Paladin M109A7

Paladin M109A7

1 About M109A7

The M109 is an American 155 mm turreted self-propelled howitzer, first introduced in the early 1960s to replace the M44. It has been upgraded a number of times, most recently to the M109A7. The M109 family is the most common Western indirect-fire support weapon of maneuver brigades of armored and mechanized infantry divisions.

For more see: https://en.wikipedia.org/wiki/M109_howitzer

https://fas.org/man/dod-101/sys/land/m109a6.htm

https://www.army-technology.com/projects/paladin/

https://www.military.com/equipment/m109-paladin

2 Data

All data for long range guns (LRG) is here: https://en.wikipedia.org/wiki/List_of_railway_artillery

Some interesting statistics is here:http://rpubs.com/alex-lev/357849

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(DT)
lrg <- read.delim("lrg.txt")
#datatable(lrg)
lrg
##                Name Country WW Weight_t Barrel_M Caliber_mm Range_M
## 1        Modele1893  France  1     7.00     7.40      164.7   18000
## 2              17KE Germany  2    80.00       NA      173.0   27000
## 3        180Pattern  Russia  2    18.50     8.20      180.0   38500
## 4            20.3KE Germany  2    86.10    11.60      203.0   37000
## 5              M188     USA  1    15.30    12.30      203.0   21900
## 6          MkVIM3A2     USA  2    19.00     9.37      203.0   32300
## 7             K12VE Germany  2   318.00    33.30      211.0  115000
## 8  Theodore_Kanone  Germany  2    95.00     8.90      238.0   26750
## 9       Mortire1884  France  1    31.00     6.70      240.0   17300
## 10           Type90   Japan  2   136.00    12.83      240.0   50000
## 11           Nathan Germany  1    55.50     6.33      149.1   22675
## 12           Samuel Germany  1    61.50     6.90      172.6   24020
## 13   Peter_Adalbert Germany  1   110.44     8.40      209.3   25580
## 14     Theodor_Otto Germany  1   103.00     7.14      238.0   18700
## 15     Theodor_Karl Germany  1   116.90     8.87      238.0   26600
## 16         Kurfürst Germany  1   149.00    10.40      283.0   25900
## 17            Bruno Germany  1   156.00    10.40      283.0   27500
## 18              Max Germany  1   267.90    16.13      380.0   47500
## 19        Paris_Gun Germany  1   256.00    34.00      238.0  130000
## 20         Kanone_E Germany  2    74.00    20.10      149.3   22500
## 21          BrunoKE Germany  2   118.00    11.08      283.0   35700
## 22          Kanon5E Germany  2   218.00    21.54      283.0   64000
## 23     OrdnanceBL12      GB  1    50.00    12.19      304.8   29900
## 24    OrdnanceBL9.2      GB  1       NA       NA      233.7   20000
## 25        ObuhMK312  Russia  2    51.00    14.40      305.0   31000
## 26          M1890M1     USA  2    13.20     3.58      305.0   13360
## 27          BL13MKV      GB  2       NA    15.39      342.9   37120
## 28             MKII     USA  1       NA    17.78      355.6   38000
## 29            M1920     USA  1   104.30    18.10      355.6   44090
## 30      SiegfriedKE Germany  2   286.00    18.40      380.0   55700
## 31       Cannone381   Italy  1    93.50    15.24      381.0   24000
## 32             BL18      GB  2    85.70    16.00      457.2   20400
## 33          Obusier  France  1   263.00    11.90      520.0   17000
## 34           Gustav Germany  2  1350.00    32.50      800.0   47000
## 35    Modele1893/96  France  1    48.00    12.20      305.0   12000
## 36             Mk.1      GB  1       NA     5.00      305.0   14000
## 37             BL14      GB  1   248.00    16.00      355.6   34750
##    Velocity_MPS Elevation
## 1           775        25
## 2           875        45
## 3           900        50
## 4           925        47
## 5            NA        42
## 6           840        45
## 7          1650        55
## 8           810        45
## 9           575        38
## 10         1050        50
## 11          840        45
## 12          815        45
## 13          790        45
## 14          640        45
## 15          810        45
## 16          715        NA
## 17          785        45
## 18         1040        55
## 19         1640        NA
## 20          805        45
## 21          860        NA
## 22         1120        50
## 23          796        30
## 24           NA        40
## 25          815        NA
## 26          460        NA
## 27          787        40
## 28          853        43
## 29          808        50
## 30         1050        52
## 31          770        NA
## 32          570        40
## 33          500        60
## 34          820        48
## 35          780        15
## 36          447        65
## 37          792        40

3 Linear Regression Model

Here we fit linear regression model for data with Range_M < 70000. For more about linear model see: https://rpubs.com/alex-lev/360385

lrg2 <- lrg%>%filter(Range_M<70000)
fit.lrg.2 <- lm(Range_M~Velocity_MPS+Barrel_M+Elevation,data = na.omit(lrg2))
summary(fit.lrg.2)
## 
## Call:
## lm(formula = Range_M ~ Velocity_MPS + Barrel_M + Elevation, data = na.omit(lrg2))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -14153.6  -1985.0    -60.7   2916.1   7010.3 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -44325.420   6863.817  -6.458 2.69e-06 ***
## Velocity_MPS     59.200      7.428   7.970 1.24e-07 ***
## Barrel_M        736.305    182.142   4.042 0.000637 ***
## Elevation       411.624    116.034   3.547 0.002020 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5075 on 20 degrees of freedom
## Multiple R-squared:  0.8804, Adjusted R-squared:  0.8624 
## F-statistic: 49.06 on 3 and 20 DF,  p-value: 2.096e-09

4 Predicting M109A7 Range

Here we apply open source data on M109A7 Paladin.

predict(fit.lrg.2,newdata = data.frame(Velocity_MPS=800,Barrel_M=6.05,Elevation=60),
        interval = "conf",level = 0.99)
##        fit      lwr      upr
## 1 32186.87 24720.34 39653.39

\[P(24720.34<Range<39653.39)=0.99\]

5 Conclusion

  1. Linear regression model Range_M~Velocity_MPS+Barrel_M+Elevation is the best for fitting historical long range guns data (\(Range < 70 km\)).
  2. Applying model on real heavy artillery gun M109A7 Paladinon we have got nice result for the range of fire.