merged <- merged %>% 
           remove_rownames %>% 
           column_to_rownames(var="Nom_Barri") %>% 
           select("n.tot","pc.esp","pc.ue27-esp","pc.20.34","2019-2014","n.esp.V1419",
                  "hotel2019","rest1614",
                  "RFD.2017",
                  "tot_ann","pmedio","pmedio.V1519","pm_ent.V1519","pm_priv.V1519","pm_sha.V1519",
                  "alq.num","alq.pm","alq.pm.V1519","alq.num.V1519",
                  "tot.comp","tot.eur","perc.nou.comp","perc.usat.comp","tot.comp.V1419",
                  "nou.eur.V1419","usat.eur.V1419",
                   )

list <- colnames(merged)
minmax <- list
minmax <- as.data.frame(minmax)
list2 <- list()

SUMMARY

summary(merged)
##      n.tot           pc.esp       pc.ue27-esp        pc.20.34    
##  Min.   :  686   Min.   :43.73   Min.   : 0.880   Min.   :13.19  
##  1st Qu.:10864   1st Qu.:77.91   1st Qu.: 2.984   1st Qu.:17.17  
##  Median :21303   Median :83.48   Median : 4.630   Median :18.02  
##  Mean   :22608   Mean   :80.78   Mean   : 7.114   Mean   :18.99  
##  3rd Qu.:31087   3rd Qu.:85.63   3rd Qu.: 8.498   3rd Qu.:20.43  
##  Max.   :58642   Max.   :94.09   Max.   :43.067   Max.   :36.59  
##    2019-2014        n.esp.V1419        hotel2019         rest1614      
##  Min.   :-8766.0   Min.   :-11.479   Min.   :   0.0   Min.   :-75.000  
##  1st Qu.:  199.0   1st Qu.: -3.201   1st Qu.:  20.0   1st Qu.: -5.000  
##  Median :  494.0   Median : -1.528   Median :  72.0   Median :  1.000  
##  Mean   :  658.3   Mean   : -1.234   Mean   : 276.1   Mean   :  1.192  
##  3rd Qu.:  931.0   3rd Qu.:  0.000   3rd Qu.: 272.0   3rd Qu.:  6.000  
##  Max.   : 3989.0   Max.   : 35.550   Max.   :3115.0   Max.   : 79.000  
##     RFD.2017         tot_ann           pmedio        pmedio.V1519    
##  Min.   : 38.60   Min.   :   0.0   Min.   :  0.00   Min.   :-100.00  
##  1st Qu.: 65.10   1st Qu.:  29.0   1st Qu.: 45.41   1st Qu.: -10.14  
##  Median : 82.90   Median :  97.0   Median : 71.14   Median :  19.96  
##  Mean   : 93.67   Mean   : 279.8   Mean   : 98.55   Mean   :  35.61  
##  3rd Qu.:105.70   3rd Qu.: 261.0   3rd Qu.:108.19   3rd Qu.:  53.82  
##  Max.   :248.80   Max.   :2099.0   Max.   :656.43   Max.   : 310.03  
##   pm_ent.V1519       pm_priv.V1519        pm_sha.V1519       alq.num     
##  Min.   :-100.0000   Min.   :-100.0000   Min.   :-100.0   Min.   :  2.0  
##  1st Qu.:  -0.0462   1st Qu.:   0.9837   1st Qu.:   0.0   1st Qu.: 52.0  
##  Median :  27.1100   Median :  25.8011   Median :   0.0   Median :109.0  
##  Mean   :  59.5332   Mean   :  24.5238   Mean   : 113.2   Mean   :167.4  
##  3rd Qu.:  85.8829   3rd Qu.:  40.7103   3rd Qu.:   0.0   3rd Qu.:247.0  
##  Max.   : 590.4439   Max.   : 247.2222   Max.   :4625.8   Max.   :659.0  
##      alq.pm        alq.pm.V1519   alq.num.V1519       tot.comp    
##  Min.   :   0.0   Min.   : 0.00   Min.   :-50.00   Min.   :  5.0  
##  1st Qu.: 749.2   1st Qu.:29.76   1st Qu.: 19.23   1st Qu.: 74.0  
##  Median : 864.6   Median :37.61   Median : 43.11   Median :148.0  
##  Mean   : 858.0   Mean   :34.61   Mean   : 50.83   Mean   :185.2  
##  3rd Qu.: 996.4   3rd Qu.:44.27   3rd Qu.: 71.43   3rd Qu.:257.0  
##  Max.   :1950.1   Max.   :62.78   Max.   :200.00   Max.   :619.0  
##     tot.eur       perc.nou.comp    perc.usat.comp   tot.comp.V1419  
##  Min.   :   0.0   Min.   : 0.000   Min.   : 50.00   Min.   :-45.88  
##  1st Qu.: 192.6   1st Qu.: 0.000   1st Qu.: 86.67   1st Qu.:  0.00  
##  Median : 264.9   Median : 2.672   Median : 97.12   Median : 35.62  
##  Mean   : 309.6   Mean   : 7.688   Mean   : 91.92   Mean   : 55.06  
##  3rd Qu.: 367.7   3rd Qu.:11.720   3rd Qu.:100.00   3rd Qu.: 70.13  
##  Max.   :1125.3   Max.   :50.000   Max.   :100.00   Max.   :466.67  
##  nou.eur.V1419     usat.eur.V1419  
##  Min.   :-100.00   Min.   :-38.12  
##  1st Qu.:   0.00   1st Qu.: 31.67  
##  Median :   0.00   Median : 43.00  
##  Mean   :  21.81   Mean   : 49.56  
##  3rd Qu.:  72.57   3rd Qu.: 67.51  
##  Max.   : 472.73   Max.   :201.26
for  (i in 1:26)
{
IRQ <- IQR(merged[,i])
Q <- quantile(merged[,i], c(0.25,0.5,0.75), type=7)

minmax[i,2] <- outl_min<-as.numeric(Q[1])-3*IRQ
minmax[i,3] <- outl_max<-as.numeric(Q[3])+3*IRQ

#bp <- boxplot(merged[,1][merged[,1]>outl_min & merged[,1]<outl_max], decreasing = FALSE)
out <- print(which(merged[,i] < outl_min | merged[,i] > outl_max))

if (length(out) != 0)
{
bout  <-merged[which(merged[,i] < outl_min | merged[,i] > outl_max), ]
 # print(bout)
  assign(list[i], bout)
  list2 <- append(list2, list[i])
}
}
## integer(0)
## [1] 1 2
## [1] 2 3 4
## [1] 2 3
## [1]  2 68 69
## [1] 42
## [1]  1  2  6  7  8 31
##  [1]  1  2  4  7 11 15 17 18 31 59 67 69
## [1] 21
## [1]  1  2  4  6  7  8 10 11 31
## [1] 12 25
## [1] 25
## [1] 12 25
## [1] 12
##  [1]  1  2  4  5  6  7  8 18 22 30 31 33 35 64 65 68
## integer(0)
## [1] 12 21 42 47 54 56 58
## integer(0)
## integer(0)
## integer(0)
## [1] 21
## [1] 42
## integer(0)
## [1] 39 47 55
## [1] 5
## [1] 11

VALORES MINMAX outl_min<-(Q[1])-1.5IRQ outl_max<-(Q[3])-1.5IRQ

minmax
##            minmax            V2           V3
## 1           n.tot -49805.000000 91756.000000
## 2          pc.esp     54.755821   108.778372
## 3     pc.ue27-esp    -13.557280    25.038782
## 4        pc.20.34      7.395624    30.203934
## 5       2019-2014  -1997.000000  3127.000000
## 6     n.esp.V1419    -12.804598     9.603448
## 7       hotel2019   -736.000000  1028.000000
## 8        rest1614    -38.000000    39.000000
## 9        RFD.2017    -56.700000   227.500000
## 10        tot_ann   -667.000000   957.000000
## 11         pmedio   -142.928507   296.536086
## 12   pmedio.V1519   -202.025733   245.711297
## 13   pm_ent.V1519   -257.833650   343.670317
## 14  pm_priv.V1519   -118.195993   159.889944
## 15   pm_sha.V1519      0.000000     0.000000
## 16        alq.num   -533.000000   832.000000
## 17         alq.pm      7.556394  1737.983899
## 18   alq.pm.V1519    -13.766003    87.792632
## 19  alq.num.V1519   -137.362637   228.021978
## 20       tot.comp   -475.000000   806.000000
## 21        tot.eur   -332.700000   893.000000
## 22  perc.nou.comp    -35.160681    46.880907
## 23 perc.usat.comp     46.666667   140.000000
## 24 tot.comp.V1419   -210.389610   280.519481
## 25  nou.eur.V1419   -217.699115   290.265487
## 26 usat.eur.V1419    -75.861203   175.039897

OUTLIERS DE CADA VARIABLE solo n.tot no tiene

for  (i in list2)
{x <- get(i)
x <- x[i]
print(x)
}
##                  pc.esp
## el Raval       48.09823
## el Barri Gòtic 43.72784
##                                       pc.ue27-esp
## el Barri Gòtic                           43.06665
## la Barceloneta                           28.23924
## Sant Pere, Santa Caterina i la Ribera    36.62403
##                pc.20.34
## el Barri Gòtic  36.5902
## la Barceloneta  30.4620
##                                              2019-2014
## el Barri Gòtic                                   -8766
## el Poblenou                                       3989
## Diagonal Mar i el Front Marítim del Poblenou      3850
##          n.esp.V1419
## la Clota    35.55046
##                                 hotel2019
## el Raval                             1085
## el Barri Gòtic                       1112
## la Sagrada Família                   1106
## la Dreta de l'Eixample               3115
## l'Antiga Esquerra de l'Eixample      1559
## la Vila de Gràcia                    1327
##                                              rest1614
## el Raval                                          -75
## el Barri Gòtic                                    -59
## Sant Pere, Santa Caterina i la Ribera             -41
## la Dreta de l'Eixample                             79
## el Poble Sec                                      -48
## Hostafrancs                                        62
## Sants - Badal                                      43
## Sants                                              68
## la Vila de Gràcia                                 -65
## el Bon Pastor                                      44
## la Vila Olímpica del Poblenou                      68
## Diagonal Mar i el Front Marítim del Poblenou       45
##           RFD.2017
## Pedralbes    248.8
##                                       tot_ann
## el Raval                                 1781
## el Barri Gòtic                           1423
## Sant Pere, Santa Caterina i la Ribera    1273
## la Sagrada Família                       1101
## la Dreta de l'Eixample                   2099
## l'Antiga Esquerra de l'Eixample          1079
## Sant Antoni                               999
## el Poble Sec                             1112
## la Vila de Gràcia                        1122
##                              pmedio
## la Marina del Prat Vermell 656.4286
## Sant Gervasi - la Bonanova 344.7963
##                            pmedio.V1519
## Sant Gervasi - la Bonanova      310.028
##                            pm_ent.V1519
## la Marina del Prat Vermell     473.0769
## Sant Gervasi - la Bonanova     590.4439
##                            pm_priv.V1519
## la Marina del Prat Vermell      247.2222
##                                       pm_sha.V1519
## el Raval                                  46.00000
## el Barri Gòtic                            11.61290
## Sant Pere, Santa Caterina i la Ribera    136.93182
## el Fort Pienc                             52.17391
## la Sagrada Família                       -21.50376
## la Dreta de l'Eixample                  1438.54167
## l'Antiga Esquerra de l'Eixample          -20.63492
## Sants                                    161.11111
## Vallvidrera, el Tibidabo i les Planes   -100.00000
## la Salut                                 154.54545
## la Vila de Gràcia                       4625.78947
## el Baix Guinardó                        1623.40426
## el Guinardó                             -100.00000
## el Camp de l'Arpa del Clot               -42.85714
## el Clot                                  400.00000
## el Poblenou                             -100.00000
##                              alq.pm
## la Marina del Prat Vermell    0.000
## Pedralbes                  1950.055
## la Clota                      0.000
## Can Peguera                   0.000
## Torre Baró                    0.000
## Vallbona                      0.000
## Baró de Viver                 0.000
##           tot.eur
## Pedralbes  1125.3
##          perc.nou.comp
## la Clota            50
##                          tot.comp.V1419
## Sant Genís dels Agudells       466.6667
## Can Peguera                    300.0000
## Ciutat Meridiana               293.7500
##               nou.eur.V1419
## el Fort Pienc      472.7294
##              usat.eur.V1419
## el Poble Sec       201.2632

SCALED

merged.sc <- scale(merged)
summary(merged.sc)
##      n.tot              pc.esp         pc.ue27-esp         pc.20.34      
##  Min.   :-1.48582   Min.   :-4.1126   Min.   :-0.8517   Min.   :-1.4973  
##  1st Qu.:-0.79597   1st Qu.:-0.3188   1st Qu.:-0.5643   1st Qu.:-0.4693  
##  Median :-0.08843   Median : 0.2991   Median :-0.3394   Median :-0.2505  
##  Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.57472   3rd Qu.: 0.5377   3rd Qu.: 0.1890   3rd Qu.: 0.3720  
##  Max.   : 2.44236   Max.   : 1.4769   Max.   : 4.9115   Max.   : 4.5446  
##    2019-2014        n.esp.V1419         hotel2019            rest1614        
##  Min.   :-6.3247   Min.   :-1.97135   Min.   :-0.563112   Min.   :-2.912694  
##  1st Qu.:-0.3083   1st Qu.:-0.37849   1st Qu.:-0.522315   1st Qu.:-0.236702  
##  Median :-0.1103   Median :-0.05649   Median :-0.416242   Median :-0.007332  
##  Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.000000   Mean   : 0.000000  
##  3rd Qu.: 0.1830   3rd Qu.: 0.23748   3rd Qu.:-0.008271   3rd Qu.: 0.183811  
##  Max.   : 2.2352   Max.   : 7.07815   Max.   : 5.791038   Max.   : 2.974488  
##     RFD.2017          tot_ann             pmedio         pmedio.V1519    
##  Min.   :-1.2894   Min.   :-0.63052   Min.   :-1.0458   Min.   :-1.8315  
##  1st Qu.:-0.6690   1st Qu.:-0.56517   1st Qu.:-0.5639   1st Qu.:-0.6178  
##  Median :-0.2522   Median :-0.41196   Median :-0.2909   Median :-0.2113  
##  Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.2816   3rd Qu.:-0.04244   3rd Qu.: 0.1023   3rd Qu.: 0.2460  
##  Max.   : 3.6322   Max.   : 4.09889   Max.   : 5.9201   Max.   : 3.7063  
##   pm_ent.V1519     pm_priv.V1519       pm_sha.V1519        alq.num       
##  Min.   :-1.4363   Min.   :-2.61530   Min.   :-0.3588   Min.   :-1.0390  
##  1st Qu.:-0.5364   1st Qu.:-0.49440   1st Qu.:-0.1905   1st Qu.:-0.7248  
##  Median :-0.2919   Median : 0.02683   Median :-0.1905   Median :-0.3667  
##  Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.2372   3rd Qu.: 0.33995   3rd Qu.:-0.1905   3rd Qu.: 0.5003  
##  Max.   : 4.7797   Max.   : 4.67720   Max.   : 7.5926   Max.   : 3.0887  
##      alq.pm          alq.pm.V1519     alq.num.V1519        tot.comp      
##  Min.   :-2.39854   Min.   :-2.2085   Min.   :-2.0803   Min.   :-1.2142  
##  1st Qu.:-0.30429   1st Qu.:-0.3093   1st Qu.:-0.6519   1st Qu.:-0.7493  
##  Median : 0.01837   Median : 0.1919   Median :-0.1593   Median :-0.2506  
##  Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.38676   3rd Qu.: 0.6166   3rd Qu.: 0.4251   3rd Qu.: 0.4839  
##  Max.   : 3.05272   Max.   : 1.7979   Max.   : 3.0778   Max.   : 2.9232  
##     tot.eur        perc.nou.comp     perc.usat.comp    tot.comp.V1419   
##  Min.   :-1.6886   Min.   :-0.7404   Min.   :-3.9689   Min.   :-1.2071  
##  1st Qu.:-0.6381   1st Qu.:-0.7404   1st Qu.:-0.4977   1st Qu.:-0.6584  
##  Median :-0.2438   Median :-0.4831   Median : 0.4921   Median :-0.2325  
##  Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.3169   3rd Qu.: 0.3884   3rd Qu.: 0.7645   3rd Qu.: 0.1802  
##  Max.   : 4.4492   Max.   : 4.0752   Max.   : 0.7645   Max.   : 4.9220  
##  nou.eur.V1419     usat.eur.V1419   
##  Min.   :-1.2656   Min.   :-2.4404  
##  1st Qu.:-0.2266   1st Qu.:-0.4979  
##  Median :-0.2266   Median :-0.1826  
##  Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.5273   3rd Qu.: 0.4997  
##  Max.   : 4.6848   Max.   : 4.2224

CLUSTER

set.seed(123)
finalK <- kmeans(merged.sc, centers = 5, nstart = 100)
ann <- finalK$centers
ann <- as.data.frame(ann)
merged$cluster <- finalK$cluster

ANOVA MEAN+SD CLUSTER

for  (i in 1:26)
{
min <- aggregate(merged[,i] ~ cluster, data = merged, FUN = mean)
sdd <- aggregate(merged[,i] ~ cluster, data = merged, FUN = sd)
sdmin <- merge(min,sdd,by="cluster",all.y=TRUE)
colnames(sdmin)<- c(paste0(list[i]),"mean","sd")

print(sdmin)
}
##   n.tot     mean        sd
## 1     1 26455.00 14922.839
## 2     2 15505.42 10515.134
## 3     3 16633.84  9499.795
## 4     4 43336.44  8588.847
## 5     5 14756.33  9000.682
##   pc.esp     mean       sd
## 1      1 51.94028 7.582845
## 2      2 83.85759 5.318977
## 3      3 82.36516 5.765888
## 4      4 80.02038 5.934031
## 5      5 85.21701 3.437829
##   pc.ue27-esp      mean       sd
## 1           1 32.556091 9.146157
## 2           2  4.196735 1.676709
## 3           3  3.961785 2.451312
## 4           4  9.143068 3.657832
## 5           5  7.299551 3.769939
##   pc.20.34     mean       sd
## 1        1 31.61463 3.358223
## 2        2 17.63229 1.484560
## 3        3 17.97830 2.030386
## 4        4 20.19599 2.385660
## 5        5 16.62853 2.317656
##   2019-2014       mean        sd
## 1         1 -1803.5000 4748.5513
## 2         2   586.6667  875.3134
## 3         3   550.6875  828.5086
## 4         4  1189.4375 1077.6702
## 5         5  1286.6667 1242.4975
##   n.esp.V1419      mean        sd
## 1           1 -8.378314  2.243839
## 2           2  2.573161 10.696455
## 3           3 -1.292675  2.284297
## 4           4 -2.714491  2.076334
## 5           5 -0.295874  1.706409
##   hotel2019      mean        sd
## 1         1 751.50000 416.03886
## 2         2  31.66667  30.82600
## 3         3  69.96875  76.93880
## 4         4 849.56250 731.49190
## 5         5 103.77778  82.44662
##   rest1614        mean        sd
## 1        1 -50.0000000 21.694853
## 2        2   0.6666667  2.269695
## 3        3   4.6562500 16.757491
## 4        4  -0.0625000 37.914762
## 5        5  14.5555556 25.070456
##   RFD.2017      mean       sd
## 1        1  89.07500 16.38849
## 2        2  82.54167 17.11472
## 3        3  68.52187 18.97167
## 4        4 115.19375 32.34364
## 5        5 161.71111 60.79982
##   tot_ann       mean        sd
## 1       1 1235.75000 555.65659
## 2       2   72.25000  62.09395
## 3       3   75.12500  78.90286
## 4       4  716.00000 520.98228
## 5       5   84.22222  77.30423
##   pmedio      mean         sd
## 1      1  86.93437   8.952207
## 2      2  53.28492  26.275791
## 3      3  59.04169  42.742610
## 4      4 146.26637  63.268923
## 5      5 219.72562 184.115582
##   pmedio.V1519        mean        sd
## 1            1  4.78081483  35.44938
## 2            2 -0.01884583  62.98126
## 3            3 11.22853192  44.83083
## 4            4 86.47770461  70.97761
## 5            5 93.05125963 111.96817
##   pm_ent.V1519       mean        sd
## 1            1   2.304752  38.18935
## 2            2  11.323927  78.53286
## 3            3  32.216796  72.72542
## 4            4  98.877303  73.86415
## 5            5 176.427234 211.45441
##   pm_priv.V1519     mean       sd
## 1             1 43.86672 10.54872
## 2             2  7.85612 41.52803
## 3             3 16.72192 46.16958
## 4             4 32.83508 23.63401
## 5             5 51.11492 83.07949
##   pm_sha.V1519      mean         sd
## 1            1  48.63618   62.01954
## 2            2   0.00000    0.00000
## 3            3  64.93593  294.81498
## 4            4 380.78877 1188.52101
## 5            5 -11.11111   33.33333
##   alq.num      mean        sd
## 1       1 270.25000 153.13910
## 2       2  80.66667  51.50169
## 3       3  83.06250  59.68138
## 4       4 405.18750 130.54614
## 5       5 114.22222  92.32250
##   alq.pm      mean       sd
## 1      1  960.8175 107.5058
## 2      2  747.1656 250.0849
## 3      3  677.8560 280.4989
## 4      4 1041.6091 165.8154
## 5      5 1274.3400 537.5784
##   alq.pm.V1519     mean        sd
## 1            1 45.96124  2.972726
## 2            2 34.00642 17.339406
## 3            3 31.05479 16.404754
## 4            4 40.45353  5.318256
## 5            5 32.58383 22.556199
##   alq.num.V1519      mean       sd
## 1             1  25.18087 48.46123
## 2             2  51.10443 31.45348
## 3             3  34.46026 50.30180
## 4             4  54.38179 20.52141
## 5             5 113.73090 49.28406
##   tot.comp      mean        sd
## 1        1 286.00000 113.54588
## 2        2 153.33333 168.89444
## 3        3 147.12500 113.57980
## 4        4 317.81250 146.50516
## 5        5  82.44444  66.84892
##   tot.eur     mean        sd
## 1       1 292.4000  96.19948
## 2       2 240.0250  68.10376
## 3       3 217.1219  98.75582
## 4       4 390.1938 112.56555
## 5       5 595.5000 290.78490
##   perc.nou.comp      mean       sd
## 1             1  9.225648 8.981480
## 2             2 26.139675 9.686588
## 3             3  1.694017 2.691958
## 4             4  7.856486 6.206252
## 5             5  3.410993 5.870455
##   perc.usat.comp     mean       sd
## 1              1 90.69345 8.942009
## 2              2 73.09209 9.555946
## 3              3 98.24355 2.742043
## 4              4 91.87414 6.275282
## 5              5 95.20012 6.415918
##   tot.comp.V1419       mean        sd
## 1              1   1.751993  12.83624
## 2              2  93.038282 134.26008
## 3              3  83.426558  74.60757
## 4              4  19.861046  31.31801
## 5              5 -10.162327  24.83364
##   nou.eur.V1419      mean        sd
## 1             1 130.93821 126.18673
## 2             2  75.32115  51.74995
## 3             3 -12.22792  64.86229
## 4             4  60.03164 130.37796
## 5             5 -44.93095  52.26143
##   usat.eur.V1419     mean       sd
## 1              1 49.15994 14.05369
## 2              2 50.50504 33.15581
## 3              3 49.49089 36.06916
## 4              4 58.61978 42.92035
## 5              5 32.59875 32.36611

ANOVA

merged$cluster <- as.factor(merged$cluster)
for  (i in 1:26)
{
maov <- aov(merged[,i] ~ cluster, data = merged)
vvv <- summary(maov)
print(paste0(list[i]))
print(vvv)
}
## [1] "n.tot"
##             Df    Sum Sq   Mean Sq F value   Pr(>F)    
## cluster      4 9.236e+09 2.309e+09   24.39 1.52e-12 ***
## Residuals   68 6.437e+09 9.466e+07                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pc.esp"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4   3707   926.9   29.49 3.15e-14 ***
## Residuals   68   2137    31.4                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pc.ue27-esp"
##             Df Sum Sq Mean Sq F value Pr(>F)    
## cluster      4 3075.5   768.9   66.81 <2e-16 ***
## Residuals   68  782.6    11.5                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pc.20.34"
##             Df Sum Sq Mean Sq F value Pr(>F)    
## cluster      4  765.9  191.46   41.44 <2e-16 ***
## Residuals   68  314.2    4.62                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "2019-2014"
##             Df    Sum Sq Mean Sq F value  Pr(>F)   
## cluster      4  32741302 8185325   4.378 0.00329 **
## Residuals   68 127124344 1869476                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "n.esp.V1419"
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## cluster      4  421.2   105.3     4.7 0.00208 **
## Residuals   68 1523.4    22.4                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "hotel2019"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 8509678 2127419   16.45 1.79e-09 ***
## Residuals   68 8793810  129321                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "rest1614"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4  12502  3125.6   5.781 0.000458 ***
## Residuals   68  36765   540.7                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "RFD.2017"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4  70887   17722   19.93 6.75e-11 ***
## Residuals   68  60450     889                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "tot_ann"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 8901408 2225352   28.66 5.78e-14 ***
## Residuals   68 5280816   77659                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pmedio"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 243657   60914   10.47 1.15e-06 ***
## Residuals   68 395703    5819                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pmedio.V1519"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 109153   27288   6.498 0.000173 ***
## Residuals   68 285569    4200                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pm_ent.V1519"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 212613   53153   5.349 0.000834 ***
## Residuals   68 675718    9937                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pm_priv.V1519"
##             Df Sum Sq Mean Sq F value Pr(>F)
## cluster      4  14247    3562   1.626  0.178
## Residuals   68 148981    2191               
## [1] "pm_sha.V1519"
##             Df   Sum Sq Mean Sq F value Pr(>F)
## cluster      4  1529726  382431   1.088   0.37
## Residuals   68 23903553  351523               
## [1] "alq.num"
##             Df  Sum Sq Mean Sq F value Pr(>F)    
## cluster      4 1290332  322583    41.1 <2e-16 ***
## Residuals   68  533771    7850                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "alq.pm"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 3327603  831901   9.611 3.21e-06 ***
## Residuals   68 5886054   86560                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "alq.pm.V1519"
##             Df Sum Sq Mean Sq F value Pr(>F)
## cluster      4   1508   376.9   1.585  0.188
## Residuals   68  16171   237.8               
## [1] "alq.num.V1519"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4  47018   11754   6.546 0.000162 ***
## Residuals   68 122115    1796                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "tot.comp"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4  475624  118906   7.284 6.08e-05 ***
## Residuals   68 1110075   16325                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "tot.eur"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 1172517  293129   15.98 2.88e-09 ***
## Residuals   68 1247628   18347                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "perc.nou.comp"
##             Df Sum Sq Mean Sq F value Pr(>F)    
## cluster      4   5410  1352.5    39.1 <2e-16 ***
## Residuals   68   2352    34.6                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "perc.usat.comp"
##             Df Sum Sq Mean Sq F value Pr(>F)    
## cluster      4   5636  1409.1   39.97 <2e-16 ***
## Residuals   68   2397    35.3                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "tot.comp.V1419"
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## cluster      4 112533   28133   4.893 0.00158 **
## Residuals   68 390979    5750                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "nou.eur.V1419"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 182535   45634   6.405 0.000196 ***
## Residuals   68 484475    7125                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "usat.eur.V1419"
##             Df Sum Sq Mean Sq F value Pr(>F)
## cluster      4   3914   978.5   0.747  0.563
## Residuals   68  89028  1309.2