Este documento
setwd("C:/suspensionesCOVID19")
getwd()
## [1] "C:/suspensionesCOVID19"
suspensiones='suspensiones.csv'
base<- read.csv(suspensiones)
names(base)
## [1] "cedula" "rucsindv" "cipruc" "fsolic"
## [5] "fdesdec" "fhastac" "msolic" "dsolic"
## [9] "refdup" "empresa" "act" "ts"
## [13] "sexo" "fnacim" "ene2020" "feb2020"
## [17] "mar2020" "actr" "taFS" "taFJ"
## [21] "reddup" "diastrc" "dsuspt" "salpromXpuesto"
## [25] "relsalSML" "tramosalSML" "tramosalSMLr" "edad"
## [29] "edadc" "gq" "meanedad" "aporteperFJ_1"
## [33] "aporteperFS_1" "aporteperFAG_1" "aporteperFJ_2" "aporteperFS_2"
## [37] "aporteperFAG_2" "aporteperFJ_3" "aporteperFS_3" "aporteperFAG_3"
## [41] "cantpuestos" "tamempg" "sector" "tramosalSMLr2"
View(base)
library(tidyverse)
## -- Attaching packages ---------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.2.1 v purrr 0.3.3
## v tibble 2.1.3 v dplyr 0.8.3
## v tidyr 1.0.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.4.0
## -- Conflicts ------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
#para revisar la estructura de los datos
#str(base)
summary (base$dsolic)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 9.00 15.00 15.32 20.00 30.00
summary (base$salpromXpuesto)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 15000 2192839 2192839 2503248 2500030 72900000
barplot(table(base$sexo))
Los empleos más afectados fueron de los hombres
hist(base$salpromXpuesto)