merged <- merged %>% 
           remove_rownames %>% 
           column_to_rownames(var="Nom_Barri") %>% 
           select("n.tot","pc.esp","pc.ue27-esp","pc.20.34","2019-2014","n.esp.M1419",
                  "hotel2019","rest1614",
                  "RFD.2017",
                  "tot_ann","pmedio","pmedio.M1519","pm_ent.M1519","pm_priv.M1519",
                  "alq.num","alq.pm","alq.pm.M1519","alq.num.M1519",
                  "tot.comp","tot.eur","perc.nou.comp","perc.usat.comp","tot.comp.M1419",
                  "nou.eur.M1419","usat.eur.M1419",
                   )

list <- colnames(merged)
minmax <- list
minmax <- as.data.frame(minmax)
list2 <- list()

SUMMARY

summary(merged)
##      n.tot           pc.esp       pc.ue27-esp        pc.20.34    
##  Min.   :  686   Min.   :43.73   Min.   : 0.880   Min.   :13.19  
##  1st Qu.:10864   1st Qu.:77.91   1st Qu.: 2.984   1st Qu.:17.17  
##  Median :21303   Median :83.48   Median : 4.630   Median :18.02  
##  Mean   :22608   Mean   :80.78   Mean   : 7.114   Mean   :18.99  
##  3rd Qu.:31087   3rd Qu.:85.63   3rd Qu.: 8.498   3rd Qu.:20.43  
##  Max.   :58642   Max.   :94.09   Max.   :43.067   Max.   :36.59  
##    2019-2014        n.esp.M1419        hotel2019         rest1614      
##  Min.   :-8766.0   Min.   :-2311.0   Min.   :   0.0   Min.   :-75.000  
##  1st Qu.:  199.0   1st Qu.: -641.0   1st Qu.:  20.0   1st Qu.: -5.000  
##  Median :  494.0   Median : -231.0   Median :  72.0   Median :  1.000  
##  Mean   :  658.3   Mean   : -386.9   Mean   : 276.1   Mean   :  1.192  
##  3rd Qu.:  931.0   3rd Qu.:    0.0   3rd Qu.: 272.0   3rd Qu.:  6.000  
##  Max.   : 3989.0   Max.   :  462.0   Max.   :3115.0   Max.   : 79.000  
##     RFD.2017         tot_ann           pmedio        pmedio.M1519   
##  Min.   : 38.60   Min.   :   0.0   Min.   :  0.00   Min.   :-73.15  
##  1st Qu.: 65.10   1st Qu.:  29.0   1st Qu.: 45.41   1st Qu.: -7.15  
##  Median : 82.90   Median :  97.0   Median : 71.14   Median : 11.19  
##  Mean   : 93.67   Mean   : 279.8   Mean   : 98.55   Mean   : 30.76  
##  3rd Qu.:105.70   3rd Qu.: 261.0   3rd Qu.:108.19   3rd Qu.: 30.17  
##  Max.   :248.80   Max.   :2099.0   Max.   :656.43   Max.   :459.18  
##   pm_ent.M1519       pm_priv.M1519         alq.num          alq.pm      
##  Min.   :-107.1184   Min.   :-59.0000   Min.   :  2.0   Min.   :   0.0  
##  1st Qu.:  -0.0451   1st Qu.:  0.8694   1st Qu.: 52.0   1st Qu.: 749.2  
##  Median :  25.0000   Median :  8.5892   Median :109.0   Median : 864.6  
##  Mean   :  69.2127   Mean   :  7.0728   Mean   :167.4   Mean   : 858.0  
##  3rd Qu.:  75.8696   3rd Qu.: 14.8999   3rd Qu.:247.0   3rd Qu.: 996.4  
##  Max.   :1230.0000   Max.   : 44.2917   Max.   :659.0   Max.   :1950.1  
##   alq.pm.M1519    alq.num.M1519       tot.comp        tot.eur      
##  Min.   :-303.8   Min.   :-72.00   Min.   :  5.0   Min.   :   0.0  
##  1st Qu.: 183.5   1st Qu.: 11.00   1st Qu.: 74.0   1st Qu.: 192.6  
##  Median : 237.3   Median : 26.00   Median :148.0   Median : 264.9  
##  Mean   : 235.7   Mean   : 53.27   Mean   :185.2   Mean   : 309.6  
##  3rd Qu.: 291.6   3rd Qu.: 71.00   3rd Qu.:257.0   3rd Qu.: 367.7  
##  Max.   : 714.4   Max.   :244.00   Max.   :619.0   Max.   :1125.3  
##  perc.nou.comp    perc.usat.comp   tot.comp.M1419   nou.eur.M1419   
##  Min.   : 0.000   Min.   : 50.00   Min.   :-62.00   Min.   :-495.3  
##  1st Qu.: 0.000   1st Qu.: 86.67   1st Qu.:  0.00   1st Qu.:   0.0  
##  Median : 2.672   Median : 97.12   Median : 37.00   Median :   0.0  
##  Mean   : 7.688   Mean   : 91.92   Mean   : 40.15   Mean   : 110.2  
##  3rd Qu.:11.720   3rd Qu.:100.00   3rd Qu.: 60.00   3rd Qu.: 200.0  
##  Max.   :50.000   Max.   :100.00   Max.   :291.00   Max.   :2600.7  
##  usat.eur.M1419   
##  Min.   :-141.30  
##  1st Qu.:  54.90  
##  Median :  86.60  
##  Mean   :  91.93  
##  3rd Qu.: 119.20  
##  Max.   : 517.50
for  (i in 1:25)
{
IRQ <- IQR(merged[,i])
Q <- quantile(merged[,i], c(0.25,0.5,0.75), type=7)

minmax[i,2] <- outl_min<-as.numeric(Q[1])-3*IRQ
minmax[i,3] <- outl_max<-as.numeric(Q[3])+3*IRQ

#bp <- boxplot(merged[,1][merged[,1]>outl_min & merged[,1]<outl_max], decreasing = FALSE)
out <- print(which(merged[,i] < outl_min | merged[,i] > outl_max))

if (length(out) != 0)
{
bout  <-merged[which(merged[,i] < outl_min | merged[,i] > outl_max), ]
 # print(bout)
  assign(list[i], bout)
  list2 <- append(list2, list[i])
}
}
## integer(0)
## [1] 1 2
## [1] 2 3 4
## [1] 2 3
## [1]  2 68 69
## integer(0)
## [1]  1  2  6  7  8 31
##  [1]  1  2  4  7 11 15 17 18 31 59 67 69
## [1] 21
## [1]  1  2  4  6  7  8 10 11 31
## [1] 12 25
## [1] 10 12 25 27
## [1] 12 25 36
## [1] 53 56
## integer(0)
## [1] 12 21 42 47 54 56 58
## [1] 21 49 58
## integer(0)
## integer(0)
## [1] 21
## [1] 42
## integer(0)
## [1] 37 60
## [1]  5 21
## [1] 58 69

VALORES MINMAX outl_min<-(Q[1])-1.5IRQ outl_max<-(Q[3])-1.5IRQ

minmax
##            minmax            V2          V3
## 1           n.tot -49805.000000 91756.00000
## 2          pc.esp     54.755821   108.77837
## 3     pc.ue27-esp    -13.557280    25.03878
## 4        pc.20.34      7.395624    30.20393
## 5       2019-2014  -1997.000000  3127.00000
## 6     n.esp.M1419  -2564.000000  1923.00000
## 7       hotel2019   -736.000000  1028.00000
## 8        rest1614    -38.000000    39.00000
## 9        RFD.2017    -56.700000   227.50000
## 10        tot_ann   -667.000000   957.00000
## 11         pmedio   -142.928507   296.53609
## 12   pmedio.M1519   -119.099765   142.11548
## 13   pm_ent.M1519   -227.789168   303.61363
## 14  pm_priv.M1519    -41.222191    56.99152
## 15        alq.num   -533.000000   832.00000
## 16         alq.pm      7.556394  1737.98390
## 17   alq.pm.M1519   -140.674232   615.72862
## 18  alq.num.M1519   -169.000000   251.00000
## 19       tot.comp   -475.000000   806.00000
## 20        tot.eur   -332.700000   893.00000
## 21  perc.nou.comp    -35.160681    46.88091
## 22 perc.usat.comp     46.666667   140.00000
## 23 tot.comp.M1419   -180.000000   240.00000
## 24  nou.eur.M1419   -600.000000   800.00000
## 25 usat.eur.M1419   -138.000000   312.10000

OUTLIERS DE CADA VARIABLE solo n.tot no tiene

for  (i in list2)
{x <- get(i)
x <- x[i]
print(x)
}
##                  pc.esp
## el Raval       48.09823
## el Barri Gòtic 43.72784
##                                       pc.ue27-esp
## el Barri Gòtic                           43.06665
## la Barceloneta                           28.23924
## Sant Pere, Santa Caterina i la Ribera    36.62403
##                pc.20.34
## el Barri Gòtic  36.5902
## la Barceloneta  30.4620
##                                              2019-2014
## el Barri Gòtic                                   -8766
## el Poblenou                                       3989
## Diagonal Mar i el Front Marítim del Poblenou      3850
##                                 hotel2019
## el Raval                             1085
## el Barri Gòtic                       1112
## la Sagrada Família                   1106
## la Dreta de l'Eixample               3115
## l'Antiga Esquerra de l'Eixample      1559
## la Vila de Gràcia                    1327
##                                              rest1614
## el Raval                                          -75
## el Barri Gòtic                                    -59
## Sant Pere, Santa Caterina i la Ribera             -41
## la Dreta de l'Eixample                             79
## el Poble Sec                                      -48
## Hostafrancs                                        62
## Sants - Badal                                      43
## Sants                                              68
## la Vila de Gràcia                                 -65
## el Bon Pastor                                      44
## la Vila Olímpica del Poblenou                      68
## Diagonal Mar i el Front Marítim del Poblenou       45
##           RFD.2017
## Pedralbes    248.8
##                                       tot_ann
## el Raval                                 1781
## el Barri Gòtic                           1423
## Sant Pere, Santa Caterina i la Ribera    1273
## la Sagrada Família                       1101
## la Dreta de l'Eixample                   2099
## l'Antiga Esquerra de l'Eixample          1079
## Sant Antoni                               999
## el Poble Sec                             1112
## la Vila de Gràcia                        1122
##                              pmedio
## la Marina del Prat Vermell 656.4286
## Sant Gervasi - la Bonanova 344.7963
##                            pmedio.M1519
## Sant Antoni                    173.7692
## la Marina del Prat Vermell     459.1786
## Sant Gervasi - la Bonanova     260.7054
## el Putxet i el Farró           163.8440
##                            pm_ent.M1519
## la Marina del Prat Vermell    1230.0000
## Sant Gervasi - la Bonanova     635.8342
## la Font d'en Fargues           491.0000
##                  pm_priv.M1519
## la Trinitat Nova     -48.77778
## Vallbona             -59.00000
##                              alq.pm
## la Marina del Prat Vermell    0.000
## Pedralbes                  1950.055
## la Clota                      0.000
## Can Peguera                   0.000
## Torre Baró                    0.000
## Vallbona                      0.000
## Baró de Viver                 0.000
##               alq.pm.M1519
## Pedralbes         699.2251
## Canyelles         714.4444
## Baró de Viver    -303.7962
##           tot.eur
## Pedralbes  1125.3
##          perc.nou.comp
## la Clota            50
##             tot.comp.M1419
## el Carmel              242
## Sant Andreu            291
##               nou.eur.M1419
## el Fort Pienc        2040.3
## Pedralbes            2600.7
##                                              usat.eur.M1419
## Baró de Viver                                         517.5
## Diagonal Mar i el Front Marítim del Poblenou         -141.3

SCALED

merged.sc <- scale(merged)
summary(merged.sc)
##      n.tot              pc.esp         pc.ue27-esp         pc.20.34      
##  Min.   :-1.48582   Min.   :-4.1126   Min.   :-0.8517   Min.   :-1.4973  
##  1st Qu.:-0.79597   1st Qu.:-0.3188   1st Qu.:-0.5643   1st Qu.:-0.4693  
##  Median :-0.08843   Median : 0.2991   Median :-0.3394   Median :-0.2505  
##  Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.57472   3rd Qu.: 0.5377   3rd Qu.: 0.1890   3rd Qu.: 0.3720  
##  Max.   : 2.44236   Max.   : 1.4769   Max.   : 4.9115   Max.   : 4.5446  
##    2019-2014        n.esp.M1419        hotel2019            rest1614        
##  Min.   :-6.3247   Min.   :-3.4001   Min.   :-0.563112   Min.   :-2.912694  
##  1st Qu.:-0.3083   1st Qu.:-0.4490   1st Qu.:-0.522315   1st Qu.:-0.236702  
##  Median :-0.1103   Median : 0.2755   Median :-0.416242   Median :-0.007332  
##  Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.000000   Mean   : 0.000000  
##  3rd Qu.: 0.1830   3rd Qu.: 0.6837   3rd Qu.:-0.008271   3rd Qu.: 0.183811  
##  Max.   : 2.2352   Max.   : 1.5001   Max.   : 5.791038   Max.   : 2.974488  
##     RFD.2017          tot_ann             pmedio         pmedio.M1519      
##  Min.   :-1.2894   Min.   :-0.63052   Min.   :-1.0458   Min.   :-1.395585  
##  1st Qu.:-0.6690   1st Qu.:-0.56517   1st Qu.:-0.5639   1st Qu.:-0.509145  
##  Median :-0.2522   Median :-0.41196   Median :-0.2909   Median :-0.262878  
##  Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.000000  
##  3rd Qu.: 0.2816   3rd Qu.:-0.04244   3rd Qu.: 0.1023   3rd Qu.:-0.007947  
##  Max.   : 3.6322   Max.   : 4.09889   Max.   : 5.9201   Max.   : 5.754129  
##   pm_ent.M1519      pm_priv.M1519         alq.num            alq.pm        
##  Min.   :-1.00502   Min.   :-4.03415   Min.   :-1.0390   Min.   :-2.39854  
##  1st Qu.:-0.39474   1st Qu.:-0.37876   1st Qu.:-0.7248   1st Qu.:-0.30429  
##  Median :-0.25200   Median : 0.09258   Median :-0.3667   Median : 0.01837  
##  Mean   : 0.00000   Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.00000  
##  3rd Qu.: 0.03794   3rd Qu.: 0.47789   3rd Qu.: 0.5003   3rd Qu.: 0.38676  
##  Max.   : 6.61604   Max.   : 2.27244   Max.   : 3.0887   Max.   : 3.05272  
##   alq.pm.M1519      alq.num.M1519        tot.comp          tot.eur       
##  Min.   :-3.75275   Min.   :-1.9267   Min.   :-1.2142   Min.   :-1.6886  
##  1st Qu.:-0.36319   1st Qu.:-0.6502   1st Qu.:-0.7493   1st Qu.:-0.6381  
##  Median : 0.01123   Median :-0.4195   Median :-0.2506   Median :-0.2438  
##  Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.38844   3rd Qu.: 0.2726   3rd Qu.: 0.4839   3rd Qu.: 0.3169  
##  Max.   : 3.33000   Max.   : 2.9334   Max.   : 2.9232   Max.   : 4.4492  
##  perc.nou.comp     perc.usat.comp    tot.comp.M1419     nou.eur.M1419    
##  Min.   :-0.7404   Min.   :-3.9689   Min.   :-1.67669   Min.   :-1.3970  
##  1st Qu.:-0.7404   1st Qu.:-0.4977   1st Qu.:-0.65903   1st Qu.:-0.2542  
##  Median :-0.4831   Median : 0.4921   Median :-0.05171   Median :-0.2542  
##  Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.0000  
##  3rd Qu.: 0.3884   3rd Qu.: 0.7645   3rd Qu.: 0.32580   3rd Qu.: 0.2073  
##  Max.   : 4.0752   Max.   : 0.7645   Max.   : 4.11741   Max.   : 5.7465  
##  usat.eur.M1419    
##  Min.   :-2.90132  
##  1st Qu.:-0.46062  
##  Median :-0.06627  
##  Mean   : 0.00000  
##  3rd Qu.: 0.33927  
##  Max.   : 5.29406

CLUSTER

set.seed(123)
finalK <- kmeans(merged.sc, centers = 5, nstart = 100)
ann <- finalK$centers
ann <- as.data.frame(ann)
merged$cluster <- finalK$cluster

ANOVA MEAN+SD CLUSTER

for  (i in 1:26)
{
min <- aggregate(merged[,i] ~ cluster, data = merged, FUN = mean)
sdd <- aggregate(merged[,i] ~ cluster, data = merged, FUN = sd)
sdmin <- merge(min,sdd,by="cluster",all.y=TRUE)
colnames(sdmin)<- c(paste0(list[i]),"mean","sd")

print(sdmin)
}
##   n.tot     mean        sd
## 1     1 43620.75  7418.406
## 2     2 23885.40 11719.570
## 3     3 16979.04 11424.519
## 4     4  1199.00        NA
## 5     5 26455.00 14922.839
##   pc.esp     mean       sd
## 1      1 78.06790 5.054885
## 2      2 84.57396 3.363099
## 3      3 82.99189 5.649230
## 4      4 89.07423       NA
## 5      5 51.94028 7.582845
##   pc.ue27-esp      mean       sd
## 1           1  9.918585 3.407852
## 2           2  7.843218 2.820178
## 3           3  4.144301 2.477200
## 4           4  1.029963       NA
## 5           5 32.556091 9.146157
##   pc.20.34     mean       sd
## 1        1 21.21621 1.630111
## 2        2 16.66104 1.599499
## 3        3 17.76369 1.932159
## 4        4 21.35113       NA
## 5        5 31.61463 3.358223
##   2019-2014       mean        sd
## 1         1   824.4167  690.7641
## 2         2  1704.5000 1356.1573
## 3         3   611.7609  876.6697
## 4         4   194.0000        NA
## 5         5 -1803.5000 4748.5513
##   n.esp.M1419       mean       sd
## 1           1 -1256.3333 554.1700
## 2           2  -108.0000 197.6557
## 3           3  -164.8261 314.7993
## 4           4    33.0000       NA
## 5           5 -1134.5000 335.9926
##   hotel2019      mean        sd
## 1         1 987.08333 782.43018
## 2         2 206.50000 252.73185
## 3         3  69.91304  98.38447
## 4         4  20.00000        NA
## 5         5 751.50000 416.03886
##   rest1614       mean       sd
## 1        1   2.666667 42.84079
## 2        2   9.100000 28.34490
## 3        3   3.347826 14.15033
## 4        4  10.000000       NA
## 5        5 -50.000000 21.69485
##   RFD.2017      mean       sd
## 1        1 110.73333 25.28734
## 2        2 170.79000 45.53610
## 3        3  74.02174 21.67601
## 4        4  40.00000       NA
## 5        5  89.07500 16.38849
##   tot_ann       mean        sd
## 1       1  858.58333 522.26577
## 2       2  179.00000 153.51656
## 3       3   73.43478  72.57108
## 4       4   14.00000        NA
## 5       5 1235.75000 555.65659
##   pmedio      mean        sd
## 1      1 143.17792 64.011706
## 2      2 174.12394 82.835873
## 3      3  59.36397 39.121909
## 4      4 656.42857        NA
## 5      5  86.93437  8.952207
##   pmedio.M1519       mean       sd
## 1            1  65.926332 56.01148
## 2            2  79.522892 82.10554
## 3            3   4.885877 29.59947
## 4            4 459.178571       NA
## 5            5  -6.238929 45.05626
##   pm_ent.M1519       mean        sd
## 1            1   86.22669  56.77086
## 2            2  158.86152 184.06332
## 3            3   27.12628  84.88256
## 4            4 1230.00000        NA
## 5            5  -12.15478  64.65317
##   pm_priv.M1519      mean        sd
## 1             1 16.008680  9.304427
## 2             2  6.534388 11.583430
## 3             3  3.547698 18.141372
## 4             4 22.250000        NA
## 5             5 18.355969  4.897977
##   alq.num      mean        sd
## 1       1 432.50000 131.69075
## 2       2 204.80000 129.83990
## 3       3  84.65217  61.51322
## 4       4   5.00000        NA
## 5       5 270.25000 153.13910
##   alq.pm      mean       sd
## 1      1 1029.4990 140.1934
## 2      2 1362.0327 284.3531
## 3      3  713.4320 282.9134
## 4      4    0.0000       NA
## 5      5  960.8175 107.5058
##   alq.pm.M1519     mean        sd
## 1            1 296.3276  37.86042
## 2            2 389.6908 141.99675
## 3            3 185.8124 134.97672
## 4            4   0.0000        NA
## 5            5 301.6976  27.76881
##   alq.num.M1519      mean       sd
## 1             1 154.91667 61.44393
## 2             2  87.20000 54.74547
## 3             3  19.65217 20.69806
## 4             4   3.00000       NA
## 5             5  62.75000 93.50356
##   tot.comp     mean        sd
## 1        1 307.0000 139.74978
## 2        2 148.9000  96.30559
## 3        3 156.3913 145.08993
## 4        4   8.0000        NA
## 5        5 286.0000 113.54588
##   tot.eur     mean        sd
## 1       1 374.7167  90.20024
## 2       2 630.5700 226.28612
## 3       3 229.1196  95.81728
## 4       4  89.0000        NA
## 5       5 292.4000  96.19948
##   perc.nou.comp     mean        sd
## 1             1 5.280367  4.235937
## 2             2 8.237595  8.310219
## 3             3 8.229283 12.061428
## 4             4 0.000000        NA
## 5             5 9.225648  8.981480
##   perc.usat.comp     mean        sd
## 1              1 94.36047  4.593647
## 2              2 91.76240  8.310219
## 3              3 91.52688 12.325113
## 4              4 87.50000        NA
## 5              5 90.69345  8.942009
##   tot.comp.M1419      mean       sd
## 1              1  45.91667 61.18446
## 2              2 -13.40000 33.37398
## 3              3  53.89130 61.17016
## 4              4  -1.00000       NA
## 5              5   9.00000 37.97368
##   nou.eur.M1419      mean       sd
## 1             1 237.54167 599.1013
## 2             2 249.02000 909.5623
## 3             3  41.28043 176.2401
## 4             4   0.00000       NA
## 5             5 200.75000 165.0946
##   usat.eur.M1419      mean        sd
## 1              1 121.72500  38.30365
## 2              2 137.85000 114.96392
## 3              3  75.66087  79.04202
## 4              4  33.10000        NA
## 5              5  89.50000  23.33652
##   NA mean sd
## 1  1    1  0
## 2  2    2  0
## 3  3    3  0
## 4  4    4 NA
## 5  5    5  0

ANOVA

merged$cluster <- as.factor(merged$cluster)
for  (i in 1:25)
{
maov <- aov(merged[,i] ~ cluster, data = merged)
vvv <- summary(maov)
print(paste0(list[i]))
print(vvv)
}
## [1] "n.tot"
##             Df    Sum Sq   Mean Sq F value   Pr(>F)    
## cluster      4 7.290e+09 1.822e+09   14.78 9.69e-09 ***
## Residuals   68 8.383e+09 1.233e+08                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pc.esp"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4   3853   963.2   32.89 2.97e-15 ***
## Residuals   68   1991    29.3                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pc.ue27-esp"
##             Df Sum Sq Mean Sq F value Pr(>F)    
## cluster      4 3131.6   782.9   73.29 <2e-16 ***
## Residuals   68  726.4    10.7                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pc.20.34"
##             Df Sum Sq Mean Sq F value Pr(>F)    
## cluster      4  826.0  206.50   55.26 <2e-16 ***
## Residuals   68  254.1    3.74                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "2019-2014"
##             Df    Sum Sq Mean Sq F value  Pr(>F)   
## cluster      4  35833524 8958381   4.911 0.00154 **
## Residuals   68 124032123 1824002                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "n.esp.M1419"
##             Df   Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 14529337 3632334   28.96 4.61e-14 ***
## Residuals   68  8527868  125410                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "hotel2019"
##             Df  Sum Sq Mean Sq F value  Pr(>F)    
## cluster      4 9039618 2259904    18.6 2.3e-10 ***
## Residuals   68 8263870  121528                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "rest1614"
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## cluster      4  11425  2856.3   5.133 0.00113 **
## Residuals   68  37842   556.5                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "RFD.2017"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4  83692   20923   29.86 2.41e-14 ***
## Residuals   68  47645     701                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "tot_ann"
##             Df  Sum Sq Mean Sq F value Pr(>F)    
## cluster      4 9806483 2451621    38.1 <2e-16 ***
## Residuals   68 4375741   64349                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pmedio"
##             Df Sum Sq Mean Sq F value Pr(>F)    
## cluster      4 463417  115854   44.78 <2e-16 ***
## Residuals   68 175943    2587                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pmedio.M1519"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 258432   64608   31.23 9.24e-15 ***
## Residuals   68 140698    2069                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pm_ent.M1519"
##             Df  Sum Sq Mean Sq F value Pr(>F)    
## cluster      4 1539231  384808   38.64 <2e-16 ***
## Residuals   68  677133    9958                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pm_priv.M1519"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## cluster      4   2272   568.1   2.267 0.0709 .
## Residuals   68  17042   250.6                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "alq.num"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 1240981  310245   36.18 3.49e-16 ***
## Residuals   68  583122    8575                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "alq.pm"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 4633279 1158320    17.2 8.66e-10 ***
## Residuals   68 4580378   67359                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "alq.pm.M1519"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4  468701  117175   7.816 3.04e-05 ***
## Residuals   68 1019391   14991                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "alq.num.M1519"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 190371   47593   28.39 7.04e-14 ***
## Residuals   68 114010    1677                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "tot.comp"
##             Df  Sum Sq Mean Sq F value  Pr(>F)   
## cluster      4  301419   75355    3.99 0.00575 **
## Residuals   68 1284280   18886                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "tot.eur"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 1428894  357223   24.51 1.39e-12 ***
## Residuals   68  991251   14577                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "perc.nou.comp"
##             Df Sum Sq Mean Sq F value Pr(>F)
## cluster      4    155   38.66   0.346  0.846
## Residuals   68   7607  111.87               
## [1] "perc.usat.comp"
##             Df Sum Sq Mean Sq F value Pr(>F)
## cluster      4    104    26.1   0.224  0.924
## Residuals   68   7929   116.6               
## [1] "tot.comp.M1419"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## cluster      4  43336   10834    3.29 0.0159 *
## Residuals   68 223910    3293                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "nou.eur.M1419"
##             Df   Sum Sq Mean Sq F value Pr(>F)
## cluster      4   650738  162684   0.859  0.493
## Residuals   68 12873373  189314               
## [1] "usat.eur.M1419"
##             Df Sum Sq Mean Sq F value Pr(>F)
## cluster      4  47399   11850   1.928  0.116
## Residuals   68 417867    6145