Choropleth maps add color to states or countries relative to a variable.
library(pacman)
p_load(tidyverse, choroplethr, choroplethrMaps,RColorBrewer)
State Population
data(df_pop_state)
pop_state <- df_pop_state %>% arrange(-(value))
top_n(pop_state,10)
## Selecting by value
state_choropleth(df_pop_state,
title = "US 2012 State Population Estimates",
legend = "Population")
County Population
data(df_pop_county)
county_choropleth(df_pop_county,
title = "US 2012 County Population Estimates",
legend = "Population", num_colors = 8)
California Counties
county_choropleth(df_pop_county,
title = "California County Population Estimates",
legend = "Population",
state_zoom = "california")
State Demographics
data("df_state_demographics")
head(df_state_demographics,10)
# African American Population Distribution
df_state_demographics$value<- df_state_demographics$percent_black
state_choropleth(df_state_demographics,
title = "African American Population Distribution in US",
legend = "Population")
# White Population Distribution
df_state_demographics$value<- df_state_demographics$percent_white
state_choropleth(df_state_demographics,
title = "White Population Distribution in US",
legend = "Population")
# Asian Population Distribution
df_state_demographics$value<- df_state_demographics$percent_asian
state_choropleth(df_state_demographics,
title = "Asian Population Distribution in US",
legend = "Population")
World Map
data("df_pop_country")
country_pop <- df_pop_country %>% arrange(desc(value))
head(country_pop,10)
country_choropleth(country_pop,
title = "World map based on population estimates",
legend = "Population")
## Warning in self$bind(): The following regions were missing and are being set to
## NA: namibia, western sahara, taiwan, antarctica, kosovo
Heatmaps visual the values in a matrix by adding color relative to a variable(s), usually down columns.
data(df_state_demographics)
df_state_demographics <- df_state_demographics %>% arrange(total_population)
X <- data.matrix(df_state_demographics[,2:8])
row.names(X) <- df_state_demographics[,1]
head(X)
## total_population percent_white percent_black percent_asian
## wyoming 570134 85 1 1
## district of columbia 619371 35 49 3
## vermont 625904 94 1 1
## north dakota 689781 88 1 1
## alaska 720316 63 3 5
## south dakota 825198 84 1 1
## percent_hispanic per_capita_income median_rent
## wyoming 9 28902 647
## district of columbia 10 45290 1154
## vermont 2 29167 754
## north dakota 2 29732 564
## alaska 6 32651 978
## south dakota 3 25740 517
heatmap(X, Rowv=NA, Colv=NA, col = brewer.pal(9, "Blues"), scale = "column")