: dbinom(). El resultado es el mismo
x <- 0
n <- 3
p <- prob
q = 1 - p
(factorial(n) / (factorial(x) * factorial(n-x))) * p^x * (1-p)^(n-x)
## [1] 0.343

O hecho de otra manera:

dbinom(x = 0, size = n, prob = prob)
## [1] 0.343
2. De que sea dos o menos clientes.
x <- 2
dbinom(x-2,n,prob) + dbinom(x-1,n,prob) + dbinom(x,n,prob)
## [1] 0.973

O hecho de otra manera:

pbinom(x,n,prob)
## [1] 0.973
3. De que exactamente sean dos clientes realicen una compra.
x<-2
dbinom(x,n,prob)
## [1] 0.189

O hecho de otra manera:

pbinom(2,n,prob) - pbinom(1,n,prob)
## [1] 0.189
4. De mas de dos o sea de tres en adelante.
x<-2
1 - pbinom(x,n,prob)
## [1] 0.027
5. Genera tabla de distribución con x, prob y prob acumulada.
tabla <- data.frame(c(0:3),dbinom(0:3,n,prob), pbinom(0:3,n,prob))

colnames(tabla) <- c("x", "prob.x", "prob.acum.x")
tabla
##   x prob.x prob.acum.x
## 1 0  0.343       0.343
## 2 1  0.441       0.784
## 3 2  0.189       0.973
## 4 3  0.027       1.000
6.Gráfica de barra para variables discretas 0:3
barplot(height = tabla$prob.x, names.arg = tabla$x,
        xlab = "Valores de x",
        ylab = "Probabilidades")

##### 7. Gráfica acumulada.

plot(tabla$x, tabla$prob.acum.x, type = "b",
     xlab = "Valores de x",
        ylab = "Probabilidad acumulada")

Estadísticos

8. Valor esperado o media en distribución binomial.

μ=np

v.e <- n * prob
v.e
## [1] 0.9
9. Varianza en distribución binomial

σ2=np(1−p) ó σ2=npq

vari <- n * p * q
vari
## [1] 0.63
10. Desviación std en distribución binomial

σ2−−√

desv.std <- sqrt(vari)
desv.std
## [1] 0.7937254