1. Import packages

packages = c('olsrr', 'corrplot', 'ggpubr', 'sf', 'spdep', 'GWmodel', 'tmap', 'tidyverse', 'geobr', 'rgdal')
for (p in packages){
  if(!require(p, character.only = T)){
    install.packages(p)
  }
  library(p,character.only = T)
}

2. Import Data

cities = read_delim("data/aspatial/BRAZIL_CITIES.csv", ";") %>%
  select(`CITY`, `IBGE_RES_POP_BRAS`, `IBGE_RES_POP_ESTR`, `IBGE_DU_URBAN`, `IBGE_DU_RURAL`, `IBGE_15-59`, `IBGE_PLANTED_AREA`, `IBGE_CROP_PRODUCTION_$`, `IDHM`, `IDHM_Renda`, `IDHM_Longevidade`, `IDHM_Educacao`, `AREA`, `GVA_AGROPEC`, `GVA_INDUSTRY`, `GVA_SERVICES`, `GVA_PUBLIC`, `TAXES`, `GDP_CAPITA`, `COMP_TOT`, `LONG`, `LAT`) %>%
  rename(City = `CITY`, B_pop = `IBGE_RES_POP_BRAS`, F_pop = `IBGE_RES_POP_ESTR`, Du_urban = `IBGE_DU_URBAN`, Du_rural = `IBGE_DU_RURAL`, Economy_active = `IBGE_15-59`, Planted_area = `IBGE_PLANTED_AREA`, Crop_production = `IBGE_CROP_PRODUCTION_$`, HD_Index = `IDHM`, GNI_Index = `IDHM_Renda`, LE_Index = `IDHM_Longevidade`, E_Index = `IDHM_Educacao`, Area = `AREA`, GVA_A = `GVA_AGROPEC`, GVA_I = `GVA_INDUSTRY`, GVA_S = `GVA_SERVICES`, GVA_P = `GVA_PUBLIC`, Taxes = `TAXES`, GDP_PC = `GDP_CAPITA`, Total_companies = `COMP_TOT`, Longitude = `LONG`, Latitude = `LAT`)

These column headers are selected as it affects the GDP of Brazil.

2016 municipality boundary file
# Read all municipalities in the country at a given year
# mun <- read_municipality(code_muni="all", year=2016)
mun <- readOGR(dsn = "data/geospatial", layer = "muni_sf")
## OGR data source with driver: ESRI Shapefile 
## Source: "C:\Users\Jenny\Documents\SMU Documents\YEAR 3\Year 3 Semester 2\IS415 - Geospatial Analytics and Applications\Take-home exercises\IS415_Take-home_Ex04\data\geospatial", layer: "muni_sf"
## with 5572 features
## It has 4 fields

3. Geospatial Data Wrangling

Checking rows with NA values

cities_NA <- cities[rowSums(is.na(cities)) > 0,]
cities_NA
## # A tibble: 84 x 22
##    City   B_pop F_pop Du_urban Du_rural Economy_active Planted_area
##    <chr>  <dbl> <dbl>    <dbl>    <dbl>          <dbl>        <dbl>
##  1 Água~   2693    14      990       NA           1592            0
##  2 Alvo~ 195483   190    60221       NA         126085          102
##  3 Arac~ 570674   475   169830       NA         388256           38
##  4 Araç~  16964   116     4940       NA           7458          183
##  5 Arma~  27073   487     9030       NA          18593           10
##  6 Arra~  27655    60     8940       NA          15468            0
##  7 Baía~   8005     7      875       NA           1918         1856
##  8 Baln~ 107010  1079    39333       NA          63678            0
##  9 Baln~     NA    NA       NA       NA             NA           93
## 10 Baru~ 239837   912    71821       NA         161351            0
## # ... with 74 more rows, and 15 more variables: Crop_production <dbl>,
## #   HD_Index <dbl>, GNI_Index <dbl>, LE_Index <dbl>, E_Index <dbl>, Area <dbl>,
## #   GVA_A <dbl>, GVA_I <dbl>, GVA_S <dbl>, GVA_P <dbl>, Taxes <dbl>,
## #   GDP_PC <dbl>, Total_companies <dbl>, Longitude <dbl>, Latitude <dbl>

Replacing NA values in LONG LAT columns

cities$Longitude[which(cities$City == "Balneário Rincão")] <- -49.2361
cities$Latitude[which(cities$City == "Balneário Rincão")] <- -28.8344

cities$Longitude[which(cities$City == "Lagoa Dos Patos")] <- -51.4725
cities$Latitude[which(cities$City == "Lagoa Dos Patos")] <- -31.0697

cities$Longitude[which(cities$City == "Mojuí Dos Campos")] <- -54.6431
cities$Latitude[which(cities$City == "Mojuí Dos Campos")] <- -2.68472

cities$Longitude[which(cities$City == "Paraíso Das Águas")] <- -53.0102
cities$Latitude[which(cities$City == "Paraíso Das Águas")] <- -19.0257

cities$Longitude[which(cities$City == "Pescaria Brava")] <- -48.8956
cities$Latitude[which(cities$City == "Pescaria Brava")] <- -28.4247

cities$Longitude[which(cities$City == "Pinhal Da Serra")] <- -51.1733
cities$Latitude[which(cities$City == "Pinhal Da Serra")] <- -27.8747

cities$Longitude[which(cities$City == "Pinto Bandeira")] <- -51.4503
cities$Latitude[which(cities$City == "Pinto Bandeira")] <- -29.0978

cities$Longitude[which(cities$City == "Santa Terezinha")] <- -39.5184
cities$Latitude[which(cities$City == "Santa Terezinha")] <- -12.7498

cities$Longitude[which(cities$City == "São Caetano")] <- -36.1459
cities$Latitude[which(cities$City == "São Caetano")] <- -8.33

Drop GDC Per Capita with missing values

cities <- cities %>%
  filter(!is.na(GDP_PC))

Replace NA values with 0

cities$B_pop[is.na(cities$B_pop)] <- 0

cities$F_pop[is.na(cities$F_pop)] <- 0

cities$Du_urban[is.na(cities$`Du_urban`)] <- 0

cities$Du_rural[is.na(cities$Du_rural)] <- 0

cities$Economy_active[is.na(cities$Economy_active)] <- 0

cities$Planted_area[is.na(cities$Planted_area)] <- 0

cities$Crop_production[is.na(cities$Crop_production)] <- 0

cities$HD_Index[is.na(cities$HD_Index)] <- 0

cities$GNI_Index[is.na(cities$GNI_Index)] <- 0

cities$LE_Index[is.na(cities$LE_Index)] <- 0

cities$E_Index[is.na(cities$E_Index)] <- 0

cities$Area[is.na(cities$Area)] <- 0

cities$GVA_A[is.na(cities$GVA_A)] <- 0

cities$GVA_I[is.na(cities$GVA_I)] <- 0

cities$GVA_S[is.na(cities$GVA_S)] <- 0

cities$GVA_P[is.na(cities$GVA_P)] <- 0

cities$Taxes[is.na(cities$Taxes)] <- 0

cities$Total_companies[is.na(cities$Total_companies)] <- 0

Check if NA values are replaced

cities_NA <- cities[rowSums(is.na(cities)) > 0,]
cities_NA
## # A tibble: 0 x 22
## # ... with 22 variables: City <chr>, B_pop <dbl>, F_pop <dbl>, Du_urban <dbl>,
## #   Du_rural <dbl>, Economy_active <dbl>, Planted_area <dbl>,
## #   Crop_production <dbl>, HD_Index <dbl>, GNI_Index <dbl>, LE_Index <dbl>,
## #   E_Index <dbl>, Area <dbl>, GVA_A <dbl>, GVA_I <dbl>, GVA_S <dbl>,
## #   GVA_P <dbl>, Taxes <dbl>, GDP_PC <dbl>, Total_companies <dbl>,
## #   Longitude <dbl>, Latitude <dbl>
All NA values are handled.

Remove cities for consistency between mun and cities data

cities <- cities %>%
  filter(City != "Santa Terezinha", City != "São Caetano", City != "Fernando De Noronha")

Converting aspatial data frame into a sf object

cities.sf <- st_as_sf(cities, coords = c("Longitude", "Latitude"), crs=4674) %>%
  st_transform(crs=4674)
head(cities.sf)
## Simple feature collection with 6 features and 20 fields
## geometry type:  POINT
## dimension:      XY
## bbox:           xmin: -49.44055 ymin: -19.15585 xmax: -39.04755 ymax: -1.72347
## geographic CRS: SIRGAS 2000
## # A tibble: 6 x 21
##   City   B_pop F_pop Du_urban Du_rural Economy_active Planted_area
##   <chr>  <dbl> <dbl>    <dbl>    <dbl>          <dbl>        <dbl>
## 1 Abad~   6876     0     1546      591           3542          319
## 2 Abad~   6704     0     1481      847           2709         4479
## 3 Abad~  15609   148     3233     1422           6896        10307
## 4 Abae~  22690     0     6667     1027          11979         1862
## 5 Abae~ 141040    60    19057    12004          53516        25200
## 6 Abai~  10496     0     1251     1540           2631         2598
## # ... with 14 more variables: Crop_production <dbl>, HD_Index <dbl>,
## #   GNI_Index <dbl>, LE_Index <dbl>, E_Index <dbl>, Area <dbl>, GVA_A <dbl>,
## #   GVA_I <dbl>, GVA_S <dbl>, GVA_P <dbl>, Taxes <dbl>, GDP_PC <dbl>,
## #   Total_companies <dbl>, geometry <POINT [°]>
mun <- st_as_sf(mun, 4674) %>%
  st_transform(crs=4674)

4. Exploratory Data Analysis

4.1 EDA using statistical graphics - Multiple Histogram Plots distribution of variables

b_pop <- ggplot(data=cities.sf, aes(x=`B_pop`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

f_pop <- ggplot(data=cities.sf, aes(x= `F_pop`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

du_urban <- ggplot(data=cities.sf, aes(x= `Du_urban`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

du_rural <- ggplot(data=cities.sf, aes(x= `Du_rural`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

ea <- ggplot(data=cities.sf, aes(x= `Economy_active`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

pa <- ggplot(data=cities.sf, aes(x= `Planted_area`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

cp <- ggplot(data=cities.sf, aes(x= `Crop_production`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

hd_i <- ggplot(data=cities.sf, aes(x= `HD_Index`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

gni_i <- ggplot(data=cities.sf, aes(x= `GNI_Index`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

le_i <- ggplot(data=cities.sf, aes(x= `LE_Index`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

e_i <- ggplot(data=cities.sf, aes(x= `E_Index`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

area <- ggplot(data=cities.sf, aes(x= `Area`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

gva_a <- ggplot(data=cities.sf, aes(x= `GVA_A`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

gva_i <- ggplot(data=cities.sf, aes(x= `GVA_I`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

gva_s <- ggplot(data=cities.sf, aes(x= `GVA_S`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

gva_p <- ggplot(data=cities.sf, aes(x= `GVA_P`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

taxes <- ggplot(data=cities.sf, aes(x= `Taxes`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

gdppc <- ggplot(data=cities.sf, aes(x= `GDP_PC`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

total_companies <- ggplot(data=cities.sf, aes(x= `Total_companies`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

ggarrange(b_pop, f_pop, du_urban, du_rural, ea, pa, cp, hd_i, gni_i, le_i, e_i, area, ncol = 3, nrow = 4)

ggarrange(gva_a, gva_i, gva_s, gva_p, taxes, gdppc, total_companies, ncol = 3, nrow = 3)

The figure above reveals that most variables are a right skewed distribution. This means that more cities has low GDP per capita. Furthermore, HD_Index, GNI_Index and E_Index are normally distributed and LE_Index follows a left skewed distribution.

5. Choropleth map showing the distribution of GDP per capita, 2016 at municipality level

cities_mun <- st_join(mun, cities.sf, by = c("name_muni" = "City"))
cities_mun <- cities_mun %>%
  filter(!is.na(GDP_PC))
summary(cities_mun)
##     code_mn                  name_mn        cod_stt        abbrv_s    
##  Min.   :1100015   Bom Jesus     :   5   31     : 852   MG     : 852  
##  1st Qu.:2512077   São Domingos :   5   35     : 645   SP     : 645  
##  Median :3146404   Bonito        :   4   43     : 498   RS     : 498  
##  Mean   :3253584   Planalto      :   4   29     : 416   BA     : 416  
##  3rd Qu.:4119202   São Francisco:   4   41     : 399   PR     : 399  
##  Max.   :5300108   Santa Helena  :   4   42     : 294   SC     : 294  
##                    (Other)       :5539   (Other):2461   (Other):2461  
##      City               B_pop              F_pop             Du_urban      
##  Length:5565        Min.   :       0   Min.   :     0.0   Min.   :      0  
##  Class :character   1st Qu.:    5217   1st Qu.:     0.0   1st Qu.:    872  
##  Mode  :character   Median :   10925   Median :     0.0   Median :   1844  
##                     Mean   :   34193   Mean   :    77.5   Mean   :   8855  
##                     3rd Qu.:   23390   3rd Qu.:    10.0   3rd Qu.:   4621  
##                     Max.   :11133776   Max.   :119727.0   Max.   :3548433  
##                                                                            
##     Du_rural     Economy_active     Planted_area     Crop_production  
##  Min.   :    0   Min.   :      0   Min.   :      0   Min.   :      0  
##  1st Qu.:  471   1st Qu.:   1732   1st Qu.:    911   1st Qu.:   2333  
##  Median :  916   Median :   3838   Median :   3473   Median :  13846  
##  Mean   : 1442   Mean   :  18210   Mean   :  14183   Mean   :  57399  
##  3rd Qu.: 1812   3rd Qu.:   9628   3rd Qu.:  11174   3rd Qu.:  55608  
##  Max.   :33809   Max.   :7058221   Max.   :1205669   Max.   :3274885  
##                                                                       
##     HD_Index        GNI_Index         LE_Index         E_Index      
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.5990   1st Qu.:0.5720   1st Qu.:0.7690   1st Qu.:0.4900  
##  Median :0.6650   Median :0.6540   Median :0.8080   Median :0.5600  
##  Mean   :0.6586   Mean   :0.6423   Mean   :0.8009   Mean   :0.5586  
##  3rd Qu.:0.7180   3rd Qu.:0.7070   3rd Qu.:0.8360   3rd Qu.:0.6310  
##  Max.   :0.8620   Max.   :0.8910   Max.   :0.8940   Max.   :0.8250  
##                                                                     
##       Area              GVA_A             GVA_I              GVA_S          
##  Min.   :     0.0   Min.   :      0   Min.   :       1   Min.   :        2  
##  1st Qu.:   204.4   1st Qu.:   4193   1st Qu.:    1724   1st Qu.:    10105  
##  Median :   415.8   Median :  20434   Median :    7432   Median :    31212  
##  Mean   :  1515.5   Mean   :  47293   Mean   :  176081   Mean   :   489857  
##  3rd Qu.:  1026.4   3rd Qu.:  51238   3rd Qu.:   41311   3rd Qu.:   115521  
##  Max.   :159533.3   Max.   :1402282   Max.   :63306755   Max.   :464656988  
##                                                                             
##      GVA_P              Taxes               GDP_PC       Total_companies   
##  Min.   :       9   Min.   :   -14159   Min.   :  3191   Min.   :     6.0  
##  1st Qu.:   17260   1st Qu.:     1305   1st Qu.:  9062   1st Qu.:    68.0  
##  Median :   35867   Median :     5107   Median : 15866   Median :   162.0  
##  Mean   :  123851   Mean   :   118966   Mean   : 21128   Mean   :   907.5  
##  3rd Qu.:   89316   3rd Qu.:    22209   3rd Qu.: 26155   3rd Qu.:   449.0  
##  Max.   :41902893   Max.   :117125387   Max.   :314638   Max.   :530446.0  
##                                                                            
##           geometry   
##  MULTIPOLYGON :5565  
##  epsg:4674    :   0  
##  +proj=long...:   0  
##                      
##                      
##                      
## 
tm_shape(st_make_valid(cities_mun))+
  tm_fill("GDP_PC",
          n = 6,
          style = "fisher")

Based on the choropleth map above, we can observe that majority of the municipality has a relatively lower GDP_PC. Municipality with high GDP_PC is located at the central region of the map.

6. Multiple Linear Regression Method

corrplot(cor(cities[, 2:20]), diag = FALSE, order = "alphabet", tl.pos = "td", tl.cex = 0.50, number.cex= 10.5/ncol(cities), method = "number", type = "upper")

From the scatterplot matrix, it is clear that:
1. B_pop is highly correlated to Du_urban, Economy_active, F_pop, GWA_I, GWA_P, GWA_S, Taxes, Total_companies
2. Corp_production is highly correlated to Planted_area, GWA_A
3. Du_urban is highly correlated to Economy_active, F_pop, GWA_I, GWA_P, GWA_S, Taxes, Total_companies
4. E_Index is highly correlated to GNI_Index, HD_Index
5. Economy_active is highly correlated to F_pop, GWA_I, GWA_P, GWA_S, Taxes, Total_companies
6. F_pop is highly correlated to GWA_I, GWA_P, GWA_S, Taxes, Total_companies
7. GNI_Index is highly correlated to HD_Index, LE_Index
8. GWA_I is highly correlated to GWA_S, Total_companies
9. GWA_P is highly correlated to GWA_S, Taxes, Total_companies
10. GWA_S is highly correlated to Taxes, Total_companies
11. HD_Index is highly correlated to LE_Index
12. Taxes is highly correlated to Total_companies

In view of this, it is wiser to only include either one of them in the subsequent model building.

Remove variables that are highly correlated

cities_filtered <- cities %>%
  select(`City`, `Du_rural`, `Economy_active`, `Crop_production`, `HD_Index`, `Area`, `GDP_PC`)

Check if there are still variables that are highly correlated

corrplot(cor(cities_filtered[, 2:7]), diag = FALSE, order = "alphabet", tl.pos = "td", tl.cex = 0.5, method = "number", type = "upper")

6.1 Building a model using multiple linear regression method

cities.mlr <- lm(formula = GDP_PC ~ Du_rural + Economy_active + Crop_production + HD_Index + Area, data=cities_mun)
summary(cities.mlr)
## 
## Call:
## lm(formula = GDP_PC ~ Du_rural + Economy_active + Crop_production + 
##     HD_Index + Area, data = cities_mun)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -57427  -6925  -2944   1896 282886 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -5.540e+04  2.264e+03 -24.471  < 2e-16 ***
## Du_rural        -8.618e-01  1.489e-01  -5.787 7.55e-09 ***
## Economy_active   5.171e-03  1.960e-03   2.639  0.00834 ** 
## Crop_production  2.962e-02  1.635e-03  18.117  < 2e-16 ***
## HD_Index         1.152e+05  3.354e+03  34.357  < 2e-16 ***
## Area             6.322e-02  4.286e-02   1.475  0.14032    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17320 on 5559 degrees of freedom
## Multiple R-squared:  0.2756, Adjusted R-squared:  0.275 
## F-statistic:   423 on 5 and 5559 DF,  p-value: < 2.2e-16
With reference to the report above:
1. It is clear that not all the indepent variables are statistically significant. We will revised the model by removing those variables which are not statistically significant before doing further analysis.
2. Confidence interval: 95%; alpha = 0.05
3. We will be comparing the p-value with the alpha value to find out which vairable is not statistically significant. Based on the p-value, we identified that the variable Area is not statistially significant as it is not in the confidence interval. Therefore, we will exclude Area from the model.
4. Based on the Adjusted R - It is not a good model as it can account for only 27.5% of the variation of the GDP Per Capita.

6.2 Revised Model

cities.mlr1 <- lm(formula = GDP_PC ~ Du_rural + Economy_active + Crop_production + HD_Index, data=cities_mun)
ols_regress(cities.mlr1)
##                             Model Summary                             
## ---------------------------------------------------------------------
## R                       0.525       RMSE                   17319.474 
## R-Squared               0.275       Coef. Var                 81.972 
## Adj. R-Squared          0.275       MSE                299964193.152 
## Pred R-Squared          0.273       MAE                     8359.148 
## ---------------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                        ANOVA                                         
## ------------------------------------------------------------------------------------
##                         Sum of                                                      
##                        Squares          DF         Mean Square       F         Sig. 
## ------------------------------------------------------------------------------------
## Regression    633652250017.661           4    158413062504.415    528.107    0.0000 
## Residual          1.667801e+12        5560       299964193.152                      
## Total             2.301453e+12        5564                                          
## ------------------------------------------------------------------------------------
## 
##                                            Parameter Estimates                                            
## ---------------------------------------------------------------------------------------------------------
##           model          Beta    Std. Error    Std. Beta       t        Sig          lower         upper 
## ---------------------------------------------------------------------------------------------------------
##     (Intercept)    -54943.818      2242.791                 -24.498    0.000    -59340.566    -50547.071 
##        Du_rural        -0.841         0.148       -0.070     -5.671    0.000        -1.131        -0.550 
##  Economy_active         0.005         0.002        0.032      2.639    0.008         0.001         0.009 
## Crop_production         0.030         0.002        0.218     18.524    0.000         0.027         0.033 
##        HD_Index    114591.604      3326.924        0.420     34.444    0.000    108069.533    121113.675 
## ---------------------------------------------------------------------------------------------------------
With reference to the report above:
1. When we revise the model, we can see that there is no change in the adjusted r-squared
2. Even when we reduce the number of variables/statistically insignificant variables, there is not much difference between the 2 models. Therefore, there isn’t a great impact on the explanatory power.

6.3 Checking for multicolinearity

ols_vif_tol(cities.mlr1)
##         Variables Tolerance      VIF
## 1        Du_rural 0.8574340 1.166271
## 2  Economy_active 0.8954046 1.116814
## 3 Crop_production 0.9374714 1.066699
## 4        HD_Index 0.8755146 1.142185
Since the VIF of the independent variables are less than 10. We can safely conclude that there are no sign of multicollinearity among the independent variables.

6.4 Test for Non-Linearity

ols_plot_resid_fit(cities.mlr1)

The figure above reveals that most of the data poitns are scattered around the 0 line, hence we can safely conclude that the relationships between the dependent variable and independent variables are linear.

6.5 Test for Normality Assumption

ols_plot_resid_hist(cities.mlr1)

The figure reveals that the residual of the multiple linear regression model (i.e. cities.mlr1) is resemble normal distribution.

6.6 Testing for Spatial Autocorrelation

cities.point.sf <- st_as_sf(cities_mun, coords=c("Longitude", "Latitude"), crs=4674) %>% 
  st_transform(crs=4674)
summary(cities.point.sf)
##     code_mn                  name_mn        cod_stt        abbrv_s    
##  Min.   :1100015   Bom Jesus     :   5   31     : 852   MG     : 852  
##  1st Qu.:2512077   São Domingos :   5   35     : 645   SP     : 645  
##  Median :3146404   Bonito        :   4   43     : 498   RS     : 498  
##  Mean   :3253584   Planalto      :   4   29     : 416   BA     : 416  
##  3rd Qu.:4119202   São Francisco:   4   41     : 399   PR     : 399  
##  Max.   :5300108   Santa Helena  :   4   42     : 294   SC     : 294  
##                    (Other)       :5539   (Other):2461   (Other):2461  
##      City               B_pop              F_pop             Du_urban      
##  Length:5565        Min.   :       0   Min.   :     0.0   Min.   :      0  
##  Class :character   1st Qu.:    5217   1st Qu.:     0.0   1st Qu.:    872  
##  Mode  :character   Median :   10925   Median :     0.0   Median :   1844  
##                     Mean   :   34193   Mean   :    77.5   Mean   :   8855  
##                     3rd Qu.:   23390   3rd Qu.:    10.0   3rd Qu.:   4621  
##                     Max.   :11133776   Max.   :119727.0   Max.   :3548433  
##                                                                            
##     Du_rural     Economy_active     Planted_area     Crop_production  
##  Min.   :    0   Min.   :      0   Min.   :      0   Min.   :      0  
##  1st Qu.:  471   1st Qu.:   1732   1st Qu.:    911   1st Qu.:   2333  
##  Median :  916   Median :   3838   Median :   3473   Median :  13846  
##  Mean   : 1442   Mean   :  18210   Mean   :  14183   Mean   :  57399  
##  3rd Qu.: 1812   3rd Qu.:   9628   3rd Qu.:  11174   3rd Qu.:  55608  
##  Max.   :33809   Max.   :7058221   Max.   :1205669   Max.   :3274885  
##                                                                       
##     HD_Index        GNI_Index         LE_Index         E_Index      
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.5990   1st Qu.:0.5720   1st Qu.:0.7690   1st Qu.:0.4900  
##  Median :0.6650   Median :0.6540   Median :0.8080   Median :0.5600  
##  Mean   :0.6586   Mean   :0.6423   Mean   :0.8009   Mean   :0.5586  
##  3rd Qu.:0.7180   3rd Qu.:0.7070   3rd Qu.:0.8360   3rd Qu.:0.6310  
##  Max.   :0.8620   Max.   :0.8910   Max.   :0.8940   Max.   :0.8250  
##                                                                     
##       Area              GVA_A             GVA_I              GVA_S          
##  Min.   :     0.0   Min.   :      0   Min.   :       1   Min.   :        2  
##  1st Qu.:   204.4   1st Qu.:   4193   1st Qu.:    1724   1st Qu.:    10105  
##  Median :   415.8   Median :  20434   Median :    7432   Median :    31212  
##  Mean   :  1515.5   Mean   :  47293   Mean   :  176081   Mean   :   489857  
##  3rd Qu.:  1026.4   3rd Qu.:  51238   3rd Qu.:   41311   3rd Qu.:   115521  
##  Max.   :159533.3   Max.   :1402282   Max.   :63306755   Max.   :464656988  
##                                                                             
##      GVA_P              Taxes               GDP_PC       Total_companies   
##  Min.   :       9   Min.   :   -14159   Min.   :  3191   Min.   :     6.0  
##  1st Qu.:   17260   1st Qu.:     1305   1st Qu.:  9062   1st Qu.:    68.0  
##  Median :   35867   Median :     5107   Median : 15866   Median :   162.0  
##  Mean   :  123851   Mean   :   118966   Mean   : 21128   Mean   :   907.5  
##  3rd Qu.:   89316   3rd Qu.:    22209   3rd Qu.: 26155   3rd Qu.:   449.0  
##  Max.   :41902893   Max.   :117125387   Max.   :314638   Max.   :530446.0  
##                                                                            
##           geometry   
##  MULTIPOLYGON :5565  
##  epsg:4674    :   0  
##  +proj=long...:   0  
##                      
##                      
##                      
## 
# export the residual
mlr.output <- as.data.frame(cities.mlr1$residuals)
# join the newly created data frame with cities.sf object
cities.res.sf <- cbind(cities.point.sf, cities.mlr1$residuals) %>%
  rename(MLR_RES = `cities.mlr1.residuals`)
# convert cities.res.sf simple feature object into a SpatialPointsDataFrame
cities.sp <- as_Spatial(cities.res.sf)
cities.sp
## class       : SpatialPolygonsDataFrame 
## features    : 5565 
## extent      : -73.99045, -28.83594, -33.75118, 5.271841  (xmin, xmax, ymin, ymax)
## crs         : +proj=longlat +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +no_defs 
## variables   : 25
## names       : code_mn, name_mn, cod_stt, abbrv_s,            City,    B_pop,  F_pop, Du_urban, Du_rural, Economy_active, Planted_area, Crop_production, HD_Index, GNI_Index, LE_Index, ... 
## min values  : 1100015, Ângulo,      11,      AC, Abadia De Goiás,        0,      0,        0,        0,              0,            0,               0,        0,         0,        0, ... 
## max values  : 5300108, Zortéa,      53,      TO,          Zortéa, 11133776, 119727,  3548433,    33809,        7058221,      1205669,         3274885,    0.862,     0.891,    0.894, ...

6.7 Choropleth map showing the distribution of the residual of the GDP per capita

tm_shape(st_make_valid(cities.res.sf))+
  tm_fill("MLR_RES",
          n = 6,
          style = "fisher",
          midpoint = NA)

The figure above reveal that there is sign of spatial autocorrelation. To proof that our observation is indeed true, we will be performing the Moran’s I test.

6.7.1 Moran’s I test

Null hypothesis: Residual for regression model is randomly distributed
Alternative hypothesis: Residual for regression model is not randomly distributed
Confident interval: 0.95
# Determine the upper limit
coords <- coordinates(cities.sp)
k <- knn2nb(knearneigh(coords))
kdists <- unlist(nbdists(k, coords, longlat=FALSE))
summary(kdists)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.1090  0.1469  0.1957  0.2200  2.0972
The largest nearest neighbour distance is 2.1. Using this value as the upper threshold gives us certainty that all units will have at least one neighbour.
# compute the distance-based weight matrix
nb <- dnearneigh(coordinates(cities.sp), 0, 2.1, longlat = FALSE)
# convert the output neighbours lists (i.e. nb) into a spatial weights
nb_lw <- nb2listw(nb, style = 'W')
summary(nb_lw)
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 5565 
## Number of nonzero links: 1379706 
## Percentage nonzero weights: 4.455087 
## Average number of links: 247.9256 
## Link number distribution:
## 
##   1   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21 
##   4   5  10  12  15  10  15  11   9  13   9  13   8   8  13  10  11  11  11   7 
##  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41 
##   5  13   5  12   8   6   7   6   5  11   8   8  14   8  16  10   6  12  10  15 
##  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61 
##  11   7   3   3   2   8   9  11   5   7  12  11   2   8   9   5  10  10   7   6 
##  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81 
##   8  13  16  12  12  15  15  19   8  18  17   9   7   9  15   8  16   4   9  15 
##  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 101 
##  14   9  11  10   9  13  12  10   9   8   9   2   5  10  10   6   7  10   9  10 
## 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 
##   8   3   9   3   7   6   7   9  13  10   9   7   9  10  11  12  12  11   8  12 
## 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 
##  15  12  12  10  10  11  19  11  13  14   8  13  10  16   8  12  10  10  17  14 
## 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 
##  18  14  11  15  15  18   8  14  15  10  17  21  14  18  11  14  17  17  13  16 
## 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 
##  14  24  20  16  21  18  34  23  11  16  21  14  12  12  10  12  10  14   9  11 
## 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 
##  16   8  10  12  14   7   7   7  11  16  11   8  11   9   8  10   8  15  10  10 
## 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 
##  21   8  13   7   7   7  12  11  14  13  13   9  11  11  12  11   8   8  12  11 
## 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 
##  13   7   7   6   7  10   9  11  14   8   8  11   6   8   9   9  10  13   7  14 
## 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 
##  11  12  13  12   9  11  15   9  15   7  16  12  11   9  14   7  12  11  13  12 
## 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 
##  13   9  12  10  12   9  14  13  10   7  13  12  11   8   9  12  14  12  11   5 
## 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 
##  10   7  12  11  13  13  10  21   6  13  14   6  18  11  12  13  15  18  11  14 
## 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 
##  12  12  13  15  17   9  22  15  15  15  20  19  21  12  19  17  15  15  19   9 
## 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 
##  12  16  15  17  14  19  18  17  16  12  17  12  15  11  23  19  16  20  18  12 
## 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 
##  13  14  11  15  18  15  16  13  12  15  17  14  15  10  10  14  11  12  20  14 
## 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 
##   7   6  16  18  10  13  23  11  10  11  17  12  13  14  16  17  18  18  13  16 
## 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 
##  10  13  13  18  10  13  15  16   9  15  11  15  14  16  21  12  15  13  15  12 
## 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 
##   8  19  13  24  14  10  25  14  14  11  14  11  10  13  19  12  11  13  12  13 
## 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 
##  14   8  13  11  10   9  11   6   7   8  12   9  11   7  11  10  11   7   9   8 
## 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 
##  11  12  13  10   7   9   9   4   3   6   8   3   6  13   3   6   9   7   7   4 
## 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 
##   6   6   7   6   8   5   3   1   6   8   4   5   3   2   3   2   3   1   3   4 
## 482 483 484 485 486 487 488 489 490 491 492 493 495 496 497 498 501 502 504 505 
##   5   3   3   3   2   3   5   3   2   5   1   2   1   1   1   1   1   1   4   1 
## 506 507 508 510 513 514 517 519 520 524 525 526 528 529 530 532 533 536 537 538 
##   1   2   1   1   1   2   1   3   2   1   2   2   1   1   1   1   2   1   1   1 
## 539 541 546 549 
##   1   1   1   2 
## 4 least connected regions:
## 82 124 126 159 with 1 link
## 2 most connected regions:
## 1436 1443 with 549 links
## 
## Weights style: W 
## Weights constants summary:
##      n       nn   S0       S1       S2
## W 5565 30969225 5565 112.3816 22384.06
lm.morantest(cities.mlr1, nb_lw)
## 
##  Global Moran I for regression residuals
## 
## data:  
## model: lm(formula = GDP_PC ~ Du_rural + Economy_active +
## Crop_production + HD_Index, data = cities_mun)
## weights: nb_lw
## 
## Moran I statistic standard deviate = 18.663, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Observed Moran I      Expectation         Variance 
##     3.446810e-02    -3.530833e-04     3.481083e-06
The Global Moran’s I test for residual spatial autocorrelation shows that it’s p-value is 0.00000000000000022 which is less than the alpha value of 0.05. Hence, we will reject the null hypothesis that the residuals are randomly distributed. Since the Observed Global Moran I = 3.446810 which is greater than 0, we can infer than the residuals resemble cluster distribution.

7. Building GWmodel

7.1 Building Fixed Bandwidth GWR Model

7.1.1 Computing fixed bandwith

bw.fixed <- bw.gwr(formula = GDP_PC ~ Du_rural + Economy_active + Crop_production + HD_Index, data=cities.sp, approach="CV", kernel="gaussian", adaptive=FALSE, longlat=FALSE)
## Take a cup of tea and have a break, it will take a few minutes.
##           -----A kind suggestion from GWmodel development group
## Fixed bandwidth: 33.62568 CV score: 1.670366e+12 
## Fixed bandwidth: 20.78597 CV score: 1.665971e+12 
## Fixed bandwidth: 12.85059 CV score: 1.65666e+12 
## Fixed bandwidth: 7.946257 CV score: 1.638718e+12 
## Fixed bandwidth: 4.915213 CV score: 1.616839e+12 
## Fixed bandwidth: 3.041924 CV score: 1.589646e+12 
## Fixed bandwidth: 1.884168 CV score: 1.563693e+12 
## Fixed bandwidth: 1.168636 CV score: 1.604593e+12 
## Fixed bandwidth: 2.326392 CV score: 1.572266e+12 
## Fixed bandwidth: 1.610859 CV score: 1.567696e+12 
## Fixed bandwidth: 2.053083 CV score: 1.566108e+12 
## Fixed bandwidth: 1.779774 CV score: 1.563617e+12 
## Fixed bandwidth: 1.715254 CV score: 1.564453e+12 
## Fixed bandwidth: 1.819649 CV score: 1.563466e+12 
## Fixed bandwidth: 1.844293 CV score: 1.56349e+12 
## Fixed bandwidth: 1.804418 CV score: 1.563494e+12 
## Fixed bandwidth: 1.829062 CV score: 1.563465e+12 
## Fixed bandwidth: 1.83488 CV score: 1.563471e+12 
## Fixed bandwidth: 1.825467 CV score: 1.563464e+12 
## Fixed bandwidth: 1.823245 CV score: 1.563464e+12 
## Fixed bandwidth: 1.82684 CV score: 1.563464e+12 
## Fixed bandwidth: 1.824618 CV score: 1.563464e+12 
## Fixed bandwidth: 1.824093 CV score: 1.563464e+12 
## Fixed bandwidth: 1.824942 CV score: 1.563464e+12 
## Fixed bandwidth: 1.825142 CV score: 1.563464e+12 
## Fixed bandwidth: 1.824818 CV score: 1.563464e+12 
## Fixed bandwidth: 1.824742 CV score: 1.563464e+12 
## Fixed bandwidth: 1.824866 CV score: 1.563464e+12 
## Fixed bandwidth: 1.824895 CV score: 1.563464e+12

7.1.2 GWModel method - fixed bandwith

gwr.fixed <- gwr.basic(formula = GDP_PC ~ Du_rural + Economy_active + Crop_production + HD_Index, data=cities.sp, bw=bw.fixed, kernel = 'gaussian', longlat = FALSE)

gwr.fixed
##    ***********************************************************************
##    *                       Package   GWmodel                             *
##    ***********************************************************************
##    Program starts at: 2020-05-31 23:18:47 
##    Call:
##    gwr.basic(formula = GDP_PC ~ Du_rural + Economy_active + Crop_production + 
##     HD_Index, data = cities.sp, bw = bw.fixed, kernel = "gaussian", 
##     longlat = FALSE)
## 
##    Dependent (y) variable:  GDP_PC
##    Independent variables:  Du_rural Economy_active Crop_production HD_Index
##    Number of data points: 5565
##    ***********************************************************************
##    *                    Results of Global Regression                     *
##    ***********************************************************************
## 
##    Call:
##     lm(formula = formula, data = data)
## 
##    Residuals:
##    Min     1Q Median     3Q    Max 
## -58025  -6953  -2951   1899 283047 
## 
##    Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
##    (Intercept)     -5.494e+04  2.243e+03 -24.498  < 2e-16 ***
##    Du_rural        -8.406e-01  1.482e-01  -5.671 1.49e-08 ***
##    Economy_active   5.172e-03  1.960e-03   2.639  0.00834 ** 
##    Crop_production  2.997e-02  1.618e-03  18.524  < 2e-16 ***
##    HD_Index         1.146e+05  3.327e+03  34.444  < 2e-16 ***
## 
##    ---Significance stars
##    Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##    Residual standard error: 17320 on 5560 degrees of freedom
##    Multiple R-squared: 0.2753
##    Adjusted R-squared: 0.2748 
##    F-statistic: 528.1 on 4 and 5560 DF,  p-value: < 2.2e-16 
##    ***Extra Diagnostic information
##    Residual sum of squares: 1.667801e+12
##    Sigma(hat): 17314.8
##    AIC:  124424
##    AICc:  124424
##    ***********************************************************************
##    *          Results of Geographically Weighted Regression              *
##    ***********************************************************************
## 
##    *********************Model calibration information*********************
##    Kernel function: gaussian 
##    Fixed bandwidth: 1.824866 
##    Regression points: the same locations as observations are used.
##    Distance metric: Euclidean distance metric is used.
## 
##    ****************Summary of GWR coefficient estimates:******************
##                           Min.     1st Qu.      Median     3rd Qu.       Max.
##    Intercept       -1.5727e+05 -5.7548e+04 -3.0411e+04 -1.5710e+04 8.4608e+04
##    Du_rural        -9.0929e+00 -1.4262e+00 -4.5751e-01 -4.2204e-04 1.4473e+00
##    Economy_active  -2.6057e-01  3.6459e-03  8.7188e-03  1.4260e-02 1.8470e-01
##    Crop_production -1.3250e-02  1.3136e-02  2.2911e-02  3.4718e-02 1.2260e-01
##    HD_Index        -7.1498e+04  4.6193e+04  7.8587e+04  1.1611e+05 2.6008e+05
##    ************************Diagnostic information*************************
##    Number of data points: 5565 
##    Effective number of parameters (2trace(S) - trace(S'S)): 184.784 
##    Effective degrees of freedom (n-2trace(S) + trace(S'S)): 5380.216 
##    AICc (GWR book, Fotheringham, et al. 2002, p. 61, eq 2.33): 124054.8 
##    AIC (GWR book, Fotheringham, et al. 2002,GWR p. 96, eq. 4.22): 123910.6 
##    Residual sum of squares: 1.487472e+12 
##    R-square value:  0.3536813 
##    Adjusted R-square value:  0.3314793 
## 
##    ***********************************************************************
##    Program stops at: 2020-05-31 23:18:58
The result shows that the Adjusted R-squared is 0.3314793.

7.2 Building Adaptive Bandwidth GWR Model

7.2.1 Computing the adaptive bandwidth

# calculate the distance vector between any GW model calibration point(s) and the data points
dv <- gw.dist(dp.locat = coordinates(cities.sp))
bw.adaptive <- bw.gwr(formula = GDP_PC ~ Du_rural + Economy_active + Crop_production + HD_Index, data=cities.sp, approach="CV", kernel="gaussian", adaptive=TRUE, longlat=FALSE, dMat=dv)
## Take a cup of tea and have a break, it will take a few minutes.
##           -----A kind suggestion from GWmodel development group
## Adaptive bandwidth: 3446 CV score: 1.661612e+12 
## Adaptive bandwidth: 2138 CV score: 1.650116e+12 
## Adaptive bandwidth: 1327 CV score: 1.630983e+12 
## Adaptive bandwidth: 829 CV score: 1.614275e+12 
## Adaptive bandwidth: 517 CV score: 1.596307e+12 
## Adaptive bandwidth: 329 CV score: 1.579968e+12 
## Adaptive bandwidth: 207 CV score: 1.569933e+12 
## Adaptive bandwidth: 138 CV score: 1.570825e+12 
## Adaptive bandwidth: 256 CV score: 1.573341e+12 
## Adaptive bandwidth: 183 CV score: 1.569522e+12 
## Adaptive bandwidth: 161 CV score: 1.569228e+12 
## Adaptive bandwidth: 155 CV score: 1.569691e+12 
## Adaptive bandwidth: 172 CV score: 1.5691e+12 
## Adaptive bandwidth: 172 CV score: 1.5691e+12

7.2.2 Constructing the adaptive bandwidth gwr model

gwr.adaptive <- gwr.basic(formula = GDP_PC ~ Du_rural + Economy_active + Crop_production + HD_Index, data=cities.sp, bw=bw.adaptive, kernel = 'gaussian', adaptive=TRUE, longlat = FALSE)

gwr.adaptive
##    ***********************************************************************
##    *                       Package   GWmodel                             *
##    ***********************************************************************
##    Program starts at: 2020-05-31 23:20:33 
##    Call:
##    gwr.basic(formula = GDP_PC ~ Du_rural + Economy_active + Crop_production + 
##     HD_Index, data = cities.sp, bw = bw.adaptive, kernel = "gaussian", 
##     adaptive = TRUE, longlat = FALSE)
## 
##    Dependent (y) variable:  GDP_PC
##    Independent variables:  Du_rural Economy_active Crop_production HD_Index
##    Number of data points: 5565
##    ***********************************************************************
##    *                    Results of Global Regression                     *
##    ***********************************************************************
## 
##    Call:
##     lm(formula = formula, data = data)
## 
##    Residuals:
##    Min     1Q Median     3Q    Max 
## -58025  -6953  -2951   1899 283047 
## 
##    Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
##    (Intercept)     -5.494e+04  2.243e+03 -24.498  < 2e-16 ***
##    Du_rural        -8.406e-01  1.482e-01  -5.671 1.49e-08 ***
##    Economy_active   5.172e-03  1.960e-03   2.639  0.00834 ** 
##    Crop_production  2.997e-02  1.618e-03  18.524  < 2e-16 ***
##    HD_Index         1.146e+05  3.327e+03  34.444  < 2e-16 ***
## 
##    ---Significance stars
##    Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##    Residual standard error: 17320 on 5560 degrees of freedom
##    Multiple R-squared: 0.2753
##    Adjusted R-squared: 0.2748 
##    F-statistic: 528.1 on 4 and 5560 DF,  p-value: < 2.2e-16 
##    ***Extra Diagnostic information
##    Residual sum of squares: 1.667801e+12
##    Sigma(hat): 17314.8
##    AIC:  124424
##    AICc:  124424
##    ***********************************************************************
##    *          Results of Geographically Weighted Regression              *
##    ***********************************************************************
## 
##    *********************Model calibration information*********************
##    Kernel function: gaussian 
##    Adaptive bandwidth: 172 (number of nearest neighbours)
##    Regression points: the same locations as observations are used.
##    Distance metric: Euclidean distance metric is used.
## 
##    ****************Summary of GWR coefficient estimates:******************
##                           Min.     1st Qu.      Median     3rd Qu.       Max.
##    Intercept       -2.0694e+05 -5.6432e+04 -3.4987e+04 -1.7787e+04 6.2953e+04
##    Du_rural        -5.1314e+00 -1.6540e+00 -4.6722e-01 -4.1023e-02 1.6545e+00
##    Economy_active  -7.3025e-02  4.2950e-03  8.3686e-03  1.2680e-02 2.9300e-02
##    Crop_production -2.1249e-02  1.3604e-02  2.2951e-02  3.4820e-02 9.4000e-02
##    HD_Index        -4.4175e+04  5.1822e+04  8.5439e+04  1.1568e+05 3.3137e+05
##    ************************Diagnostic information*************************
##    Number of data points: 5565 
##    Effective number of parameters (2trace(S) - trace(S'S)): 104.1464 
##    Effective degrees of freedom (n-2trace(S) + trace(S'S)): 5460.854 
##    AICc (GWR book, Fotheringham, et al. 2002, p. 61, eq 2.33): 123984.1 
##    AIC (GWR book, Fotheringham, et al. 2002,GWR p. 96, eq. 4.22): 123905.4 
##    Residual sum of squares: 1.502418e+12 
##    R-square value:  0.3471874 
##    Adjusted R-square value:  0.334735 
## 
##    ***********************************************************************
##    Program stops at: 2020-05-31 23:20:50
The result shows that the Adjusted R-squared is 0.334735.
Comparing the adjusted R-square value of the fixed (0.3314793) and adaptive method (0.334735), the adaptive method produced a better adjusted R-square value. Therefore, we will be using the adaptive method for the subsequent analysis.

8. Visualising GWR Output

8.1 Converting SDF into sf data.frame

cities.sf.adaptive <- st_as_sf(gwr.adaptive$SDF) %>%
  st_transform(crs=4674)
cities.sf.adaptive.transform <- st_transform(cities.sf.adaptive, 4674)
gwr.adaptive.output <- as.data.frame(gwr.adaptive$SDF)
cities.sf.adaptive <- cbind(cities.res.sf, as.matrix(gwr.adaptive.output))
summary(gwr.adaptive$SDF$yhat)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -32889   10419   19921   21197   30276  136227

8.2 Visualising local R2

tm_shape(st_make_valid(cities.sf.adaptive))+
  tm_fill("Local_R2",
          n = 6,
          style = "fisher",
          midpoint = NA)

Local R2 indicate how well the local regression model fits observed y values. We can observe that at the lower portion of the map, the values are relatively lower and this indicates that the local model is performing poorly and the relationship between GDP_PC and the independent variables are weaker. There may be important variables that are missing from the regression model and hence, causing the model to be performing poorly. However, at the top right portion of the map, the values are higher and this allows us to infer that the model is performing well and the relationship between GDP_PC and the independent variables are stronger.

8.3 Visualising Coefficient Standard Error (Intercept_SE)

tm_shape(st_make_valid(cities.sf.adaptive))+
  tm_fill("Intercept_SE",
          n = 6,
          style = "fisher")

Coefficient Standard Error measure the reliability of each coefficient estimate. Confidence in those estimates are higher when standard errors are small in relation to the actual coefficient values. Overall, we can observed that our intercept_SE is relatively low, which means that there is no signs of local collinearity issue in the model. However, there are some municipalities in the map, mainly the eastern and southern part of Brazil have a higher intercept_SE. The large standard errors may indicate problems with local collinearity.

8.4 Visualising predicted values (yhat)

tm_shape(st_make_valid(cities.sf.adaptive))+
  tm_fill("yhat",
          n = 6,
          style = "fisher",
          midpoint = NA)

Y-hat values represents the predicted equation for a line of best fit in linear regression. It is used to differentiate between the predicted data and the observed data. Based on the map above, we can see that there are significantly more municipalities with lower y-hat and municipalities with greater y-hat values are located at the central region of the map. This allows us to infer that our model is performing well.

8.5 Visualising residual

cities.sf.adaptive <- cities.sf.adaptive %>%
  mutate(`log_residual` = log(residual))
cities.sf.adaptive$log_residual[is.nan(cities.sf.adaptive$log_residual)] <- 0
tm_shape(st_make_valid(cities.sf.adaptive))+
  tm_fill("log_residual",
          n = 6,
          style = "fisher",
          midpoint = NA)

Residuals is the subtraction of the fitted y values from the observed y values. Based on the map above, we observed that most municipalities has a residual of 0. This means that there is no difference bewteen the observed and predicted values of GDP_PC. Hence, we can infer that the model is performing well.