merged <- merged %>% 
           remove_rownames %>% 
           filter(Codi != 12)  %>% 
           column_to_rownames(var="Nom_Barri") %>% 
           select("n.tot","pc.esp","pc.ue27-esp","pc.20.34","2019-2014","n.esp.V1419",
                  "hotel2019","rest1614",
                  "RFD.2017",
                  "tot_ann","pmedio","pmedio.V1519","pm_ent.V1519","pm_priv.V1519",
                  "alq.num","alq.pm","alq.pm.V1519","alq.num.V1519",
                  "tot.comp","tot.eur","perc.nou.comp","perc.usat.comp","tot.comp.V1419",
                  "nou.eur.V1419","usat.eur.V1419",
                   )

list <- colnames(merged)
minmax <- list
minmax <- as.data.frame(minmax)
list2 <- list()

SUMMARY

summary(merged)
##      n.tot           pc.esp       pc.ue27-esp        pc.20.34    
##  Min.   :  686   Min.   :43.73   Min.   : 0.880   Min.   :13.19  
##  1st Qu.:11558   1st Qu.:77.85   1st Qu.: 3.030   1st Qu.:17.07  
##  Median :21791   Median :83.44   Median : 4.947   Median :18.01  
##  Mean   :22905   Mean   :80.67   Mean   : 7.199   Mean   :18.96  
##  3rd Qu.:31359   3rd Qu.:85.61   3rd Qu.: 8.534   3rd Qu.:20.11  
##  Max.   :58642   Max.   :94.09   Max.   :43.067   Max.   :36.59  
##    2019-2014        n.esp.V1419        hotel2019          rest1614      
##  Min.   :-8766.0   Min.   :-11.479   Min.   :   0.00   Min.   :-75.000  
##  1st Qu.:  205.0   1st Qu.: -3.256   1st Qu.:  20.25   1st Qu.: -5.000  
##  Median :  495.0   Median : -1.528   Median :  73.50   Median :  0.500  
##  Mean   :  664.8   Mean   : -1.296   Mean   : 279.61   Mean   :  1.069  
##  3rd Qu.:  980.2   3rd Qu.: -0.157   3rd Qu.: 272.25   3rd Qu.:  6.000  
##  Max.   : 3989.0   Max.   : 35.550   Max.   :3115.00   Max.   : 79.000  
##     RFD.2017         tot_ann            pmedio        pmedio.V1519    
##  Min.   : 38.60   Min.   :   0.00   Min.   :  0.00   Min.   :-100.00  
##  1st Qu.: 66.83   1st Qu.:  29.75   1st Qu.: 45.37   1st Qu.: -10.54  
##  Median : 83.10   Median :  99.50   Median : 70.81   Median :  19.29  
##  Mean   : 94.42   Mean   : 283.53   Mean   : 90.80   Mean   :  32.87  
##  3rd Qu.:105.80   3rd Qu.: 268.25   3rd Qu.:105.40   3rd Qu.:  53.43  
##  Max.   :248.80   Max.   :2099.00   Max.   :344.80   Max.   : 310.03  
##   pm_ent.V1519       pm_priv.V1519          alq.num           alq.pm      
##  Min.   :-100.0000   Min.   :-100.0000   Min.   :  2.00   Min.   :   0.0  
##  1st Qu.:  -0.0476   1st Qu.:   0.7378   1st Qu.: 52.75   1st Qu.: 754.3  
##  Median :  26.5180   Median :  25.4671   Median :109.50   Median : 865.2  
##  Mean   :  53.7896   Mean   :  21.4308   Mean   :169.62   Mean   : 869.9  
##  3rd Qu.:  85.4627   3rd Qu.:  39.2555   3rd Qu.:249.75   3rd Qu.:1002.3  
##  Max.   : 590.4439   Max.   : 150.1412   Max.   :659.00   Max.   :1950.1  
##   alq.pm.V1519   alq.num.V1519       tot.comp        tot.eur      
##  Min.   : 0.00   Min.   :-50.00   Min.   :  5.0   Min.   :   0.0  
##  1st Qu.:29.82   1st Qu.: 19.11   1st Qu.: 80.0   1st Qu.: 193.2  
##  Median :37.83   Median : 42.79   Median :153.0   Median : 267.8  
##  Mean   :35.09   Mean   : 49.45   Mean   :187.7   Mean   : 312.7  
##  3rd Qu.:44.33   3rd Qu.: 70.91   3rd Qu.:259.8   3rd Qu.: 369.3  
##  Max.   :62.78   Max.   :200.00   Max.   :619.0   Max.   :1125.3  
##  perc.nou.comp    perc.usat.comp   tot.comp.V1419    nou.eur.V1419     
##  Min.   : 0.000   Min.   : 50.00   Min.   :-45.882   Min.   :-100.000  
##  1st Qu.: 0.000   1st Qu.: 86.65   1st Qu.:  3.823   1st Qu.:  -1.095  
##  Median : 2.683   Median : 97.21   Median : 35.990   Median :   0.000  
##  Mean   : 7.794   Mean   : 91.99   Mean   : 55.980   Mean   :  22.117  
##  3rd Qu.:12.123   3rd Qu.:100.00   3rd Qu.: 71.808   3rd Qu.:  74.119  
##  Max.   :50.000   Max.   :100.00   Max.   :466.667   Max.   : 472.729  
##  usat.eur.V1419  
##  Min.   :-38.12  
##  1st Qu.: 31.25  
##  Median : 42.34  
##  Mean   : 49.42  
##  3rd Qu.: 67.68  
##  Max.   :201.26
for  (i in 1:25)
{
IRQ <- IQR(merged[,i])
Q <- quantile(merged[,i], c(0.25,0.5,0.75), type=7)

minmax[i,2] <- outl_min<-as.numeric(Q[1])-3*IRQ
minmax[i,3] <- outl_max<-as.numeric(Q[3])+3*IRQ

#bp <- boxplot(merged[,1][merged[,1]>outl_min & merged[,1]<outl_max], decreasing = FALSE)
out <- print(which(merged[,i] < outl_min | merged[,i] > outl_max))

if (length(out) != 0)
{
bout  <-merged[which(merged[,i] < outl_min | merged[,i] > outl_max), ]
 # print(bout)
  assign(list[i], bout)
  list2 <- append(list2, list[i])
}
}
## integer(0)
## [1] 1 2
## [1] 2 3 4
## [1] 1 2 3 4
## [1]  2 67 68
## [1] 41
## [1]  1  2  6  7  8 30
##  [1]  1  2  4  7 11 14 16 17 30 58 66 68
## [1] 20
## [1]  1  2  4  6  7  8 10 11 30
## [1] 24
## [1] 24
## [1] 24
## integer(0)
## integer(0)
## [1] 20 41 46 53 55 57
## integer(0)
## integer(0)
## integer(0)
## [1] 20
## [1] 41
## integer(0)
## [1] 38 46 54
## [1] 5
## [1] 11

VALORES MINMAX outl_min<-(Q[1])-1.5IRQ outl_max<-(Q[3])-1.5IRQ

minmax
##            minmax            V2           V3
## 1           n.tot -47846.000000 90762.750000
## 2          pc.esp     54.538055   108.922012
## 3     pc.ue27-esp    -13.481301    25.045958
## 4        pc.20.34      7.963631    29.214940
## 5       2019-2014  -2120.750000  3306.000000
## 6     n.esp.V1419    -12.551570     9.138918
## 7       hotel2019   -735.750000  1028.250000
## 8        rest1614    -38.000000    39.000000
## 9        RFD.2017    -50.100000   222.725000
## 10        tot_ann   -685.750000   983.750000
## 11         pmedio   -134.720993   285.497382
## 12   pmedio.V1519   -202.428536   245.319966
## 13   pm_ent.V1519   -256.578237   341.993357
## 14  pm_priv.V1519   -114.815525   154.808832
## 15        alq.num   -538.250000   840.750000
## 16         alq.pm     10.161773  1746.465743
## 17   alq.pm.V1519    -13.722392    87.874814
## 18  alq.num.V1519   -136.275462   226.291963
## 19       tot.comp   -459.250000   799.000000
## 20        tot.eur   -335.175000   897.700000
## 21  perc.nou.comp    -36.370510    48.494014
## 22 perc.usat.comp     46.614173   140.039370
## 23 tot.comp.V1419   -200.132525   275.763269
## 24  nou.eur.V1419   -226.735623   299.760008
## 25 usat.eur.V1419    -78.045241   176.973360

OUTLIERS DE CADA VARIABLE solo n.tot no tiene

for  (i in list2)
{x <- get(i)
x <- x[i]
print(x)
}
##                  pc.esp
## el Raval       48.09823
## el Barri Gòtic 43.72784
##                                       pc.ue27-esp
## el Barri Gòtic                           43.06665
## la Barceloneta                           28.23924
## Sant Pere, Santa Caterina i la Ribera    36.62403
##                                       pc.20.34
## el Raval                              29.23370
## el Barri Gòtic                        36.59020
## la Barceloneta                        30.46200
## Sant Pere, Santa Caterina i la Ribera 30.17264
##                                              2019-2014
## el Barri Gòtic                                   -8766
## el Poblenou                                       3989
## Diagonal Mar i el Front Marítim del Poblenou      3850
##          n.esp.V1419
## la Clota    35.55046
##                                 hotel2019
## el Raval                             1085
## el Barri Gòtic                       1112
## la Sagrada Família                   1106
## la Dreta de l'Eixample               3115
## l'Antiga Esquerra de l'Eixample      1559
## la Vila de Gràcia                    1327
##                                              rest1614
## el Raval                                          -75
## el Barri Gòtic                                    -59
## Sant Pere, Santa Caterina i la Ribera             -41
## la Dreta de l'Eixample                             79
## el Poble Sec                                      -48
## Hostafrancs                                        62
## Sants - Badal                                      43
## Sants                                              68
## la Vila de Gràcia                                 -65
## el Bon Pastor                                      44
## la Vila Olímpica del Poblenou                      68
## Diagonal Mar i el Front Marítim del Poblenou       45
##           RFD.2017
## Pedralbes    248.8
##                                       tot_ann
## el Raval                                 1781
## el Barri Gòtic                           1423
## Sant Pere, Santa Caterina i la Ribera    1273
## la Sagrada Família                       1101
## la Dreta de l'Eixample                   2099
## l'Antiga Esquerra de l'Eixample          1079
## Sant Antoni                               999
## el Poble Sec                             1112
## la Vila de Gràcia                        1122
##                              pmedio
## Sant Gervasi - la Bonanova 344.7963
##                            pmedio.V1519
## Sant Gervasi - la Bonanova      310.028
##                            pm_ent.V1519
## Sant Gervasi - la Bonanova     590.4439
##                 alq.pm
## Pedralbes     1950.055
## la Clota         0.000
## Can Peguera      0.000
## Torre Baró       0.000
## Vallbona         0.000
## Baró de Viver    0.000
##           tot.eur
## Pedralbes  1125.3
##          perc.nou.comp
## la Clota            50
##                          tot.comp.V1419
## Sant Genís dels Agudells       466.6667
## Can Peguera                    300.0000
## Ciutat Meridiana               293.7500
##               nou.eur.V1419
## el Fort Pienc      472.7294
##              usat.eur.V1419
## el Poble Sec       201.2632

SCALED

merged.sc <- scale(merged)
summary(merged.sc)
##      n.tot              pc.esp         pc.ue27-esp         pc.20.34      
##  Min.   :-1.51816   Min.   :-4.0958   Min.   :-0.8614   Min.   :-1.4824  
##  1st Qu.:-0.77532   1st Qu.:-0.3127   1st Qu.:-0.5683   1st Qu.:-0.4843  
##  Median :-0.07612   Median : 0.3075   Median :-0.3070   Median :-0.2420  
##  Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.57764   3rd Qu.: 0.5487   3rd Qu.: 0.1820   3rd Qu.: 0.2961  
##  Max.   : 2.44180   Max.   : 1.4883   Max.   : 4.8896   Max.   : 4.5333  
##    2019-2014        n.esp.V1419         hotel2019           rest1614       
##  Min.   :-6.2892   Min.   :-1.95588   Min.   :-0.56748   Min.   :-2.89006  
##  1st Qu.:-0.3066   1st Qu.:-0.37645   1st Qu.:-0.52638   1st Qu.:-0.23059  
##  Median :-0.1132   Median :-0.04467   Median :-0.41831   Median :-0.02163  
##  Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.00000   Mean   : 0.00000  
##  3rd Qu.: 0.2104   3rd Qu.: 0.21868   3rd Qu.:-0.01494   3rd Qu.: 0.18732  
##  Max.   : 2.2169   Max.   : 7.07674   Max.   : 5.75454   Max.   : 2.96077  
##     RFD.2017          tot_ann             pmedio         pmedio.V1519    
##  Min.   :-1.3124   Min.   :-0.63599   Min.   :-1.3446   Min.   :-1.8782  
##  1st Qu.:-0.6488   1st Qu.:-0.56926   1st Qu.:-0.6727   1st Qu.:-0.6136  
##  Median :-0.2661   Median :-0.41280   Median :-0.2961   Median :-0.1919  
##  Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.2677   3rd Qu.:-0.03427   3rd Qu.: 0.2162   3rd Qu.: 0.2906  
##  Max.   : 3.6301   Max.   : 4.07236   Max.   : 3.7610   Max.   : 3.9180  
##   pm_ent.V1519     pm_priv.V1519        alq.num            alq.pm        
##  Min.   :-1.5326   Min.   :-3.0446   Min.   :-1.0535   Min.   :-2.51910  
##  1st Qu.:-0.5365   1st Qu.:-0.5188   1st Qu.:-0.7346   1st Qu.:-0.33488  
##  Median :-0.2718   Median : 0.1012   Median :-0.3779   Median :-0.01371  
##  Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.00000  
##  3rd Qu.: 0.3156   3rd Qu.: 0.4469   3rd Qu.: 0.5036   3rd Qu.: 0.38339  
##  Max.   : 5.3480   Max.   : 3.2271   Max.   : 3.0758   Max.   : 3.12773  
##   alq.pm.V1519     alq.num.V1519        tot.comp          tot.eur       
##  Min.   :-2.3040   Min.   :-2.1005   Min.   :-1.2347   Min.   :-1.7110  
##  1st Qu.:-0.3459   1st Qu.:-0.6408   1st Qu.:-0.7277   1st Qu.:-0.6537  
##  Median : 0.1803   Median :-0.1406   Median :-0.2342   Median :-0.2458  
##  Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.6073   3rd Qu.: 0.4532   3rd Qu.: 0.4873   3rd Qu.: 0.3101  
##  Max.   : 1.8184   Max.   : 3.1797   Max.   : 2.9157   Max.   : 4.4471  
##  perc.nou.comp     perc.usat.comp    tot.comp.V1419    nou.eur.V1419    
##  Min.   :-0.7483   Min.   :-3.9519   Min.   :-1.2150   Min.   :-1.2604  
##  1st Qu.:-0.7483   1st Qu.:-0.5019   1st Qu.:-0.6221   1st Qu.:-0.2396  
##  Median :-0.4908   Median : 0.4922   Median :-0.2384   Median :-0.2283  
##  Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.4157   3rd Qu.: 0.7544   3rd Qu.: 0.1888   3rd Qu.: 0.5367  
##  Max.   : 4.0522   Max.   : 0.7544   Max.   : 4.8984   Max.   : 4.6508  
##  usat.eur.V1419   
##  Min.   :-2.4209  
##  1st Qu.:-0.5026  
##  Median :-0.1958  
##  Mean   : 0.0000  
##  3rd Qu.: 0.5048  
##  Max.   : 4.1988

CLUSTER

set.seed(123)
finalK <- kmeans(merged.sc, centers = 5, nstart = 100)
ann <- finalK$centers
ann <- as.data.frame(ann)
merged$cluster <- finalK$cluster

ANOVA MEAN+SD CLUSTER

for  (i in 1:26)
{
min <- aggregate(merged[,i] ~ cluster, data = merged, FUN = mean)
sdd <- aggregate(merged[,i] ~ cluster, data = merged, FUN = sd)
sdmin <- merge(min,sdd,by="cluster",all.y=TRUE)
colnames(sdmin)<- c(paste0(list[i]),"mean","sd")

print(sdmin)
}
##   n.tot     mean        sd
## 1     1 43336.44  8588.847
## 2     2 16633.84  9499.795
## 3     3 26455.00 14922.839
## 4     4 16451.00  7940.149
## 5     5 15505.42 10515.134
##   pc.esp     mean       sd
## 1      1 80.02038 5.934031
## 2      2 82.36516 5.765888
## 3      3 51.94028 7.582845
## 4      4 84.73486 3.334055
## 5      5 83.85759 5.318977
##   pc.ue27-esp      mean       sd
## 1           1  9.143068 3.657832
## 2           2  3.961785 2.451312
## 3           3 32.556091 9.146157
## 4           4  8.083250 3.150472
## 5           5  4.196735 1.676709
##   pc.20.34     mean       sd
## 1        1 20.19599 2.385660
## 2        2 17.97830 2.030386
## 3        3 31.61463 3.358223
## 4        4 16.03821 1.598279
## 5        5 17.63229 1.484560
##   2019-2014       mean        sd
## 1         1  1189.4375 1077.6702
## 2         2   550.6875  828.5086
## 3         3 -1803.5000 4748.5513
## 4         4  1423.2500 1253.9788
## 5         5   586.6667  875.3134
##   n.esp.V1419      mean        sd
## 1           1 -2.714491  2.076334
## 2           2 -1.292675  2.284297
## 3           3 -8.378314  2.243839
## 4           4 -0.731409  1.173330
## 5           5  2.573161 10.696455
##   hotel2019      mean        sd
## 1         1 849.56250 731.49190
## 2         2  69.96875  76.93880
## 3         3 751.50000 416.03886
## 4         4 114.25000  81.48926
## 5         5  31.66667  30.82600
##   rest1614        mean        sd
## 1        1  -0.0625000 37.914762
## 2        2   4.6562500 16.757491
## 3        3 -50.0000000 21.694853
## 4        4  15.1250000 26.739150
## 5        5   0.6666667  2.269695
##   RFD.2017      mean       sd
## 1        1 115.19375 32.34364
## 2        2  68.52187 18.97167
## 3        3  89.07500 16.38849
## 4        4 176.92500 42.94125
## 5        5  82.54167 17.11472
##   tot_ann     mean        sd
## 1       1  716.000 520.98228
## 2       2   75.125  78.90286
## 3       3 1235.750 555.65659
## 4       4   93.000  77.69905
## 5       5   72.250  62.09395
##   pmedio      mean        sd
## 1      1 146.26637 63.268923
## 2      2  59.04169 42.742610
## 3      3  86.93437  8.952207
## 4      4 165.13775 89.952548
## 5      5  53.28492 26.275791
##   pmedio.V1519        mean        sd
## 1            1 86.47770461  70.97761
## 2            2 11.22853192  44.83083
## 3            3  4.78081483  35.44938
## 4            4 75.58389830 105.78086
## 5            5 -0.01884583  62.98126
##   pm_ent.V1519       mean        sd
## 1            1  98.877303  73.86415
## 2            2  32.216796  72.72542
## 3            3   2.304752  38.18935
## 4            4 139.346023 192.24336
## 5            5  11.323927  78.53286
##   pm_priv.V1519     mean       sd
## 1             1 32.83508 23.63401
## 2             2 16.72192 46.16958
## 3             3 43.86672 10.54872
## 4             4 26.60151 41.32153
## 5             5  7.85612 41.52803
##   alq.num      mean        sd
## 1       1 405.18750 130.54614
## 2       2  83.06250  59.68138
## 3       3 270.25000 153.13910
## 4       4 127.87500  88.45247
## 5       5  80.66667  51.50169
##   alq.pm      mean       sd
## 1      1 1041.6091 165.8154
## 2      2  677.8560 280.4989
## 3      3  960.8175 107.5058
## 4      4 1433.6325 263.2189
## 5      5  747.1656 250.0849
##   alq.pm.V1519     mean        sd
## 1            1 40.45353  5.318256
## 2            2 31.05479 16.404754
## 3            3 45.96124  2.972726
## 4            4 36.65681 20.269038
## 5            5 34.00642 17.339406
##   alq.num.V1519      mean       sd
## 1             1  54.38179 20.52141
## 2             2  34.46026 50.30180
## 3             3  25.18087 48.46123
## 4             4 109.19727 50.64085
## 5             5  51.10443 31.45348
##   tot.comp     mean        sd
## 1        1 317.8125 146.50516
## 2        2 147.1250 113.57980
## 3        3 286.0000 113.54588
## 4        4  91.7500  64.93458
## 5        5 153.3333 168.89444
##   tot.eur     mean        sd
## 1       1 390.1938 112.56555
## 2       2 217.1219  98.75582
## 3       3 292.4000  96.19948
## 4       4 658.8125 235.38323
## 5       5 240.0250  68.10376
##   perc.nou.comp      mean       sd
## 1             1  7.856486 6.206252
## 2             2  1.694017 2.691958
## 3             3  9.225648 8.981480
## 4             4  3.837367 6.124992
## 5             5 26.139675 9.686588
##   perc.usat.comp     mean       sd
## 1              1 91.87414 6.275282
## 2              2 98.24355 2.742043
## 3              3 90.69345 8.942009
## 4              4 96.16263 6.124992
## 5              5 73.09209 9.555946
##   tot.comp.V1419       mean        sd
## 1              1  19.861046  31.31801
## 2              2  83.426558  74.60757
## 3              3   1.751993  12.83624
## 4              4 -10.043729  26.54555
## 5              5  93.038282 134.26008
##   nou.eur.V1419      mean        sd
## 1             1  60.03164 130.37796
## 2             2 -12.22792  64.86229
## 3             3 130.93821 126.18673
## 4             4 -50.54732  52.88656
## 5             5  75.32115  51.74995
##   usat.eur.V1419     mean       sd
## 1              1 58.61978 42.92035
## 2              2 49.49089 36.06916
## 3              3 49.15994 14.05369
## 4              4 29.27199 32.91476
## 5              5 50.50504 33.15581
##   NA mean sd
## 1  1    1  0
## 2  2    2  0
## 3  3    3  0
## 4  4    4  0
## 5  5    5  0

ANOVA

merged$cluster <- as.factor(merged$cluster)
for  (i in 1:25)
{
maov <- aov(merged[,i] ~ cluster, data = merged)
vvv <- summary(maov)
print(paste0(list[i]))
print(vvv)
}
## [1] "n.tot"
##             Df    Sum Sq   Mean Sq F value   Pr(>F)    
## cluster      4 8.978e+09 2.245e+09   24.14 2.15e-12 ***
## Residuals   67 6.230e+09 9.298e+07                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pc.esp"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4   3654   913.6   28.87 5.88e-14 ***
## Residuals   67   2120    31.6                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pc.ue27-esp"
##             Df Sum Sq Mean Sq F value Pr(>F)    
## cluster      4 3082.2   770.5   69.92 <2e-16 ***
## Residuals   67  738.3    11.0                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pc.20.34"
##             Df Sum Sq Mean Sq F value Pr(>F)    
## cluster      4  785.3  196.32   45.49 <2e-16 ***
## Residuals   67  289.1    4.32                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "2019-2014"
##             Df    Sum Sq Mean Sq F value  Pr(>F)   
## cluster      4  33865854 8466463    4.51 0.00275 **
## Residuals   67 125781184 1877331                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "n.esp.V1419"
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## cluster      4    415  103.76   4.605 0.00241 **
## Residuals   67   1510   22.53                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "hotel2019"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 8451099 2112775   16.11 2.73e-09 ***
## Residuals   67 8785914  131133                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "rest1614"
##             Df Sum Sq Mean Sq F value  Pr(>F)    
## cluster      4  12447  3111.7   5.674 0.00054 ***
## Residuals   67  36742   548.4                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "RFD.2017"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4  84632   21158   32.38 5.11e-15 ***
## Residuals   67  43785     654                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "tot_ann"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 8835305 2208826   28.05 1.07e-13 ***
## Residuals   67 5275269   78735                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pmedio"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 142656   35664   13.19 5.59e-08 ***
## Residuals   67 181154    2704                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pmedio.V1519"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4  91700   22925   5.827 0.000438 ***
## Residuals   67 263601    3934                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pm_ent.V1519"
##             Df Sum Sq Mean Sq F value Pr(>F)   
## cluster      4 138221   34555   4.014 0.0056 **
## Residuals   67 576717    8608                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pm_priv.V1519"
##             Df Sum Sq Mean Sq F value Pr(>F)
## cluster      4   7229    1807   1.145  0.343
## Residuals   67 105715    1578               
## [1] "alq.num"
##             Df  Sum Sq Mean Sq F value Pr(>F)    
## cluster      4 1277022  319256   41.11 <2e-16 ***
## Residuals   67  520351    7766                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "alq.pm"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 4408115 1102029   18.19 3.71e-10 ***
## Residuals   67 4059119   60584                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "alq.pm.V1519"
##             Df Sum Sq Mean Sq F value Pr(>F)
## cluster      4   1488   371.9   1.664  0.169
## Residuals   67  14976   223.5               
## [1] "alq.num.V1519"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4  38526    9632   5.349 0.000846 ***
## Residuals   67 120635    1801                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "tot.comp"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4  450026  112507   6.829 0.000113 ***
## Residuals   67 1103840   16475                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "tot.eur"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 1411789  352947   24.66 1.42e-12 ***
## Residuals   67  959018   14314                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "perc.nou.comp"
##             Df Sum Sq Mean Sq F value Pr(>F)    
## cluster      4   5363  1340.7    38.4 <2e-16 ***
## Residuals   67   2339    34.9                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "perc.usat.comp"
##             Df Sum Sq Mean Sq F value Pr(>F)    
## cluster      4   5683  1420.8   40.84 <2e-16 ***
## Residuals   67   2331    34.8                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "tot.comp.V1419"
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## cluster      4 108095   27024   4.631 0.00232 **
## Residuals   67 390978    5835                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "nou.eur.V1419"
##             Df Sum Sq Mean Sq F value Pr(>F)    
## cluster      4 184324   46081   6.403  2e-04 ***
## Residuals   67 482204    7197                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "usat.eur.V1419"
##             Df Sum Sq Mean Sq F value Pr(>F)
## cluster      4   4616    1154   0.876  0.483
## Residuals   67  88231    1317